intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử Đại học môn Toán khối A năm 2010-2011 có kèm đáp án

Chia sẻ: Phí Thu Thảo | Ngày: | Loại File: DOC | Số trang:7

104
lượt xem
5
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đề thi thử Đại học môn Toán khối A năm 2010-2011 có kèm đáp án. Đây là tài liệu ôn tập và luyện thi tốt giúp các em biết được những dạng Toán sẽ ra trong kì thi ĐH để có sự chuẩn bị chu đáo cho kì thi sắp tới.

Chủ đề:
Lưu

Nội dung Text: Đề thi thử Đại học môn Toán khối A năm 2010-2011 có kèm đáp án

  1. KÌ THI THỬ ĐẠI HỌC NĂM HỌC 2010-2011 MÔN TOÁN (Thời gian làm bài: 180 phút) A. PHẦN DÀNH CHO TẤT CẢ THÍ SINH Câu I (2 điểm) Cho hàm số y = 2 x3 − 3(2m + 1) x 2 + 6m(m + 1) x + 1 có đồ thị (Cm). 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 0. 2. Tìm m để hàm số đồng biến trên khoảng ( 2;+ ∞) Câu II (2 điểm) a) Giải phương trình: 2 cos 3x (2 cos 2 x + 1) = 1 3 b) Giải phương trình : (3x + 1) 2 x − 1 = 5 x + x−3 2 2 2 3 ln 2 dx Câu III (1 điểm) Tính tích phân I= ∫ 0 (3 e x + 2) 2 Câu IV (1 điểm) Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, hình chiếu vuông góc của A’ lên măt phẳng (ABC) trùng với tâm O của tam giác ABC. Tính thể tích khối lăng trụ ABC.A’B’C’ biết khoảng cách giữa AA’ a 3 và BC là 4 Câu V (1 điểm) Cho x,y,z thoả mãn là các số thực: x 2 − xy + y 2 = 1 .Tìm giá trị lớn nhất ,nhỏ nhất của biểu thức x4 + y4 +1 P= x2 + y2 +1 B. PHẦN DÀNH CHO TỪNG LOẠI THÍ SINH Dành cho thí sinh thi theo chương trình chuẩn Câu VIa (2 điểm) a) Cho hình tam giác ABC có diện tích bằng 2. Biết A(1;0), B(0;2) và trung điểm I của AC nằm trên đường thẳng y = x. Tìm toạ độ đỉnh C. b) Trong không gian Oxyz, cho các điểm A(1;0;0); B(0;2;0); C(0;0;-2) tìm tọa độ điểm O’ đối xứng với O qua (ABC). Câu VIIa(1 điểm) Giải phương trình: ( z 2 − z )( z + 3)( z + 2) = 10 , z ∈ C. Dành cho thí sinh thi theo chương trình nâng cao Câu VIb (2 điểm) a. Trong mp(Oxy) cho 4 điểm A(1;0),B(-2;4),C(-1;4),D(3;5). Tìm toạ độ điểm M thuộc đường thẳng (∆) : 3 x − y − 5 = 0 sao cho hai tam giác MAB, MCD có diện tích bằng nhau b.Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng: x − 4 y −1 z + 5 x−2 y+3 z d1 : = = d2 : = = 3 −1 −2 1 3 1 Viết phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng d1 và d2 Câu VIIb (1 điểm) Giải bất phương trình: x(3 log 2 x − 2) > 9 log 2 x − 2 ……...HẾT...........
  2. ĐÁP ÁN Câu I a) Đồ Học sinh tự làm 0,25 b) y = 2 x3 − 3(2m + 1) x 2 + 6m(m + 1) x + 1 ⇒ y ' = 6 x − 6(2m + 1) x + 6m(m + 1) 2 0,5 y’ có ∆ = (2m + 1) 2 − 4(m 2 + m) = 1 > 0 x = m 0,25 y' = 0 ⇔  x = m + 1 Hàm số đồng biến trên ( 2;+ ∞) ⇔ y '> 0 ∀x > 2 ⇔ m + 1 ≤ 2 ⇔ m ≤ 1 0,25 Câu II a) Giải phương trình: 2 cos 3x (2 cos 2 x + 1) = 1 1 điểm PT ⇔ 2 cos 3x (4 cos 2 x − 1) = 1 ⇔ 2 cos 3x (3 − 4 sin 2 x) = 1 0,25 Nhận xét x = kπ , k ∈ Z không là nghiệm của phương trình đã cho nên ta có: 0,25 2 cos 3x (3 − 4 sin 2 x) = 1 ⇔ 2 cos 3 x(3 sin x − 4 sin 3 x) = sin x ⇔ 2 cos 3 x sin 3x = sin x ⇔ sin 6 x = sin x  2mπ 0,25  x= 6 x = x + m2π 5 ⇔ ⇔ ;m∈Z 6 x = π − x + m2π  x = π + 2mπ   7 7 2mπ Xét khi = kπ ⇔ 2m=5k ⇔ m = 5t , t ∈ Z 5 0,25 π 2mπ Xét khi + = kπ ⇔ 1+2m=7k ⇔ k=2(m-3k)+1 hay k=2l+1& m=7l+3, 7 7 l∈Z 2mπ π 2mπ Vậy phương trình có nghiệm: x = ( m ≠ 5t ); x = + ( m ≠ 7l + 3 ) 5 7 7 trong đó m, t , l ∈ Z b) 3 1 điểm Giải phương trình : (3x + 1) 2 x − 1 = 5 x + x − 3 2 2 2 PT ⇔ 2(3 x + 1) 2 x − 1 = 10 x + 3x − 6 2 2 0,25 2(3 x + 1) 2 x 2 − 1 = 4(2 x 2 − 1) + 2 x 2 + 3 x − 2 . Đặt t = 2 x 2 − 1(t ≥ 0) Pt trở thành 4t 2 − 2(3 x + 1)t + 2 x 2 + 3 x − 2 = 0 Ta có: ∆' = (3x + 1) 2 − 4(2 x 2 + 3 x − 2) = ( x − 3) 2 Pt trở thành 4t 2 − 2(3 x + 1)t + 2 x 2 + 3 x − 2 = 0 0,25 Ta có: ∆' = (3x + 1) 2 − 4(2 x 2 + 3 x − 2) = ( x − 3) 2
  3. 2x − 1 x+2 Từ đó ta có phương trình có nghiệm : t = ;t = 2 2 Thay vào cách đăt giải ra ta được phương trình có các nghi ệm: 0,5  − 1 + 6 2 + 60  x∈ ;   2 7  Câu III 3 ln 2 dx 1 điểm Tính tích phân I = ∫ 0 (3 e x + 2) 2 3 ln 2 x 0,25 e dx 3 Ta c ó I = ∫ x x = 0 e ( e + 2) 3 3 2 x x Đặt u= e 3 ⇒ 3du = e 3 dx ; x = 0 ⇒ u = 1; x = 3 ln 2 ⇒ u = 2 2 3du 2  1 1 1  0,25 Ta được: I=∫ =3 ∫  −  4u 4(u + 2) − 2(u + 2) 2 du  1 u (u + 2) 2 1  0,25 2 1 1 1  =3  ln u − ln u + 2 + 4   4 2(u + 2)  1  3 3 1 = ln( ) − 4 2 8 0,25 3 3 1 Vậy I = ln( ) − 4 2 8 Câu IV A’ C’ B’ H 0,5 A C O M B AM ⊥ BC  Gọi M là trung điểm BC ta thấy:  ⇒ BC ⊥ ( A' AM ) A' O ⊥ BC  Kẻ MH ⊥ AA' , (do ∠A nhọn nên H thuộc trong đoạn AA’.) BC ⊥ ( A' AM )  Do  ⇒ HM ⊥ BC .Vậy HM là đọan vông góc chung của HM ∈ ( A' AM )
