Đề thi toán 11
lượt xem 49
download
Bộ sưu tập các đề thi học kì 1 môn toán lớp 11 năm 2010 - 2011
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi toán 11
- 10 ñ ề oâ n Thi môn Toán lớp 11 HKI .Na ê m hoïc : 2010 – 2011 Trang 1 ĐỀ CƯƠNG ÔN THI HKI MÔN : TOÁN 11 NĂM HỌC 2010 - 2011 §Ò sè 1 Bµi 1: Gi¶i c¸c ph¬ng tr×nh sau: a (1,5®): 2sin x − 2 = 0 b (1®): cos2x + 4cosx - 5 = 0 c (0,5®): cos 2 x − 3 sin 2 x − 3 cos x + sin x − 4 = 0 Bµi 2: (2®): a) (1®): Tõ c¸c ch÷ sè 1, 2, 3, 4, 5 cã thÓ lËp ®îc bao nhiªu sè tù nhiªn gåm ba ch÷ sè vµ chia hÕt cho 2 b) (1®): Mét hép cã 10 viªn bi ®á vµ 20 viªn bi xanh. LÊy ngÉu nhiªn hai viªn. TÝnh x¸c suÊt sao cho hai viªn ®îc chän ®Òu lµ viªn bi ®á. u1 + u3 = 6 Bµi 3: Cho cÊp sè céng cã 2u4 − u2 = 19 a (1®): T×m u1 vµ d b (1®): BiÕt Sn = 740. T×m n Bµi 4: (1®): Trong mÆt ph¼ng täa ®é Oxy cho ®êng trßn (C): x 2 + y 2 − 2 x + 6 y − 5 = 0 . ViÕt ph¬ng tr×nh ®êng trßn (C ′) lµ ¶nh cña (C) qua phÐp ®èi xøng t©m O. Bµi 5: Cho h×nh chãp S. ABCD cã ®¸y ABCD lµ h×nh b×nh hµnh t©m O. 1) (0,5®): T×m giao tuyÕn cña hai mÆt ph¼ng (SAC) vµ (SBD) 2) Gäi M, N, P, Q lÇn lît lµ trung ®iÓm cña SB, SD, AM, AN. a (0,5®): Chøng minh PQ // BD b (0,5®): T×m thiÕt diÖn cña (AMN) víi h×nh chãp (H×nh vÏ 0,5 ®iÓm) §Ò sè 2 Bµi 1: Gi¶i c¸c ph¬ng tr×nh sau: a (1,5®): 2sin x − 3 = 0 b (1®): cos2x - 3sinx + 4 = 0 c (0,5®): cos 2 x − 3 sin 2 x − 3 cos x + sin x − 4 = 0 Bµi 2: (2®): a (1®): Tõ c¸c ch÷ sè 1, 2, 3, 5, 6 cã thÓ lËp ®îc bao nhiªu sè tù nhiªn gåm ba ch÷ sè vµ chia hÕt cho 2 b (1®): Mét hép cã 10 viªn bi ®á vµ 18 viªn bi xanh. LÊy ngÉu nhiªn ba viªn. TÝnh x¸c suÊt sao cho ba viªn ®îc chän ®Òu lµ viªn bi xanh. 2u1 − u4 = 8 Bµi 3: Cho cÊp sè céng cã u2 + u5 = −6 a (1®): T×m u1 vµ d b (1®): BiÕt Sn = -340. T×m n GV biên soạn : Quaûng Ñaïi Haïn Tröôøng THPT An Phöôùc
- 10 ñ ề oâ n Thi môn Toán lớp 11 HKI .Na ê m hoïc : 2010 – 2011 Trang 2 Bµi 4 (1®): Trong mÆt ph¼ng täa ®é Oxy cho ®êng trßn (C): x 2 + y 2 + 2 x − 6 y − 5 = 0 . ViÕt ph¬ng tr×nh ®êng trßn (C ′) lµ ¶nh cña (C) qua phÐp ®èi xøng t©m O. Bµi 5: Cho h×nh chãp S. ABCD cã ®¸y ABCD lµ h×nh b×nh hµnh t©m I. 1) (0,5®): T×m giao tuyÕn cña hai mÆt ph¼ng (SAC) vµ (ABCD) 2) Gäi M, N, P, Q lÇn lît lµ trung ®iÓm cña SB, SD, CM, CN. a) (0,5®): Chøng minh PQ // BD b) (0,5®): T×m thiÕt diÖn cña (CMN) víi h×nh chãp (H×nh vÏ 0,5 ®iÓm) §Ò sè 3 Bµi 1: Gi¶i c¸c ph¬ng tr×nh sau: a) (1,5®): 2sin x − 1 = 