<
""""."."'" c,.,,",
Hướng dẫn chấm môn Toán – Trang1
SỞ GD & ĐT PHÚ YÊN
***
K THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2008 -2009
MÔN : TOÁN - Chuyên
-------
ĐỀ CHÍNH THỨC
HƯỚNG DẪN CHẤM THI
Bản hướng dẫn chấm gồm 04 trang
I- Hướng dẫn chung:
1- Nếu thí sinh làm bài không theo cách nêu trong đáp án vẫn đúng thì cho đủ
điểm từng phần như hướng dẫn quy định.
2- Việc chi tiết hoá thang điểm (nếu có) so với thang điểm hướng dẫn chấm phải
bảo đảm không sai lệch với hướng dẫn chấm được thống nhất thực hiện trong Hội
đồng chấm thi.
3- Điểm toàn bài thi không làm tròn số.
II- Đáp án và thang điểm:
CÂU ĐÁP ÁN ĐIỂM
Câu 1
a
.
(2,0đ) Xét phương trình x
2
– mx + m
- 3 = 0 (1).
Để phương trình (1) có hai nghiệm x1, x2 đều dương thì:
2 2
2
4( 3) 0
0
0 3 0
0 0
m m
P m
S m
2
2
| | 2
4
3 | | 3 3 2 (2)
0 0
m
m
m m m
m m
.
Vậy, vi
3 2
m
thì phương trình (1) có hai nghiệm đều dương.
0,5
1,0
0,5
C
â
u 1b.
(1,0đ) Theo giả thiết và theo Định lý Pytago :
2 2 2 2 2
1 2 1 2 1 2
4 ( ) 2 4 2( 3) 4 2.
x x x x x x m m m
Các giá trị này không thỏa điều kiện (2) nên không có giá trị nào của m
để x1, x2 độ dài hai cạnh AB, AC của tam giác ABC vuông tại A có
cạnh huyền BC = 2.
0,5
0,5
Câu
2a
.
(1,5đ) Với mọi n
*
N
, ta có:
2 2
1 ( 1) 1
( 1) ( 1)
( 1) 1
n n n n
n n n n
n n n n
=
( 1) 1 1 1 1
( 1) 1
1
n n n n n n
n n n n n n
(*)
1
( 1) 1
n n n n
+
1
1
n
=
1
n
0,5
0,5
0,5
Hướng dẫn chấm môn Toán – Trang2
Câu
2b
.
(1,5đ) Áp dụng (*) vào tính P với n lấy từ 1 đến 2008 ta có:
P = 1 1 1 1 1 1 1 1
...
1 2 2 3 3 4 2008 2009
= 1 1 1
1 1
1 2009 2009
.
Vậy P < 1.
0,5
0,5
0,5
Câu 3.
(3,5đ) Xét phương trình 3
2 2
2 (1)
( 1)
x x
x x
x = 0 không phải nghiệm của phương trình (1) nên thể viết
phương trình (1) dưới dạng:
3
2
2
2 2
2
1
1 1
2 2 2 1 (2)
1
11
x x x
x x x x
x x
x x xx
x
Đặt t =
1
x
x
, |t|
2, (2)
2t2 - 5t + 2 = 0.
Giải ra ta được t1 =
1
2
(loại), t2 = 2 (nhận).
Do đó:
1
x
x
= 2
x2 -2x + 1 = 0
x = 1.
Vậy phương trình đã cho có nghiệm duy nhất x = 1.
0,5
1,0
0,5
0,5
0,5
0,5
Câu 4.
(3,5đ)
Với điều kiện 1
x y z
(*) :
2 2 2
(1)
2( ) 2 (2)
x y z
xy x y z
Từ (1) ta có : 2 2 2
( ) 2 ( ) 4( ) 4
z x y xy x y x y z
2 2
( ) 4( ) 4 4 4
x y x y z z
2 2
( 2) ( 2)
x y z
2 2
x y z
(vì từ (*)
2
x y
và z + 2 >0).
Thay z = x + y – 4 vào (2) ta được :
4 1 5
4 8 12
( 4)( 4) 8
4 2 6
4 4 8
x x
y y
x y x x
y y
Từ đó ta suy ra z = 13 hoặc z = 10.
0,5
0,5
0,5
1,0
0,5
Hướng dẫn chấm môn Toán – Trang3
Vậy
5
12
13
x
y
z
hoặc
6
8
10
x
y
z
.
0,5
Câu
5.
(3,0đ)
AD
BC
O
A'
B'
C'
D'
Từ các đỉnh hình vuông ta kẻ các đoạn AA’, BB’, CC’ , DD’ vuông góc
với d.
Đặt T = AA2+ BB’2+CC’2+ DD’2.
Ta có
OAA’ =
OCC’ (cạnh huyền – góc nhọn) suy ra AA’ = CC’
Tương tự
OBB’ =
ODD’ suy ra BB’ = DD’
Từ đó suy ra T = 2(AA’2 + BB’2) (1)
Mặt khác, ta
' '
A AO B OB
(hai góc nhọn cạnh tương ứng vuông
góc) và AO = BO nên
A’AO =
B’OB (cạnh huyền –góc nhọn)
BB’ = A’O (2).
Thay (2) vào (1) áp dụng định Pytago trong tam giác vuông
A’AO ta được:
T = 2(AA’2 + A’O2) = 2AO2 = 2 2 2
2
4 2
AC AC
AB
, là hằng số.
0,5
1,0
0,5
0,5
0,5
Hướng dẫn chấm môn Toán – Trang4
Câu 6.
(4,0đ)
B
O
I
C
E
C'
E'
A
K
M
a) Phần thuận: Gọi I là điểm chính giữa cung AB.
- Xét C thuộc cung BI. Tam giác CEB
0
90
C, CE = CB nên vuông
cân, suy ra
0 0
45 , 135
CEB AEB .
Điểm E nhìn AB dưới một góc 1350 nên E chuyển động tr
ên cung
chứa góc 1350 dựng trên đoạn AB (cung này cùng phía với I đối với
AB).
- Xét C’ thuộc cung AI. Tam giác C’E’B vuông cân nên
0
' ' 45
C E B
Điểm E’ nhìn AB dưới một góc 450, nên E’ chuyển động trên cung
chứa góc 450 dựng trên đoạn AB.
Khi C’ I thì E’ A. Khi C’ tiến đến A thì E’ tiến đến K ( AK AB
và AK =AB).
Điểm E’ chuyển động trên cung AK của cung góc 450 dựng trên đoạn
AB (khác phía với I đối với AB).
b) Phần đảo:
- Lấy E bất kỳ thuộc cung chứa góc 1350 dựng trên AB, AE cắt nửa
đường tròn (O) tại C. Ta có
0
135
AEB , tam giác CEB vuông
0
45
CEB nên CE = CB.
- Lấy E’ bất kỳ thuộc cung AK, E’A cắt nửa đường tròn (O) tại C’. Ta
0
' 45
AE B , tam giác C’E’B vuông có
0
' ' 45
C E B nên C’E’ = C’B.
c) Kết luận: Quỹ tích điểm E cung chứa góc 1350 dựng trên AB
(cùng phía với I đối với AB) cung AK chứa góc 450 dựng trên AB
(khác phía với I đối với AB). Hai cung trên hợp lại thành nửa đường
tròn đường kính BK (vì
0
90
BAK ).
0,5
0,5
0,5
0,5
0,5
0,5
0,5
0,5
=Hết=