intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử THPT quốc gia năm 2016 có đáp án môn: Toán - Trường THPT Đăkmil

Chia sẻ: Công Luy | Ngày: | Loại File: PDF | Số trang:6

58
lượt xem
1
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Sau đây là đề thi thử THPT quốc gia năm 2016 có đáp án môn "Toán - Trường THPT Đăkmil". Mời các bậc phụ huynh, thí sinh và thầy cô giáo cùng tham khảo để để có thêm tài liệu phục vụ nhu cầu học tập và ôn thi. Chúc các bạn đạt kết quả cao trong kỳ thi sắp tới.

Chủ đề:
Lưu

Nội dung Text: Đề thi thử THPT quốc gia năm 2016 có đáp án môn: Toán - Trường THPT Đăkmil

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐĂKNÔNG KỲ THI THỬ THPT QUỐC GIA NĂM 2016 TRƯỜNG THPT ĐĂKMIL Môn thi: TOÁN Thời gian làm bài: 180 phút, không kể thời gian giao đề Lần thứ 1, Ngày thi: 1/12/2015 ĐỀ CHÍNH THỨC Câu 1.(2,0 điểm) Cho hàm số y   x 3  3 x 2 . a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. b) Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến đó song song với đường thẳng y  3 x  5. Câu 2.(1,0 điểm) 3 a) Giải phương trình: cos 2 x  cos 2 2 x  cos 2 3x  2 b)Cho số phức z thỏa mãn z   2  3i  z  1  9i . Tìm môđun của số phức z. Câu 3.(0,5 điểm) Giải bất phương trình: 32 ( x 1)  82.3 x  9  0. Câu 4.(0,5 điểm) Đội cờ đỏ của một trường phổ thông có 12 học sinh gồm 5 học sinh lớp A, 4 học sinh lớp B và 3 học sinh lớp C. Chọn ngẫu nhiên 4 học sinh đi làm nhiệm vụ. Tính xác suất để trong 4 học sinh được chọn không quá 2 trong 3 lớp trên. 1  Câu 5.(1,0 điểm) Tính tích phân: I   x 2 1  x 1  x 2 dx 0  Câu 6. (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = 2a, cạnh bên SA vuông góc với mặt đáy và cạnh bên SC tạo với mặt đáy một góc 600. Gọi M, N lần lượt là trung điểm của các cạnh bên SA và SB. Tính theo a thể tích khối chóp S.ABCD và khoảng cách từ S đến mặt phẳng (DMN). Câu 7.(1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;3;1) và đường thẳng d:  x  2  t   y  1  2t . Viết phương trình mặt phẳng đi qua A và chứa đường thẳng d. Viết phương trình z  1  2t  mặt cầu tâm A và tiếp xúc với d. Câu 8: Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có AB=2BC. Gọi H là hình chiếu của A lên đường thẳng BD; E,F lần lượt là trung điểm đoạn CD và BH. Biết A(1;1), phương trình đường thẳng EF là 3x – y – 10 = 0 và điểm E có tung độ âm. Tìm tọa độ các đỉnh B, C, D. Câu 9 .(1,0 điểm) Giải hệ phương trình sau:  32  2 x 2 5    2 y 3 3      x 2 x y  3  1   y  3 1  x 2 y 3 2  6 x    y  3 1 2 Câu 10.(1,0 điểm) cho a, b, c là các số thực không âm và thỏa mãn: ab  bc  ca  1 . Tìm GTNN của biểu thức: a b a2 1  1 c  P      16  b  c   a 2  bc  16  a  c   b 2  ac  4  a ab  -------- Hết--------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: ........................................ Số báo danh: ............................................... Chữ ký của giám thị 1: .................................. Chữ ký của giám thị 2: .................................