0 b) (1®): cos2x + 3cosx - 4 = 0 c) (0,5®): cos 2 x − 3 sin 2 x − 3 cos x + sin x − 4 = 0 Bµi 2 (2®): a) (1®): Tõ c¸c ch÷ sè 1, 2, 4, 5, 6 cã thÓ lËp ®îc bao nhiªu sè tù nhiªn gåm ba ch÷ sè vµ chia hÕt cho 2 b) (1®): Mét hép cã 8 viªn bi ®á vµ 20 viªn bi xanh. LÊy ngÉu nhiªn bèn viªn. TÝnh x¸c suÊt sao cho bèn viªn ®îc chän ®Òu lµ viªn bi ®á. u1 + u2 = 4 Bµi 3: Cho cÊp sè céng cã 2u1 − u4 = 9 a (1®): T×m u1 vµ d b (1®): BiÕt Sn = -320. T×m n Bµi 4 (1®): Trong mÆt ph¼ng täa ®é Oxy cho ®êng trßn (C): x 2 + y 2 − 2 x − 4 y − 6 = 0 . ViÕt ph¬ng tr×nh ®êng trßn (C ′) lµ ¶nh cña (C) qua phÐp ®èi xøng t©m O. Bµi 5: Cho h×nh chãp S. ABCD cã ®¸y ABCD lµ h×nh b×nh hµnh t©m O. 1) (0,5®): T×m giao tuyÕn cña hai mÆt ph¼ng(SBD) vµ (ABCD) 2) Gäi M, N, P, Q lÇn lît lµ trung ®iÓm cña SA, SC, BM, BN. a (0,5®): Chøng minh PQ // AC b (0,5®): T×m thiÕt diÖn cña (BMN) víi h×nh chãp (H×nh vÏ 0,5 ®iÓm) §Ò sè 4 Bµi 1 : (2.5 điểm) Giải các phương trình sau: ( o a) 3tan x + 45 - ) 3=0 b) 3cosx + sinx = - 2 Bµi 2 : (2 điểm) GV biên soạn : Quaûng Ñaïi Haïn Tröôøng THPT An Phöôùc
- 10 ñ ề oâ n Thi môn Toán lớp 11 HKI .Na ê m hoïc : 2010 – 2011 Trang 3 1. Từ các chữ số 1, 2, 3, 4, 5, 6,7 có th ể lập được bao nhiêu s ố t ự nhiên ch ẵn gồm 5 chữ số khác nhau? 20 æ 11 trong khai triển çx + 1 ÷ ö 2. Tìm hệ số của số hạng chứa x ç ÷ ç è ÷ x2 ø Bµi 3: (2,5 điểm) 1. Một hộp đựng bi gồm có 4 viên bi xanh, 3 viên bi đ ỏ và 2 viên bi vàng. Người ta chọn ngẫu nhiên từ hộp đó ra 3 viên bi. a) Tính số phần tử của không gian mẫu. b) Tính xác suất để 3 viên bi được chọn có đủ ba màu. 2. Cho cấp số cộng ( un ) có u17 = 33 vµ u33 = 65 . Hãy tính số hạng đầu và công sai của cấp số trên. Bµi 4(3 điểm) 1. Trong mặt phẳng tọa độ Oxy cho điểm M(2; 3) và đường thẳng d : x - 4y + 6 = 0 . Tìm tọa độ điểm M’ và viết phương trình đường thẳng d’ lần lượt là ảnh của M và d qua phép đối xứng trục Oy. 2. Cho hình chóp tứ giác S.ABCD có AB không song song với CD. Gọi M, N lần lượt là trung điểm của SC và SD. a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD) b) Chứng minh MN//(ABCD) §Ò sè 5 Câu 1: Giải các phương trình sau : (3điểm) a) 3cos 2 x − 2sin x + 2 = 0 b) 3 sin 2 x + cos 2 x = 2 c) (2cox − 1)(2sin x + cos x) = (sin 2 x − sin x) 7x Câu 2: a) Giải phương trình : C 1 + Cx2 + Cx3 = x (1 điểm) 2 b) Tìm hệ số của x 25 . y10 trong khai triển ( x3 + xy )15 (1điểm) Câu 3: Gieo 2 con súc sắc cân đối và đồng chất. (2điểm) a) Tính xác suất để tổng 2 mặt xuất hiện bằng 8 . b) Tính xác suất để tích 2 mặt xuất hiện là số lẻ. Câu 5: Cho hình chóp S.ABCD có đáy là hình bình hành tâm O . Gọi M và N l ần l ượt là trung điểm của SA và CD. (2điểm) a) Chứng minh rằng : ( OMN ) // ( SBC ) GV biên soạn : Quaûng Ñaïi Haïn Tröôøng THPT An Phöôùc