  4. 3 AA’và BC, do đó d ( AA' , BC) = HM = a . 4 A' O HM 0,5 Xét 2 tam giác đồng dạng AA’O và AMH, ta có: = AO AH ⇔ suy ra A ' O = AO.HM = a 3 a 3 4 = a AH 3 4 3a 3 1 1aa 3 a3 3 Thể tích khối lăng trụ: V = A ' O.SABC = A ' O.AM .BC = a= 2 23 2 12 Câu V 1.Cho a, b, c là các số thực dương thoả mãn a + b + c = 3 .Chứng minh 1 điểm rằng: 3(a 2 + b 2 + c 2 ) + 4abc ≥ 13 b+c 0,5 Đặt f ( a, b, c) = 3(a + b + c ) + 4abc − 13; t = 2 2 2 2 *Trước hết ta chưng minh: f ( a, b, c) ≥ f (a, t , t ) :Thật vậy Do vai trò của a,b,c như nhau nên ta có thể giả thiết a ≤ b ≤ c ⇒ 3a ≤ a + b + c = 3 hay a ≤ 1 f ( a, b, c) − f (a, t , t ) = 3(a 2 + b 2 + c 2 ) + 4abc − 13 − 3(a 2 + t 2 + t 2 ) − 4at 2 + 13 = 3(b 2 + c 2 − 2t 2 ) + 4a (bc − t 2 )  2(b + c)  2  (b + c)  3(b − c ) 2 2 = 3b 2 + c 2 −  + 4a bc − = − a (b − c) 2  4   4  2 (3 − 2a )(b − c) 2 = ≥ 0 do a ≤ 1 2 *Bây giờ ta chỉ cần chứng minh: f ( a, t , t ) ≥ 0 với a+2t=3 0,5 Ta có f ( a, t , t ) = 3(a 2 + t 2 + t 2 ) + 4at 2 − 13 = 3((3 − 2t ) 2 + t 2 + t 2 ) + 4(3 − 2t )t 2 − 13 = 2(t − 1) 2 (7 − 4t ) ≥ 0 do 2t=b+c < 3 Dấu “=” xảy ra ⇔ t = 1 & b − c = 0 ⇔ a = b = c = 1 (ĐPCM) 2. Cho x,y,z thoả mãn là các số thực: x 2 − xy + y 2 = 1 .Tìm giá trị lớn nhất ,nhỏ nhất của biểu thức x4 + y4 +1 P= 2 x + y2 +1 Tõ gi¶ thiÕt suy ra: 1 = x 2 − xy + y 2 ≥ 2 xy − xy = xy 1 = ( x + y ) 2 − 3 xy ≥ −3xy 0,25 1 Tõ ®ã ta cã − ≤ xy ≤ 1 . 3
  5. M¨t kh¸c x 2 − xy + y 2 = 1 ⇔ x 2 + y 2 = 1 + xy nªn x 4 + y 4 = − x 2 y 2 + 2 xy + 1 .®¨t t=xy Vëy bµi to¸n trë thµnh t×m GTLN,GTNN cña − t 2 + 2t + 2 1 0.25 P = f (t ) = ;− ≤ t ≤ 1 t+2 3 6 t = 6 − 2 TÝnh f ' (t ) = 0 ⇔ −1 + =0⇔ 0.25 (t + 2) 2 t = − 6 − 2(l )  1 −1 Do hµm sè liªn tôc trªn [ − ;1] nªn so s¸nh gi¸ trÞ cña f ( ) , 3 3 f ( 6 − 2) , f (1) cho ra kÕt qu¶: 1 11 0.25 MaxP = f ( 6 − 2) = 6 − 2 6 , min P = f (− ) = 3 15 Câu VIa 1 điểm a) (Học sinh tự vẽ hình) uuu r Ta có: AB = ( −1; 2 ) � AB = 5 . Phương trình của AB là: 2 x + y − 2 = 0 . I � d ) : y = x � I ( t ; t ) . I là trung điểm của AC: C ( 2t − 1;2t ) ( 0,5 t = 0 1 Theo bài ra: S ∆ABC = AB.d (C , AB) = 2 ⇔ . 6t − 4 = 4 ⇔  4 2 t =  3 0,5 5 8 Từ đó ta có 2 điểm C(-1;0) hoặc C( ; ) thoả mãn . 3 3 b) 1 điểm *Từ phương trình đoạn chắn suy ra pt tổng quát của mp(ABC) là:2x+y-z-2=0 0.25 *Gọi H là hình chiếu vuông góc của O l ên (ABC), OH vuông góc với 0,25 (ABC) nên OH // n(2;1;−1) ; H ( ABC ) 1 2 1 1 Ta suy ra H(2t;t;-t) thay vào phương trình( ABC) có t= suy ra H ( ; ;− ) 3 3 3 3 4 2 2 0,5 *O’ đỗi xứng với O qua (ABC) ⇔ H là trung điểm của OO’ ⇔ O' ( ; ;− ) 3 3 3 CâuVIIa Giải phương trình: ( z − z )( z + 3)( z + 2) = 10 , z ∈ C. 2 1 điểm PT ⇔ z ( z + 2)( z − 1)( z + 3) = 10 ⇔ ( z 2 + 2 z )( z 2 + 2 z − 3) = 0 0,25 Đặt t = z 2 + 2 z . Khi đó phương trình (8) trở thành: Đặt t = z 2 + 2 z . Khi đó phương trình (8) trở thành 0,25 t 2 − 3t − 10 = 0
  6. t = −2  z = −1 ± i ⇔ ⇒ t = 5  z = −1 ± 6 0,5 Vậy phương trình có các nghiệm: z = −1± 6 ; z = −1 ± i Câu VIb 1 điểm a) Viết phương trình đường AB: 4 x + 3 y − 4 = 0 và AB = 5 0,25 Viết phương trình đường CD: x − 4 y + 17 = 0 và CD = 17 Điểm M thuộc ∆ có toạ độ dạng: M = (t ;3t − 5) Ta tính được: 0,25 13t − 19 11t − 37 d ( M , AB ) = ; d ( M , CD) = 5 17 Từ đó: S MAB = S MCD � d ( M , AB ). AB = d ( M , CD ).CD 0,5 7 7 � t = −9 � = t Có 2 điểm cần tìm là: M (−9; −32), M ( ; 2) 3 3 b) 1 điểm Giả sử một mặt cầu S(I, R) tiếp xúc với hai đương thẳng d 1, d2 tại hai điểm A và B khi đó ta luôn có IA + IB ≥ AB và AB ≥ d ( d1 , d 2 ) dấu bằng xảy ra khi I là trung điểm AB và AB là đoạn vuông góc chung c ủa hai đ ường th ẳng d 1, 0, 25 d2 Ta tìm A, B : 0,25 uuu r r AB ⊥ u uuu ur A∈d1, B∈d2 nên: A(3 + 4t; 1- t; -5-2t), B(2 + t’; -3 + 3t’; t’) r AB ⊥ u ' uuur AB (….)… A(1; 2; -3) và B(3; 0; 1) I(2; 1; -1) 0,25 Mặt cầu (S) có tâm I(2; 1; -1) và bán kính R= 6 Nên có phương trình là: ( x − 2 ) + ( y − 1) 2 + ( z + 1) 2 = 6 2 0,25 CâuVIIb Giải bất phương trình x(3 log 2 x − 2) > 9 log 2 x − 2 1 điểm Điều kiện: x > 0 Bất phương trình ⇔ 3( x − 3) log 2 x > 2( x − 1) 0.25 Nhận thấy x=3 không là nghiệm của bất phương trình. 3 x −1 TH1 Nếu x > 3 BPT ⇔ log 2 x > 2 x−3 0,25 3 Xét hàm số: f ( x ) = log 2 x đồng biến trên khoảng ( 0;+ ∞) 2 x −1 g ( x) = nghịch biến trên khoảng ( 3;+ ∞) x−3 f ( x) > f (4) = 3 *Với x > 4 :Ta có  Bpt có nghiệm x > 4 g ( x ) < g ( 4) = 3 
  7. f ( x) < f (4) = 3 * Với x < 4 :Ta có  Bpt vô nghiệm g ( x ) > g ( 4) = 3  3 x −1 0,25 TH 2 :Nếu 0 < x < 3 BPT ⇔ log 2 x < 2 x−3 3 f ( x) = log 2 x đồng biến trên khoảng ( 0;+ ∞) 2 x −1 g ( x) = nghịch biến trên khoảng ( 0;3) x−3 f ( x) > f (1) = 0 *Với x > 1 :Ta có  Bpt vô nghiệm g ( x) < g (1) = 0  f ( x) < f (1) = 0 * Với x < 1 :Ta có  Bpt có nghiệm 0 < x < 1 g ( x) > g (1) = 0  x > 4 0,25 Vậy Bpt có nghiệm  0 < x < 1 Chú ý:Các cách giải khác cho kết quả đúng vẫn đươc điểm tối đa.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2