  2. SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐĂKNÔNG KỲ THI THỬ THPT QUỐC GIA NĂM 2016 TRƯỜNG THPT ĐĂKMIL Môn thi: TOÁN Thời gian làm bài: 180 phút, không kể thời gian giao đề Lần thứ I, ngày thi 1/12/2015 ĐÁP ÁN – THANG ĐIỂM Câu Đáp án Điểm 1a -Tập xác định: D = R. (1,0đ) -Sự biến thiên: 0,25 Chiều biến thiên y '  3 x 2  6 x; y '  0  x  0  x  2 . Các khoảng nghịch biến: (-;0) và (2;+); khoảng đồng biến: (0;2). Cực trị: Hàm số đạt cực tiểu tại x = 0, yCT = 0; đạt cực đại tại x = 2, yCĐ = 4. 0,25 Giới hạn tại vô cực: lim y  ; lim y   x   x   Bảng biến thiên: x - 0 2 + y' – 0 + 0 – 0,25 y + 4 0 - Đồ thị: y 8 6 4 2 x 0,25 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 -2 -4 -6 -8 1b Tiếp tuyến song song với đường thẳng y  3x  5 nên có hệ số góc bằng 3. 0,25 (1,0đ) 2 Gọi M(x0;y0) là tiếp điểm, ta có  3 x  6 x0  3  3 x  6 x0  3  0  x0  1 2 0 0 0,25 Suy ra M(1;2) 0,25 Phương trình tiếp tuyến là: y = 3x – 1 . 0,25 2a 3 1 1 1 3 (0,5đ) cos 2 x  cos 2 2 x  cos 2 3 x   (1  cos2 x)  (1  cos4 x)  (1  cos6 x)  0,25 2 2 2 2 2  (cos6 x  cos2 x)  cos4 x  0  2 cos 4 x.cos2 x  cos4 x  0  cos4 x(2 cos 2 x  1)  0   k cos4 x  0 x  8  4 0,25   cos2 x   1  x     k  2  3 2b Gọi z  a  bi, a, b   ; Khi đó z   2  3i  z  1  9i (0,5đ) 0,25  a  bi   2  3i  a  bi   1  9i   a  3b   3a  3b   1  9i  a  3b  1 a  2   . Vậy môđun của số phức z là : z  22  (1) 2  5 0,25 3a  3b  9 b  1 3 32 ( x 1)  82.3 x  9  0  9.32 x  82.3 x  9  0 0,25 (0,5đ) 1 0,25   3 x  9  3 2  3 x  32  2  x  2. Vậy bất phương trình có nghiệm là  2  x  2 . 9
  3. 4 4 n()  C12  495 (0.5đ) Gọi A là biến cố : “ 4 học sinh được chọn không quá 2 trong 3 lớp trên” 0,25  A : “ 4 học sinh được chọn là học sinh của cả 3 lớp trên” Ta có các trường hợp sau: + 2 học sinh lớp A, 1 học sinh lớp B và 1 học sinh lớp C có C52 .C14 .C31  120 cách 0,25 + 1 học sinh lớp A, 2 học sinh lớp B và 1 học sinh lớp C có C51.C42 .C31  90 cách + 1 học sinh lớp A, 1 học sinh lớp B và 2 học sinh lớp C có C51.C14 .C32  60 cách  n( A)  270. n( A) 6  P ( A)   . n() 11 5 Vậy xác suất của biến cố A là: P ( A)  1  P ( A)  11 5 1 1 1 (1,0đ) 0  . I   x 1  x 1  x dx   x dx   x 3 1  x 2 dx 2 2  0 2 0 0,25 1 1 x3 2 1 I1   x dx   0 3 3 0 1 I 2   x 3 1  x 2 dx 0 Đặt t  1  x 2  x 2  1  t 2  xdx  tdt Đổi cận: x  0  t  1; x  1  t  0 0 1 1  t3 t5  2  I 2    1  t  t dt    t  t dt      2 2 2 4 1 0  3 5  0 15 7 Vậy I  I1  I 2  15 1 2x 0,25 Đặt u = x  du = dx; dv  e 2 x dx choïn v  e 2 1 1 x 2x 1 1 2x e2 1 e2  1  xe 2 x dx   e |0  e dx   e 2 x |10   0,25 0 2 20 2 4 4 3e 2  7 Vậy I  . 0,25 12 6 S (1,0đ) H Ta có SA  (ABCD)  AC là hình chiếu của SC trên M  N (ABCD)  SCA  600 0,25 A AC  AD 2  CD 2  a 5 ; SA  AC tan 600  a 15 D B C 1 1 2 15a3 0,25 VS. ABCD  S ABCD .SA  AB.AD.SA  . 3 3 3 Trong mp(SAD) kẻ SH  DM, ta có AB  (SAD) mà MN // AB  MN  (SAD)  MN  SH  0,25