- 10 ñ ề oâ n Thi môn Toán lớp 11 HKI .Na ê m hoïc : 2010 – 2011 Trang 4 b) Gọi P và Q lần lượt là trung điểm của AB và OM .Chứng minh r ằng : PQ // ( SBC ) Câu 6: Cho đường tròn ( O,R) và 2 điểm A, C cố định sao cho đ ường thẳng AC không c ắt đường tròn. Một điểm B di động trên một đường tròn.Dựng hình bình hành ABCD . Tìm quỹ tích điểm D. (1điểm) §Ò sè 6 Bài 1: (3đ) Giải các phương trình lượng giác sau: a) sin 2 2 x + cos3 x − cos x = 0 (0 ≤ x ≤ 2π ) b) sin 2 x − 2sin x cos x − 3cos 2 x = 0 Bài 2: (1đ) Tìm giá trị lớn nhất và nhỏ nhất ( nếu có) của hàm số sau: f ( x) = sin 4 x + sin 2 2 x + cos 4 x 20 1 Bài 3: (1 đ): Tìm hệ số của số hạng chứa x trong khai triển x 2 − ÷ 4 x Bài 4: (2đ) Trong một hộp có 4 viên bi màu đỏ , 3 viên bi màu xanh , 2 viên bi màu trắng . Lấy ngẫu nhiên trong hộp ra ba viên bi a. Tính số phần tử của không gian mẫu b. Tính xác suất của các biến cố sau: A là biến cố “ lấy ra ba viên bi đôi một khác màu nhau” B là biến cố “ lấy ra ba viên bi đều là màu đỏ” C là biến cố “ lấy ra được ít nhất một viên bi màu đỏ “ Bài 5: (3đ) Cho hình bình hành ABCD. Ngoài mặt phẳng (ABCD) lấy điểm S tùy ý và điểm M sao cho M là trung điểm của SC a) Tìm giao tuyến của 2 mặt phẳng (SAC) và (SBD) b) Tìm giao điểm N của SB và (ADM) c) Chứng minh N là trung điểm của SB §Ò sè 7 Bài 1( 3đ) : Giải các phương trình sau: a) 2cos 2 x + cos 2 x = 2 b) 3 cos5x + sin5x = 2cos3x c) sin x + cos x = 1 + sin 2x n 2 Bài 2 ( 1đ): Tìm hệ số của x6 trong khai triễn x 2 − ÷ biết C1 + 2Cn = 12n n 2 x Bài 3 ( 3đ) : Một nhóm học sinh có 4 nam và 7 nữ. Chọn ngẩu nhiên 3 người. Tính xác suất để 3 người được chọn: GV biên soạn : Quaûng Ñaïi Haïn Tröôøng THPT An Phöôùc
- 10 ñ ề oâ n Thi môn Toán lớp 11 HKI .Na ê m hoïc : 2010 – 2011 Trang 5 a) Cả 3 đều là nam b) Trong 3 người có ít nhất một nam. Bài 4( 3đ):Cho hình chóp SABCD có đáy ABCD là hình bình hành. Gọi M, N là trung điểm AB, AD. a) Chứng minh: MN//(SBD) b) Mặt phẳng ( α ) chứa MN và song song với SA . Tìm giao tuyến của ( α )với mặt phẳng (SAB). c) Tìm giao điểm của ( α ) với cạnh SD §Ò sè 8 Bµi 1: (3điểm) Giải các phương trình sau: π a/. sin(2 x − 1) + cos = 0 . b/. sin 3 x + 3cos3 x = 2 . c/. 