intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử đại học môn toán năm 2012_Đề số 5

Chia sẻ: Up Up | Ngày: | Loại File: PDF | Số trang:3

120
lượt xem
25
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề thi thử đại học môn toán năm 2012_đề số 5', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề thi thử đại học môn toán năm 2012_Đề số 5

  1. ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN ( ĐỀ 5 ) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x 1 Câu I (2 điểm) Cho hàm số y  có đồ thị (C). x 1 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số . 2. Với điểm M bất kỳ thuộc đồ thị (C) tiếp tuyến tại M cắt 2 tiệm cận tạ i Avà B. Gọi I là giao điểm hai tiệm cận . Tìm vị trí của M để chu vi tam giác IAB đạt giá trị nhỏ nhất. Câu II (2 điểm) 3sin 2 x  2sin x 2 1. Giải phương trình: (1) sin 2 x.cos x  x 4  4x2  y2  6y  9  0  2. Giải hệ phương trình : (2) 2 2  x y  x  2 y  22  0   2 2 I   esin x .sin x.cos3 x. dx Câu III (1 điểm) Tính tích phân sau: 0 Câu IV (1 điểm) Cho hình chóp t ứ giác đều S.ABCD có cạnh bên bằng a, mặt bên hợp với đáy góc  . Tìm  để thể tích của khối chóp đạt giá trị lớn nhất. Câu V (1 điểm) Cho x, y, z là các số dương. T ìm giá trị nhỏ nhất của biểu thức: x z y P  3 4(x3  y3 )  3 4(x 3  z3 )  3 4(z3  x3 )  2     y 2 z2 x 2    II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a (2 điểm) 1 1. Trong mặt phẳng với hệ toạ độ Oxy, cho hình chữ nhật ABCD có tâm I( ; 0) . Đường 2 thẳng chứa cạnh AB có phương trình x – 2y + 2 = 0, AB = 2AD. Tìm toạ độ các đỉnh A, B, C, D, biết đỉnh A có hoành độ âm . 2. Trong không gian với hệ toạ độ Oxyz, cho 2 đường thẳng ( d1 ) và ( d2 ) có phương trình: x 1 y  1 z - 2 x - 4 y 1 z  3 . ( d1 ); (d 2 ) : ;     2 3 1 6 9 3 Lập phương trình mặt phẳng (P) chứa (d 1 ) và ( d2 ) . Câu VII.a (1 điểm) Tìm m để phương trình sau có 2 nghiệm phân biệt : 10 x 2  8 x  4  m(2 x  1). x 2  1 (3) B. Theo chương trình nâng cao Câu VI.b (2 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy, cho hình vuông ABCD biết M(2;1); N(4; –2); P(2;0); Q(1;2) lần lượt thuộc cạnh AB, BC, CD, AD. Hãy lập phương trình các cạnh của hình vuông. 2. Trong không gian với hệ toạ độ Oxyz, cho 2 đường thẳng () và () có phương trình: x  3  t  x  2  2 t '   ; (  ) :  y  2 t ' ( ) :  y  1  2t z  4 z  2  4t '   Viết phương trình đường vuông góc chung của () và (). Câu VII.b (1 điểm) Giải và biện luận phương trình: mx  1 .(m 2 x 2  2 mx  2)  x 3  3 x 2  4 x  2 (4)
  2. Hướng dẫn Đề sô 5  3 Câu I: 2) Gọi M  x0 ; 2   (C). x0  1   3 3 Tiếp tuyến d tại M có dạng: y  ( x  x0 )  2  2 ( x0  1) x0  1  6 Các giao điểm của d với 2 tiệm cận: A  1;2   , B(2x0 –1; 2). x0  1   SIAB = 6 (không đổi)  chu vi IAB đạt giá trị nhỏ nhất khi IA= IB  x0  1  3 6   M1( 1  3; 2  3 ); M2( 1  3;2  3 )  2 x0  1   x0  1  x0  1  3  2(1  cos x )sin x(2cos x  1)  0    2cosx – 1 = 0  x    k 2 Câu II: 1) (1)   sin x  0, cos x  0 3 ( x 2  2) 2  ( y  3) 2  4  x2  2  u  2) (2)   2 . Đặt  2 y  3  v ( x  2  4)( y  3  3)  x  2  20  0  u 2  v 2  4 u  2 u  0 Khi đó (2)    hoặc  v  0 v  2 u.v  4(u  v )  8  x  2  x  2  x  2  x   2    ; ; ; y  3 y  3 y  5 y  5    1 1t 1 Câu III: Đặt t = sin2x  I=  e (1  t )dt = 2 e 20 tan 2  tan 2  tan  43 1 1 1 Câu IV: V= . Ta có   . . a. 2 3 2 2 2 (2  tan  ) 2  tan  2  tan  2  tan  27 3 2 3 (2  tan  ) 4a 3 3 khi đó tan 2  =1   = 45 o .  V max  27 4( x 3  y 3 )  ( x  y )3 . Dấu "=" xảy ra  x = y Câu V: Với x, y, z > 0 ta có 4( y 3  z 3 )  ( y  z )3 . Tương tự ta có: Dấu "=" xảy ra  y = z 3 3 3 4( z  x )  ( z  x) . Dấu "=" xảy ra  z = x 4( x 3  y 3 )  3 4( y 3  z 3 )  3 4( z 3  x 3 )  2( x  y  z )  6 3 xyz 3  x z y 6 Ta lại có 2  2  2  2   . Dấu "=" xảy ra  x = y = z y z x xyz 3  1  xyz  1 Vậy P  6  3 xyz    12 . Dấu "=" xảy ra   x=y=z=1   x  y  z 3 xyz   Vậy minP = 12 khi x = y = z = 1. Câu VI.a: 1) A(–2; 0), B(2; 2), C(3; 0), D(–1; –2) 2) Chứng tỏ (d1) // (d2). (P): x + y – 5z +10 = 0 Câu VII.a: Nhận xét: 10 x 2  8 x  4  2(2 x  1) 2  2( x 2  1) 2  2x 1   2x 1  2x  1 (3)  2    2  0 . Đặt  t Điều kiện : –2< t  5 .   m 2 2 x2  1  x 1  x 1  2t 2  2 12 hoặc –5 < m  4 . Lập bảng biên thiên  4  m  Rút m ta có: m= t 5  Câu VI.b: 1) Giả sử đường thẳng AB qua M và có VTPT là n  ( a; b) (a2 + b2  0)  => VTPT của BC là: n1  ( b; a ) .
  3. Phương trình AB có dạng: a(x –2) +b(y –1)= 0  ax + by –2a –b =0 BC có dạng: –b(x – 4) +a(y+ 2) =0  – bx + ay +4b + 2a =0 b 3b  4a  b  2a Do ABCD là hình vuông nên d(P; AB) = d(Q; BC)    b  a 2 2 2 2 a b a b  b = –2a: AB: x – 2y = 0 ; CD: x – 2y –2 =0; BC: 2x +y – 6= 0; AD: 2x + y – 4 =0  b = –a: AB: –x + y+ 1 =0; BC: –x –y + 2= 0; AD: –x –y +3 =0; CD: –x + y+ 2 =0 2 x – y  10 z – 47  0 2)   x  3y – 2z  6  0 Câu VII.b: (4)  ( mx  1)3  mx  1  ( x  1)3  ( x  1) . Xét hàm số: f(t)= t 3  t , hàm số này đồng biến trên R. f ( mx  1)  f ( x  1)  mx  1  x  1 Giải và biện luận phương trình trên ta có kết quả cần tìm. 2  1  m  1 phương trình có nghiệm x = m 1  m = –1 phương trình nghiệm đúng với x  1  Các trường hợp còn lại phương trình vô nghiệm.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
3=>0