  4. SH  (DMN)  SH = d(S, (DMN)) SH SM SA.DA SA.DA 2a 15 0,25 SHM ~ DAM    SH    . DA DM 2 DM 2 AD  AM 2 2 31 7 Đường thẳng d đi qua M(-2;1;-1) và có vectơ chỉ phương a  (1;2;2) , MA  (4;2;2) (1,0đ)   mp(P) đi qua A và chứa d nhận n  a, MA  (8;10;6) làm vectơ pháp tuyến 0,25 (P): 4x – 5y – 3z + 10 = 0 0,25 Gọi H là hình chiếu của A trên d  H(-2 + t; 1 + 2t; -1 – 2t), 0,25 4  32 10 26  AH  ( 4  t;2  2t;2  2t ); AH  a  AH .a  0  t   AH    ; ;  9  9 9 9  10 2 200 Mặt cầu (S) tâm A có bán kính R = AH = . Vậy (S): x  2 2  y  32  z  52  . 0,25 3 9 8 Gọi E,F,G lần lượt là trung điểm các A G B (1,0đ) đoạn thẳng CD, BH AB. Ta chứng 0,25 minh AF  EF . Ta thấy các tứ giác ADEG và ADFG nội tiếp nên tứ giác ADEF cũng nội tiếp, F do đó AF  EF . Đường thẳng AF có pt: x+3y-4=0. H D Tọa độ điểm F là nghiệm của hệ E C  17 0,25 3 x  y  10  x  5  17 1  32    F  ;   AF  x  3y  4 y  1  5 5 5  5 1 2 AFE  DCB  EF  AF  2 ; 0,25 2 5 2 2 28  17   51  8 E  t ;3t  10   EF    t     3t    5  5  5 5 19  19 7   5t 2  34t  57  0  t  3  t  hay E  3; 1  E  ;  5  5 5 Theo giả thiết ta được E  3; 1 , pt AE: x+y-2=0. Gọi D(x;y), tam giác ADE vuông cân tại D nên  AD  DE  x  12   y  12   x  3 2   y  12  0,25   AD  DE  x  1 x  3   y  1 y  1  y  x  2 x  1 x  3    hay D(1;-1)  D(3;1)  x  1 x  3  0  y  1  y  1 Vì D và F nằm về hai phía so với đường thẳng AE nên D(1;-1).
  5. Khi đó, C(5;-1); B(1;5). Vậy B(1;5); C(5;-1) và D(1;-1). 9 x  0 (0,5đ) ĐK:  0.25 y  3 Ta có phương trình thứ 2 của hệ:  x 2 x  y  3 1    y  3 1   x  2 y 3  2  6 x   y  3 1  2  * 0,25  x  a Đặt:  . Phương trình thứ 2 của hệ trở thành:  y  3  1  b a  2a  b   b  a  2b   6  a 2  b 2   * BCS Ta có: VT*   a  b  2a  b  2b  a   3  a  b   6  a 2  b 2   VP* 0,25 Dấu “=” xảy ra khi và chỉ khi: a  b  x y  3 1  x  y  3  1 Thế vào phương trình đẩu của hệ ta có: 0.25 32 32 2 x 2 52 x 2 5 **  1. 2 y  3  3   x  y 3 2 y 3 3  Mặt khác theo AM-GM ta có: 2 y 3 3 2 y 3 3 32 AM  GM 2  x  y 3   2  2  2  8   x  y 3 2 y 3 3  32  x 2  5  VT**  VP** .   x  y 3 2 y 3 3  Và dẩu “=” xảy ra khi và chỉ khi: 0.25  3 2 y 3 3 32  x  2 2  x  y 3    2  2 2  x  y 3 2 y 3 3    y 3  1  2  9  x  4   y  13  4  9 13  Vậy nghiệm của hệ là  x; y    ;  4 4  10 Ta có: 0,25 (1,0đ) 2a  b  c  a 2  bc a 2  bc ab  ac 1  2  2  ab  ac ab  ac a  bc  a  b  a  c  a 2a   1  b  c   a  bc   a  b  a  c  2 b 2b Tương tự ta cũng sẽ có:   2  a  c   b  ac   c  b  a  b  2 0,25 Từ (1) và (2) ta sẽ có: 0,25
  6. 1 2a 2b  a2 1  1 c  P       4   a  b  a  c   c  b  a  b   4  a ab  1  . 4ab  2ac  2bc   a 2  1  b  c  4  a  b  b  c  c  a  4ab Mặt khác ta có a,b,c là các số không âm và ab  bc  ca  1 . Nên ta sẽ có: 0,25 a 2  1  b  c    a  b  b  c  c  a    a  b  b  c  c  a  4ab 4ab 4ab  2c  a  b  Từ đây ta sẽ có: P . 1 4ab  2ac  2bc   a  b  b  c  c  a  AMGM 1 4  a  b  b  c  c  a  4ab  2c  a  b   a 2  bc  ab  ac  1   b 2  ac a  b  1 Dấu “=” xảy ra khi và chỉ khi  1  .  ab  bc c  0 ab  bc  ca  1  c  0  Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì được đủ điểm từng phần như đáp án quy định  Ngày thi: 1/12/2015, BTC sẽ trả bài cho thí sinh vào ngày 4/12/2015. *******HẾT*******
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
3=>0