1 + sin 2 x + sinx + cos x = 0 4 Bµi 2: (4điểm) a/. Tìm n ∈ ¥ sao cho : An + Cn2 = P3 . 1 b/. Một bình chứa 11 viên bi trong đó có 5 viên bi màu xanh , 6 viên bi màu đỏ .Lấy ngẫu nhiên 3 viên bi từ bình .Tính xác suất để được ít nhất một viên bi màu xanh. c/ Một t ổ có 12 người g ồm 9 nam và 3 n ữ.C ần l ập m ột đoàn đ ại bi ểu gồm 6 người,trong đó có 4 nam và 2 nữ .Hỏi có bao nhiêu cách lập đoàn đại bi ểu như thế? 1 7 d/.Tìm số hạng không chứa x trong khai triển : ( x3 + ) x4 Bµi 3 :(3điểm) Cho hình chóp tứ giác S.ABCD.Trong tam giác SCD lấy một đi ểm M. a/.Tìm giao tuyến của hai mặt phẳng : (SBM) và (SAC). b/.Tìm giao điểm của đường thẳng BM với mặt phẳng (SAC). c/.Tìm thiết diện của hình chóp với mặt phẳng (ABM). §Ò sè 9 Bài 1 : ( 4 điểm) Giải các phương trình 1 − 2 a . cos (2x+ )= b . sin 4x - 3 cos4x= 2 c . 3cos 2 x – 2 sinx + 2 = 0 2 2 Bài 2 : (3 điểm) 1 ) Lập số tự nhiên chẵn có năm chữ số mà chữ số hàng trăm phải là một số nguyên tố 2) Trong một hộp có ba viên bi trắng bảy viên bi vàng sáu viên bi xanh lấy ngẫu nhiên ba viên bi tính xác suất của các biến cố sau a) lấy ba viên bi cùng màu b) lấy ít nhất một viên bi màu vàng GV biên soạn : Quaûng Ñaïi Haïn Tröôøng THPT An Phöôùc
- 10 ñ ề oâ n Thi môn Toán lớp 11 HKI .Na ê m hoïc : 2010 – 2011 Trang 6 Bài 3:(3 điểm) Trong mặt phẳng (P) cho hình bình hành ABCD có O là tâm, ngoài mặt phẳng (P) cho điểm S.Trên cạnh SA,SB lần lượt lấy hai điểm M,N a. Tìm giao tuyến của hai mặt phẳng (SAC) và mặt phẳng (SBD) b. Tìm giao điểm của đường thẳng SO với mặt phẳng (CMN) §Ò sè 10 Bµi 1: (3đ) Giải các phương trình sau: a) 2sin2x – 5sinx + 2 = 0 b) cosx – sinx = c) sin3x + sinx = sin2x Bµi 2: (2 đ) a) Từ các chữ số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số đôi một khác nhau ? 10 1 b) Tìm số hạng không chứa x trong khai triển x + ÷ x Bµi 3: (1 đ) Hộp có 4 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên cùng lúc 3 viên bi, tính xác suất để lấy được: a) 1 bi đỏ và 2 bi vàng. b) Số bi đỏ nhiều hơn số bi vàng. Bµi 4: (1 đ) Trong mp Oxy, hãy tìm phương trình đường tròn (C’) là ảnh của đường tròn (C): x + y2 = 2 qua phép đối xứng tâm I(1;-1). 2 Câu 5: (3 đ) Cho hình chóp S.ABCD là hình thang với đáy lớn là AD. Gọi M, N, P lần lượt là trung điểm của BC, CD, SA. a) Tìm giao tuyến của mp (MNP) với các mp (SAB), (SAD). b) Tìm giao điểm của mp (MNP) với SB, SD. Từ đó suy ra thiết diện tạo bởi mp (MNP) với hình chóp S.ABCD. c) Tìm giao điểm của SC với mp (MNP). --------- HEÁT --------- Chúc các em làm bài tốt trong thi học kỳ . GV biên soạn : Quaûng Ñaïi Haïn Tröôøng THPT An Phöôùc
- 10 ñ ề oâ n Thi môn Toán lớp 11 HKI .Na ê m hoïc : 2010 – 2011 Trang 7 §Ò sè 1 GV biên soạn : Quaûng Ñaïi Haïn Tröôøng THPT An Phöôùc
- Biểu Bài §¸p ¸n ®Ò thi HK 1, n¨m häc 2008- 2009 10 ñ ề oâ n Thi môn Toán lớp 11 HKI .Na ê m hoïc : 2010 – 2011 điểm 1a 8 Trang 2sin x − 2 = 0 ⇔ sin x = 2 0,5đ (1,5 đ) 2 π ⇔ sin x = sin 4 0,5đ π x = 4 + k 2π ⇔ ,k ∈¢ x = 3π + k 2π 4 0,5đ 1b cos2x + 4cosx - 5 = 0 ⇔ 2 cos 2 x − 1 + 4 cos x − 5 = 0 ⇔ 2 cos 2 x + 4 cos x − 6 = 0 0,5đ (1đ) + §Æt t = cosx, ®k −1 ≤ t ≤ 1 t = 1 PT ⇔ 2t + 4t − 6 = 0 ⇔ 2 t = −3(lo¹ i) 0,25đ + Víi t = 1 ==> cosx = 1 ⇔ x = k 2π , k ∈ ¢ VËy nghiÖm cña PT ®· cho lµ x = k 2π , k ∈ ¢ 0,25đ 1c cos 2 x − 3 sin 2 x − 3 cos x + sin x − 4 = 0 (0,5đ) 1 3 3 1 ⇔ cos 2 x − sin 2 x − ( cos x − sin x) − 2 = 0 Häc 2 2 2 2 π π π π sinh ⇔ (cos 2 x.cos − sin 2 x.sin ) − (cos x.cos − sin x.sin ) − 2 = 0 gi¶i ra 3 3 6 6 π π π π ®¸p sè ⇔ cos(2 x + ) − cos( x + ) − 2 = 0 ⇔ 2 cos 2 ( x + ) − 1 − cos( x + ) − 2 = 0 cuèi 3 6 6 6 π cïng π π cos( x + 6 ) = −1 π ®óng ⇔ 2 cos 2 ( x + ) − cos( x + ) − 3 = 0 ⇔ ⇔ cos( x + ) = −1 míi cho 6 6 cos( x + π ) = 3 (vn) 6 ®iÓm 6 2 π 5π ⇔ x + = π + k 2π ⇔ x = + k 2π , k ∈ ¢ 6 6 0,5đ 2a. Tõ c¸c ch÷ sè 1, 2, 3, 4, 5 cã thÓ lËp ®îc bao nhiªu sè tù nhiªn (1đ) gåm ba ch÷ sè vµ chia hÕt cho 2 - Gäi sè tù nhiªn cÇn t×m lµ abc Chän c: cã 2 c¸ch Chän a : cã 5 c¸ch Chän b: cã 5 c¸ch ................................................................. 0,5® ................... 0,5đ GV biên soạquy t¾c nh©n taÑaïi Haïn - Theo n : Quaûng cã: 2.5.5= 50 Tröôøng THPT An Phöôùc (sè).................................................................................. 2b. Mét hép cã 10 viªn bi ®á vµ 20 viªn bi xanh. LÊy ngÉu (1đ) nhiªn hai viªn. TÝnh x¸c suÊt sao cho hai viªn ®îc chän ®Òu lµ viªn bi ®á. - Ta cã n(Ω) = C = 435 2 0,25®
- 10 ñ ề oâ n Thi môn Toán lớp 11 HKI .Na ê m hoïc : 2010 – 2011 Trang 9 §Ò sè 2 GV biên soạn : Quaûng Ñaïi Haïn Tröôøng THPT An Phöôùc
- Biểu Bài §¸p ¸n ®Ò thi HK 1, n¨m häc 2008- 2009 10 ñ ề oâ n Thi môn Toán lớp 11 HKI .Na ê m hoïc : 2010 – 2011 điểm 1a Trang 10 x − 3 = 0 ⇔ sin x = 3 0,5đ 2sin (1,5 đ) 2 π ⇔ sin x = sin 3 0,5đ π x = 3 + k 2π ⇔ ,k ∈¢ x = 2π + k 2π 3 0,5đ 1b cos2x -3sinx +4 = 0 ⇔ 1 − 2sin 2 x − 3sin x + 4 = 0 ⇔ −2sin 2 x − 3sin x + 5 = 0 0,5đ (1đ) + §Æt t = sinx, ®k −1 ≤ t ≤ 1 t = 1 PT ⇔ −2t − 3t + 5 = 0 ⇔ −5 0,25đ 2 t = (lo¹ i) 2 π + Víi t = 1 ==> sinx = 1 ⇔ x = + k 2π , k ∈ ¢ 0,25đ 2 π VËy nghiÖm cña PT ®· cho lµ x = + k 2π , k ∈ ¢ 2 1c cos 2 x − 3 sin 2 x − 3 cos x + sin x − 4 = 0 (0,5đ) 1 3 3 1 ⇔ cos 2 x − sin 2 x − ( cos x − sin x) − 2 = 0 Häc 2 2 2 2 π π π π sinh gi¶i ⇔ (cos 2 x.cos − sin 2 x.sin ) − (cos x.cos − sin x.sin ) − 2 = 0 ra ®¸p 3 3 6 6 π π π π sè cuèi ⇔ cos(2 x + ) − cos( x + ) − 2 = 0 ⇔ 2 cos 2 ( x + ) − 1 − cos( x + ) − 2 = 0 cïng 3 6 6 6 π ®óng π π cos( x + 6 ) = −1 π míi cho ⇔ 2 cos 2 ( x + ) − cos( x + ) − 3 = 0 ⇔ ⇔ cos( x + ) = −1 ®iÓm 6 6 cos( x + π ) = 3 (vn) 6 6 2 π 5π ⇔ x + = π + k 2π ⇔ x = + k 2π , k ∈ ¢ 6 6 0,5đ 2a. Tõ c¸c ch÷ sè 1, 2, 3, 5, 6 cã thÓ lËp ®îc bao nhiªu sè tù (1đ) nhiªn gåm ba ch÷ sè vµ chia hÕt cho 2 - Gäi sè tù nhiªn cÇn t×m lµ abc Chän c: cã 2 c¸ch Chän a : cã 5 c¸ch Chän b: cã 5 c¸ch - Theo quy t¾c nh©n ta cã: 2.5.5= 50 (sè) 0,5® GV biên soạn : Quaûng Ñaïi Haïn Tröôøng THPT An 0,5đ 2b. Phöôùc Mét hép cã 10 viªn bi ®á vµ 18 viªn bi xanh. LÊy ngÉu nhiªn (1đ) ba viªn. TÝnh x¸c suÊt sao cho ba viªn ®îc chän ®Òu lµ viªn bi xanh. - Ta cã n(Ω) = C28 = 3276 3 0,25®
- 10 ñ ề oâ n Thi môn Toán lớp 11 HKI .Na ê m hoïc : 2010 – 2011 Trang 11 §Ò sè 3 GV biên soạn : Quaûng Ñaïi Haïn Tröôøng THPT An Phöôùc
- Biểu Bài §¸p ¸n ®Ò thi HK 1, n¨m häc 2008- 2009 10 ñ ề oâ n Thi môn Toán lớp 11 HKI .Na ê m hoïc : 2010 – 2011 điểm 1a Trang 12 x − 1 = 0 ⇔ sin x = 2sin 1 0,5đ (1,5 đ) 2 π ⇔ sin x = sin 6 0,5đ π x = 6 + k 2π ⇔ ,k ∈¢ x = 5π + k 2π 6 0,5đ 1b cos2x +3cosx - 4 = 0 ⇔ 2 cos 2 x − 1 + 3cos x − 4 = 0 ⇔ 2 cos 2 x + 3cos x − 5 = 0 0,5đ (1đ) + §Æt t = cosx, ®k −1 ≤ t ≤ 1 t = 1 PT ⇔ 2t + 3t − 5 = 0 ⇔ −5 0,25đ 2 t = (lo¹i) 2 + Víi t = 1 ==> cosx = 1 ⇔ x = k 2π , k ∈ ¢ VËy nghiÖm cña PT ®· cho lµ x = k 2π , k ∈ ¢ 0,25đ 1c cos 2 x − 3 sin 2 x − 3 cos x + sin x − 4 = 0 (0,5đ) 1 3 3 1 ⇔ cos 2 x − sin 2 x − ( cos x − sin x) − 2 = 0 Häc sinh 2 2 2 2 π π π π gi¶i ra ⇔ (cos 2 x.cos − sin 2 x.sin ) − (cos x.cos − sin x.sin ) − 2 = 0 ®¸p sè 3 3 6 6 π π π π cuèi ⇔ cos(2 x + ) − cos( x + ) − 2 = 0 ⇔ 2 cos 2 ( x + ) − 1 − cos( x + ) − 2 = 0 cïng 3 6 6 6 π ®óng π π cos( x + 6 ) = −1 π míi cho ⇔ 2 cos 2 ( x + ) − cos( x + ) − 3 = 0 ⇔ ⇔ cos( x + ) = −1 ®iÓm 6 6 cos( x + π ) = 3 (vn) 6 6 2 π 5π ⇔ x + = π + k 2π ⇔ x = + k 2π , k ∈ ¢ 6 6 0,5đ 2a. Tõ c¸c ch÷ sè 1, 2, 4, 5, 6 cã thÓ lËp ®îc bao nhiªu sè tù (1đ) nhiªn gåm ba ch÷ sè vµ chia hÕt cho 2 - Gäi sè tù nhiªn cÇn t×m lµ abc Chän c: cã 3 c¸ch Chän a : cã 5 c¸ch Chän b: cã 5 c¸ch - Theo quy t¾c nh©n ta cã: 3.5.5=75 (sè) 0,5® 0,5đ 2b. Mét hép cã 8 viªn bi ®á vµ 20 viªn bi xanh. LÊy ngÉu nhiªn GV biên soạn : Quaûng Ñaïisao cho bèn viªn ®îc chän ®Òu lµ An (1đ) bèn viªn. TÝnh x¸c suÊt Haïn Tröôøng THPT Phöôùc viªn bi ®á. - Ta cã n(Ω) = C28 = 20475 4 0,25® - Gäi A lµ biÕn cè : “ bèn viªn ®îc chän ®Òu lµ viªn bi ®á ” Ta cã n( A) = C84 = 70 0,25®
- 10 ñ ề oâ n Thi môn Toán lớp 11 HKI .Na ê m hoïc : 2010 – 2011 Trang 13 GV biên soạn : Quaûng Ñaïi Haïn Tröôøng THPT An Phöôùc
CÓ THỂ BẠN MUỐN DOWNLOAD
-
10 đề thi toán học lớp 11 năm 2010 - 2011
19 p | 2720 | 528
-
Đề thi Toán Gmat (Đề số 11) - FPT Softwave
3 p | 505 | 184
-
Bộ đề thi toán học kì 1 môn toán khối 11 năm 2011-2012
6 p | 758 | 177
-
Đề thi Toán lớp 5 nâng cao - Đề số 11
8 p | 183 | 25
-
Đề thi thử đại học khối D - Đợt 1 năm 2011 môn thi toán 11
1 p | 122 | 12
-
Đề thi chọn học sinh giỏi năm học 2010-2011 môn Toán 11 - Sở Giáo dục và Đào tạo Đà Nẵng
8 p | 127 | 9
-
ĐỀ THI SỐ 11 VÀ GỢI Ý BÀI GIẢI MÔN TOÁN –ĐH-CĐ năm 2011
4 p | 70 | 8
-
Đề thi học sinh giỏi cấp trường có đáp án môn: Toán 11
9 p | 93 | 6
-
Tổng hợp 10 đề thi môn Toán lớp 11 học kỳ 2 có đáp án
43 p | 14 | 4
-
Đề thi KSCL môn Toán lớp 11 năm 2020-2021 (Lần 1) - Trường THPT Thuận Thành 1, Bắc Ninh (Mã đề 132)
10 p | 15 | 4
-
Đề thi học kì 1 môn Toán lớp 11 năm 2020-2021 có đáp án - Sở GD&ĐT Bắc Ninh
5 p | 49 | 3
-
Đề kiểm tra chuyên đề môn Toán 11 năm 2019-2020 có đáp án - Trường THPT Quang Hà (Lần 1)
7 p | 48 | 3
-
Đề ôn tập tuần 1 tháng 3 môn Toán 11 năm 2019-2020 - Trường THPT chuyên Hà Nội - Amsterdam
14 p | 51 | 3
-
Đề thi học kỳ I Toán 11 Hùng Vương năm học 2015-2016
4 p | 81 | 3
-
Đề ôn tập tuần 2 tháng 2 môn Toán 11 năm 2019-2020 - Trường THPT chuyên Hà Nội - Amsterdam
6 p | 32 | 2
-
Đề thi KSCL môn Toán lớp 11 năm 2020-2021 (Lần 1) - Trường THPT Thuận Thành số 1 (Mã đề 132)
5 p | 6 | 2
-
Đề thi KSCL môn Toán 11 năm 2020-2021 có đáp án - Trường THPT Quế Võ 1 (Lần 2)
7 p | 21 | 1
-
Đề kiểm tra chuyên đề môn Toán 11 năm 2018-2019 có đáp án - Trường THPT Dương Quảng Hàm
10 p | 47 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn