Đề thi thử tuyển sinh ĐH Toán khối B lần 1 (2013-2014) - THPT Lê Quý Đôn (Kèm Đ.án)
lượt xem 6
download
Mời các bạn cùng tham khảo đề thi thử tuyển sinh Đại học môn Toán khối B lần 1 năm 2013 - 2014 của trường THPT Lê Quý Đôn, với đề thi này sẽ giúp các bạn ôn tập lại kiến thức đã học, có cơ hội đánh giá được năng lực của mình. Chúc các bạn thành công trong kỳ thi sắp tới.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử tuyển sinh ĐH Toán khối B lần 1 (2013-2014) - THPT Lê Quý Đôn (Kèm Đ.án)
- WWW.VNMATH.COM SỞ GIÁO DỤC – ĐÀO TẠO THÁI BÌNH ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC TRƯỜNG THPT LÊ QUÝ ĐÔN MÔN THI: TOÁN KHỐI B LẦN I Đề chính thức NĂM HỌC : 2013 - 2014 Thời gian làm bài :180 phút (không kể thời gian phát đề) I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu 1: (2điểm) Cho hàm số y x3 3mx 2 3( m 2 1) x m3 m (1) 1/Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m=1 2/ Tìm m để đồ thị hàm số (1) có điểm cực đại , điểm cực tiểu và khoảng cách từ điểm cựctiểu của đồ thị hàm số đến gốc toạ độ O bằng 3 lần khoảng cách từ điểm cực đại của đồ thị hàm số đến gốc toạ độ O Câu 2: (1điểm) Giải phương trình: 2s inx(cos 2 x sin 2 x) s inx 3 cos 3 x Câu 3: (1điểm) Giải phương trình : x 4 6 x 2 x 2 13 x 17 3 Câu 4: (1điểm) Tính tích phân : I ln 2 x(x 2 3) dx 2 Câu 5 (1điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A,D biết AB =2a; AD =DC = a (a>0) SA (ABCD) ,Góc giữa mặt phẳng (SBC) và (ABCD) bằng 45 0 .Tính thể tích khối chóp S.ABCD và khoảng cách từ B tới mặt phẳng (SCD) theo a Câu 6 (1điểm) Cho x,y là các số thực và thoả mãn . x, y 1 . Tìm giá trị nhỏ nhất của biểu thức (x 3 y 3 ) (x 2 y 2 ) P (x 1)(y 1) II.PHẦN RIÊNG(3,0 điểm ): Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A.Theo chương trình chuẩn Câu 7a: (1điểm) Trong mặt phẳng với hệ toạ độ Oxy cho đường thẳng d: x-y =0 và điểm M(2;1) .Viết phương trình đường thẳng cắt trục hoành Ox tại A và cắt đường thẳng d tại B sao cho tam giác AMB vuông cân tại M 2n 2 14 1 Câu 8a: (1điểm) Tìm hệ số của x 9 trong khai triển: 1 3x ; n * , biết 2 3 . Cn 3Cn n 3 3 Câu 9a (1 điểm) Giải phương trình 3x x 2.3x x 32 x 2 0 B.Theo chương trình nâng cao Câu 7b(1,0 điểm) Trong mặt phẳng với hệ toạ độ Oxy cho ABC có đỉnh A 3; 4 , đường phân giác trong của góc A có phương trình x y 1 0 và tâm đường tròn ngoại tiếp ABC là I (1 ;7). Viết phương trình cạnh BC, biết diện tích ABC gấp 4 lần diện tích IBC . Câu 8b(1,0 điểm) Một hộp có 5 viên bi đỏ ,3 viên bi vàng và 4 viên bi xanh .Hỏi có bao nhiêu cách lấy ra 4 viên bi trong đó số bi đỏ lớn hơn số bi vàng Câu 9b (1,0 điểm) Giải phương trình log 3 3x 1 .log 3 3x 2 9 3 (Cán bộ coi thi không giải thích gì thêm) Họ và tên thí sinh:...............................................................Số báo danh......................
- WWW.VNMATH.COM ĐÁP ÁN THANG ĐIỂM THI THỬ ĐẠI HỌC MÔN TOÁN KHỐI B LẦN I NĂM HỌC 2013-2014 Câu NỘI DUNG Điểm I 1.Khi m=1 1 Khảo sát và vẽ đồ thị hàm số y x 3 3 x 2 a)TXĐ:D=R b)Sự biến thiên x 0 0.25 -Chiều biến thiên y ' 3 x 2 6 x y ' 0 x 2 ………………………………………………………………………………………... Hàm số đồng biến trên khoảng (;0) và (2; ) Hàm số nghịch biến trên khoảng (0; 2) 0.25 -Cực trị : Hàm số đạt cực đại tại x 0 ;ycd 0 Hàm số đạt cực tiểu tại x 2 ;y ct 4 -Giới hạn : lim ; lim x x ………………………………………………………………………………………... Bảng biến thiên 0.25 x 0 2 y' + 0 - 0 + y 0 -4 ………………………………………………………………………………………... Đồ thị 0.25
- WWW.VNMATH.COM 1 2:Tìm m để đồ thị hàm số cóđiểm cực đại , điểm cực tiểu và khoảng cách từ điểm cực tiểu của đồ thị hàm số đến gốc toạ độ O bằng 3 lần khoảng cách từ điểm cực đại của đồ thị hàm số đến gốc toạ độ O TXD: D=R Ta có y ' 3 x 2 6mx 3( m2 1) Đồ thị hàm số có điểm cực đại ,điểm cực tiểu khi và chỉ khi y ' 0 có hai nghiệm 0.25 phân biệt và đổi dấu khi đi qua các nghiệm 3 x 2 6mx 3( m 2 1) 0 có hai nghiệm phân biệt ' 9m 2 9(m 2 1) 9 0 m x m 1 0.25 Vậy m đồ thị hàm số có điểm cực đại ,điểm cực tiểu và y ' 0 x m 1 0.25 Điểm A(m-1;2-2m);B(1+m,-2-2m) lần lượt là điểm cực đại ,điểm cực tiểu của đồ thị hàm số theo giả thiết ta có OB=3 OA OB 2 9OA2 (m+1) 2 (2 2m)2 (m-1)2 (2 2 m) 2 m 2 2 m 5m 2 0 2 m 1 2 m 2 0.25 Vậy với thì đồ thị hàm số cóđiểm cực đại , điểm cực tiểu và khoảng cách từ m 1 2 điểm cực tiểu của đồ thị hàm số đến gốc toạ độ O bằng 3 lần khoảng cách từ điểm cực đại của đồ thị hàm số đến gốc toạ độ O 2 Giải phương trình : 2s inx(cos 2 x sin 2 x) s inx 3 cos 3x (1) 1 phương trình (1) 0.25
- WWW.VNMATH.COM 2 sin x.cos 2 x s inx 3 cos 3x sin 3x s inx s inx 3 cos 3x 1 3 0.25 sin 3x 3 cos 3x 2 sin x sin 3x cos3x s inx 2 2 0.25 cos sin 3x sin cos3x s inx sin(3x ) sin x 3 3 3 3x 3 x k2 x 6 k 0.25 kZ 3x x k2 x k 3 3 2 3.Giải phương trình x 4 6 x 2 x 2 13x 17 1 Điều kiện : 4 x 6 Ta có : x 4 6 x 2 x 2 13 x 17 ( x 4 1) ( 6 x 1) 2 x 2 13 x 15 0 ( x 4 1)( x 4 1) ( 6 x 1)( 6 x 1) 0.25 ( x 5)(2 x 3) 0 x 4 1 6 x 1 x 5 5 x ( x 5)(2 x 3) 0 0.25 x 4 1 6 x 1 x 5 1 1 (2 x 3) 0 0.25 x 4 1 6 x 1 1 1 1 1 Ta có (2 x 3) 0 (2 x 3) x 4 1 6 x 1 x 4 1 6 x 1 1 1 1 Vì 1 x 4;6 và 2 x 3 5 x 4; 6 x 4 1 6 x 1 x 4 1 0.25 Vậy phương trình đã cho có nghiệm duy nhất x= 5 3 4 1 Tính tích phân I ln 2 x( x 2 3) dx 2 Ta có 3 3 3 I ln 2 x( x 2 3) dx ln( x 3 3 x 2)dx ln( x 1) 2 ( x 2)dx 2 2 2 3 3 3 3 0.25 ln( x 1) 2 dx ln( x 2)dx 2 ln( x 1) dx ln( x 2)dx 2 2 2 2 2dx 0.25 3 u 2 ln(x 1) du Xét J 2 ln(x 1) dx Đặt x 1 2 dv dx v x 1 3 3 3 3 J 2(x 1).l n(x-1) 2 2 dx 2(x 1).ln(x-1) 2 2x. 2 4ln 2 2 0.25 2
- WWW.VNMATH.COM 3 dx u ln(x 2) du Xét K ln(x 2) dx Đặt x2 0.25 2 dv dx v x 2 3 3 3 3 K (x 2).l n(x+2) 2 dx (x 2).ln(x+2) 2 x. 2 5ln 5 4 ln 4 1 2 vậy I 5ln 5 4ln 2 3 5 Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D biết 1 AB =2a ; AD=DC=a.(a>0) SA (ABCD) ,góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 45 0 Tính thể tích khối chóp SABCD và khoảng cách từ B tới mặt phẳng (SCD) S H A B D C +Theo giả thiết ta có AD= DC = a .Gọi H là trung điểm của AB HA=HB=a Từ giả thiết ADCH là hình vuông cạnh a .Trong tam giác ABC có CH là trung tuyến 0.25 1 AC BC và CH AB ABC vuông cân tại C vì 2 AC BC a 2 BC AC BC (SAC) BC SC BC SA (SBC) (ABCD) BC BC SC (SBC) +Có SCA 450 là góc giữa (SBC) và (ABCD) BC AC (ABCD) SA (ABCD) 0.25 2 1 3a +Ta có diện tích hình thang ABCD S ABCD ( AB DC ). AD 2 2 +Có tam giác ΔSAC vuông cân tại A ta có SA=AC= AD 2 +DC 2 2 a
- WWW.VNMATH.COM 1 1 3a 2 2 3 +Thể Tích khối chóp SABC là : VS.ABCD SABCD .SA a 2. a 3 3 2 2 0.25 1 3V Ta có VSDCB SBCD .d(B; (SCD)) d(B; (SCD)) SDCB 3 SBCD 11 2 3 Trong BCD có C 1350 nên VSDCB BC.CD.sin1350.SA a 0.25 32 6 2 3 3. a 3V 6 2a 3 a 6 Vậy d(B;(SCD)) SDCB SBCD 1 0 3a 2 3 a.a 2.sin135 2 câu6 Cho x,y là các số thực và thoả mãn x,y >1 .Tìm giá trị lớn nhất của biểu thức 1 ( x3 y 3 ) ( x 2 y 2 ) :P ( x 1)( y 1) Đặt t =x + y điều kiện t > 2 t2 Áp dụng bất đẳng thức 4 xy ( x y ) 2 ta có xy 4 0.25 t 3 t 2 xy (3t 2) t 2 P do 3t-2>0 xy nên ta có xy t 1 4 t2 0.25 t 3 t 2 (3t 2) 4 t2 P t2 t 2 t 1 4 t2 Xét hàm số f (t ) trên (2; ) t2 t 2 4t t 0 (l) có f '(t ) f '(t ) 0 (t 2) 2 t 4 (tm) 0.25 lim f (t) ; lim f (t) x 2 x t 4 2 f'(t) - 0 + 0.25 f(t) 8
- WWW.VNMATH.COM x y 4 x 2 min f (t ) f (4) 8 minP 8 dấu = xảy ra khi và chỉ khi (2; ) xy 4 y 2 TỰ CHỌN A theo chương trình chuẩn 7a 1:Gọi A(a;0) thuộc Ox và B(b;b) thuộc d ta có MA( a 2; 1) MB (b 2; b 1) 0.25 MA MB MB.MA 0 0.25 ABM vuông cân tại M nên 2 2 MA MB MA MB 0.25 (a 2)(b 2) (b 1) 0 2 2 2 vì b=2 không thoả mãn hệ phương tình nên ta có (a 2) 1 (b 2) (b 1) 0.25 b 1 b 1 a 2 b 2 a2 b2 . (a 2) 2 1 (b 2) 2 (b 1) 2 ( b 1 ) 2 1 (b 2) 2 (b 1) 2 b2 0.5 b 1 a 2 a2 b2 b 1 2 2 a 4 (b 2) (b 1) (b 2)2 (b 1)2 2 (b 2) b 3 Vậyphương trình đường thẳng : x y 2 0 ; : 3 x y 12 0 2 14 1 n 3 8a Ta có 2 3 (1) dk Cn 3Cn n n N với điều kiện trên phương trình (1) tương đương 4 28 1 0.5 n(n 1) n(n 1)( n 2) n n 2 n 2 7 n 18 0 n 9 kết hợp điều kiện n=9 Với n=9 ta có khai triển (1 3 x)2n (1 3 x)18 Số hạng tỏng quát Tk 1 C18 ( 3) k x k k số hạng chứa x 9 khi k =9 Vậy hệ số của x9 trong khai triển là C18 ( 3) 9 9 9a 3 3 Giải phương trình 3x x 2.3x x 32 x 2 0 (1) 3 3 Ta có 3x x.3x x 32 x 0.25 3 3 3 3 3 (1) 3x x (1 3x x ) 2(1 3x x ) 0 (1 3x x )(3x x 2) 0 x 0 0.25 1 3 x x3 0 x x 0 x 1 3 x 1
- WWW.VNMATH.COM x 0 0.25 Vậy Phương trình đã cho có nghiệm x 1 x 1 0.25 B Theo Chương Trình nâng cao 7b Trong mặt phẳng với hệ toạ độ Oxy cho ABC có đỉnh A 3; 4 , đường phân 1 giác trong của góc A có phương trình x y 1 0 và tâm đường tròn ngoại tiếp ABC là I (1 ;7). Viết phương trình cạnh BC, biết diện tích ABC gấp 4 lần diện tích IBC . + Ta có IA 5 . Phương trình đường tròn ngoại tiếp ABC có dạng C : ( x 1)2 ( y 7)2 25 + Gọi D là giao điểm thứ hai của đường phân giác trong A 0,25 góc A với đường tròn ngoại tiếp ABC . Tọa độ của D là nghiệm của hệ I x y 1 0 D 2;3 2 2 ( x 1) ( y 7) 25 B C 0,25 H K D + Vì AD là phân giác trong của góc A nên D là điểm chính giữa cung nhỏ BC. 0,25 Do đó ID BC hay đường thẳng BC nhận véc tơ DI 3; 4 làm vec tơ pháp tuyến. + Phương trình cạnh BC có dạng 3x 4 y c 0 + Do SABC 4SIBC nên AH 4IK 7c 31 c + Mà AH d A; BC và IK d I ;BC nên 5 5 114 0,25 c 3 7 c 4 31 c c 131 5 Vậy phương trình cạnh BC là : 9 x 12 y 114 0 hoặc 15 x 20 y 131 0 8b Một hộp có 5 viên bi đỏ ,3 viên bi vàng và 4 viên bi xanh .Hỏi có bao nhiêu cách lấy 1 ra 4 viên bi trong đó số bi đỏ lớn hơn số bi vàng Các trường hợp để chọn được 4 viên bi trong đó số bi đỏ lớn hơn số bi vàng là TH1: Cả 4 viên bi được chọn đều là bi đỏ 0,25 số cách là : C54 cách chọn TH2: Trong 4 viên bi được chọn có 1bi đỏ và 3 bi xanh 1 3 số cách là : C5 .C4 cách chọn 0,25 TH3: Trong 4 viên bi được chọn có 3bi đỏ và 1 bi xanh số cách là : C53 .C4 cách chọn 1 TH4: Trong 4 viên bi được chọn có 3bi đỏ và 1 bi vàng 0,25 số cách là : C53 .C3 cách chọn 1 TH5: Trong 4 viên bi được chọn có 2bi đỏ và 2 bi xanh
- WWW.VNMATH.COM số cách là : C52 .C42 cách chọn 0,25 TH6: Trong 4 viên bi được chọn có 2bi đỏ và 1 bi vàng và 1 bi xanh số cách là : C52 .C3 .C4 cách chọn 1 1 Vậy có C54 + C5 .C4 + C53 .C4 + C53 .C3 + C52 .C42 + C52 .C3 .C4 =275 cách chọn thoả mãn yêu 1 3 1 1 1 1 cầu bài toán 9b Giải phương trình log 3 3x 1 .log 3 3x 2 9 3 (1) 1 log 3 (3 x 1).log 3 9(3 x 1) 3 log 3 (3x 1).(log 3 9 log 3 (3x 1)) 3 (1) log 3 (3 x 1).(2 log 3 (3x 1)) 3 0,25 Đặt t log3 (3x 1) t>0 t 1 (1) t (2 t ) 3 t 2 2t 3 0 kết hợp điều kiện ta có t=1 0,25 t 3 (l) với t=1 log 3 (3x 1)=1 3x 1 3 3x 2 x log 3 2 0,25 Vậy phương trình có nghiệm x log3 2 0,25 Trên đây chỉ là một hướng giải Mọi cách giải đúng vẫn cho điểm tối đa
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử tuyển sinh ĐH - CĐ năm 2009 - 2010 môn HÓA
9 p | 1004 | 214
-
ĐỀ THI THỬ TUYỂN SINH ĐH, CĐ 2011 LẦN 2 MÔN THI: Tiếng Anh KHỐI D - Mã đề thi 132
4 p | 165 | 39
-
ĐỀ THI THỬ TUYỂN SINH ĐH, CĐ 2011 LẦN 2 MÔN THI: Tiếng Anh KHỐI D - Mã đề thi 123
6 p | 130 | 35
-
ĐỀ THI THỬ TUYỂN SINH ĐH, CĐ 2011 LẦN 2 MÔN THI: Tiếng Anh KHỐI D - Mã đề thi 209
5 p | 144 | 25
-
ĐỀ THI THỬ TUYỂN SINH ĐH, CĐ 2011 LẦN 2 MÔN THI: Tiếng Anh KHỐI D - Mã đề thi 628
5 p | 109 | 23
-
ĐỀ THI THỬ TUYỂN SINH ĐH, CĐ 2011 LẦN 2 MÔN THI: Tiếng Anh KHỐI D - Mã đề thi 570
5 p | 119 | 21
-
ĐỀ THI THỬ TUYỂN SINH ĐH, CĐ 2011 LẦN 2 MÔN THI: Tiếng Anh KHỐI D - Mã đề thi 485
4 p | 137 | 18
-
Đề thi thử tuyển sinh ĐH Toán khối B năm 2014 - THPT chuyên Lý Tự Trọng (Kèm Đ.án)
7 p | 202 | 17
-
ĐỀ THI THỬ TUYỂN SINH ĐH CĐ NĂM 2011 MÔN: VẬT LÍ Đề1
5 p | 73 | 9
-
Đề thi thử tuyển sinh đại học năm 2013 môn Tiếng Anh
8 p | 67 | 6
-
KỲ THI THỬ TUYỂN SINH ĐH – CĐ NĂM 2011 MÔN: TIẾNG ANH – MÃ ĐỀ 01
2 p | 79 | 6
-
Đề thi thử tuyển sinh ĐH lần 1 Toán khối B (2013-2014) - THPT Lê Quý Đôn (Kèm Đ.án)
9 p | 76 | 6
-
Đề thi thử tuyển sinh ĐH môn Toán lần 1 năm 2014 - THPT Chuyên Nguyễn Quang Diêu
1 p | 74 | 6
-
ĐỂ THI THỬ TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG SỐ
99 p | 49 | 5
-
Đề thi thử tuyển sinh ĐH lần 1 Toán khối A, A1, B 2014 - THPT chuyên Nguyễn Quang Diêu
7 p | 78 | 4
-
Đề thi thử tuyển sinh ĐH môn Vật lí khối A
6 p | 77 | 4
-
Đề thi thử tuyển sinh ĐH Toán khối A, A1 năm 2014 - THPT chuyên Lý Tự Trọng (Kèm Đ.án)
8 p | 68 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn