Đồ án tốt nghiệp: Tìm hiểu về vi khuẩn nitrat hóa, phương pháp tăng sinh, phân lập, xác định hoạt tính của vi khuẩn
lượt xem 7
download
Đồ án tốt nghiệp này được thực hiện với mục tiêu nhằm biết rõ hơn về vi khuẩn nitrat hóa, các quá trình tăng sinh, phân lập các chủng vi khuẩn nitrate hóa, khả năng xử lý nitơ từ các nguồn nước thải. Mời các bạn cùng tham khảo.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đồ án tốt nghiệp: Tìm hiểu về vi khuẩn nitrat hóa, phương pháp tăng sinh, phân lập, xác định hoạt tính của vi khuẩn
- BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHỆ TP. HCM ĐỒ ÁN TỐT NGHIỆP TÌM HIỂU VỀ VI KHUẨN NITRAT HOÁ, PHƯƠNG PHÁP TĂNG SINH, PHÂN LẬP VÀ XÁC ĐỊNH HOẠT TÍNH CỦA VI KHUẨN Ngành: CÔNG NGHỆ SINH HỌC Chuyên ngành: CÔNG NGHỆ SINH HỌC Giảng viên hướng dẫn : ThS: Huỳnh Văn Thành Sinh viên thực hiện : Hồ Thị Hạnh Nguyên MSSV: 1191111033 Lớp: 11hsh02 TP. Hồ Chí Minh, 2013
- ĐỒ ÁN TỐT NGHIỆP – GVHD: ThS. HUỲNH VĂN THÀNH LỜI MỞ ĐẦU 1. Đặt vấn đề Các chế phẩm vi sinh vật được sử dụng sẽ loại bỏ hàm lượng các chất C, N, P…dư thừa trong nước theo các quá trình khác nhau như: tạo sinh khối tế bào vi sinh vật, oxy hoá các chất thành sản phẩm cuối cùng là CO2 và H2O, chuyển hoá Nitơ dạng hữu cơ và vô cơ thành dạng khí Nitơ thoát ra ngoài môi trường, tích tụ P trong cơ thể tế bào…Quá trình loại bỏ Nitơ dư thừa trong nước hồ diễn ra chủ yếu bởi các quá trình amon hoá, nitrat hoá, phản nitrat hoá. Trong đó, nitrat hoá là quá trình hiếu khí, đầu tiên NH4+ oxy hoá thành nitrit NO2-, sau đó nitrit NO2- sẽ chuyển hoá thành nitrat NO3-, các biến đổi này được thực hiện bởi 2 vi khuẩn Nitrosomonas và Nitrobacter. Tiếp đó nitrit, nitrat chuyển thành Nitơ phân tử phát tán vào trong không khí nhờ tác dụng của những vi khuẩn phản Nitrat hoá. Ngày nay, việc ứng dụng các chế phẩm vi sinh vật để xử lý nước các hồ bị ô nhiễm được sử dụng ngày một phổ biến. Khác với phương pháp vật lý, hoá lý… việc bổ sung các chế phẩm vi sinh vào trong hồ giúp tăng cường khả năng phục hồi và thúc đẩy quá trình tự làm sạch trong hệ sinh thái của hồ. Do vậy, đây là phương pháp có tính ổn định cao và là một hướng đi rất thân thiện với môi trường. Ngành công nghiệp chế biến thủy sản ở nước ta đã phát triển không ngừng trong những năm gần đây và đang là ngành mũi nhọn trong việc thúc đẩy phát triển nền kinh tế của nước nhà, mang lại nhiều lợi nhuận kinh tế cho đất nước, tạo ra nhiều công ăn việc làm cho người dân … Tuy nhiên, bên cạnh những mặt tích cực ấy, thì còn rất nhiều công ty, nhà máy xí nghiệp chế biến thủy hải sản ở nước ta chưa có đầu tư và vận hành hệ thống xử lý nước thải; nước thải chế biến thủy sản được thải với lượng lớn ra ngoài môi trường, gây ô nhiễm môi trường nghiêm trọng, đặc biệt là môi trường nước. Chính vì vậy để khắc phục tình trạng ô nhiễm này đã có nhiều biện pháp xử lý khác nhau nhằm hạn chế và giảm bớt hàm lượng chất thải hữu cơ có chứa nitơ trong hệ thống xử lý nước thải trước khi nước được thải ra ngoài. Và phương pháp được sử dụng phổ biến nhất là xử lý bằng phương pháp sinh học để xử lý nước thải chế biến thủy sản, với việc bổ sung vi sinh vật 1 SVTH: HỒ THỊ HẠNH NGUYÊN
- ĐỒ ÁN TỐT NGHIỆP – GVHD: ThS. HUỲNH VĂN THÀNH được phân lập nuôi cấy từ bên ngoài vào hệ thống xử lý nước thải nhằm tăng cường hiệu quả xử lý trước khi nước được thải ra ngoài. Dựa vào điểm này, nên em đã quyết định chọn đề tài “Tìm hiểu về vi khuẩn nitrat hoá: Nitrosomonas và Nitrobacter, phương pháp tăng sinh, phân lập, xác định hoạt tính và ứng dụng của chúng trong việc xử lý nước thải” với mục đích là biết rõ hơn về vi khuẩn nitrat hoá, các quá trình tăng sinh, phân lập các chủng vi khuẩn nitrate hóa, khả năng xử lý nitơ từ các nguồn nước thải. 2. Tình hình nghiên cứu: 2.1 Trên thế giới: Sự phân lập vi khuẩn nitrate hóa trong môi trường nuôi cấy thuần khiết đã được thực hiện thành công đầu tiên bởi Winogradsky (1890). Sự thành công này của ông đã được biết đến vài năm trước khi quá trình nitrate hóa được tìm ra là do những sinh vật sống thực hiện (Schloesing & Muntz, 1877) và sự cố gắng của Frankland cùng các cộng sự (1890) để phân lập những sinh vật ấy bằng những phương pháp vi khuẩn học thường dùng đã gặp thất bại. Năm 1950, bằng phương pháp cải tiến từ phương pháp của Winogradsky, Jane Meiklejohn đã thành công trong việc phân lập chủng Nitrosomonas europaea từ sự nuôi cấy thuần khiết. Và cũng trong nghiên cứu này, bà cũng đã tìm ra được môi trường thích hợp (có bổ sung thành phần vi lượng cần thiết) để duy trì hoạt tính của các chủng vi khuẩn nitrate hóa (qua nhiều lần cấy chuyển môi trường để tăng sinh mà không bị mất hoạt tính như ban đầu bà đã vấp phải khi mới bắt đầu nghiên cứu). Năm 1960, Watson và cộng sự đã mở ra một kỉ nguyên mới trong việc phân lập và nuôi cấy loại vi khuẩn này, họ đã phát hiện ra và đặt tên cho hơn 16 chủng vi khuẩn oxi hóa NH3 khác. Năm 1968, S.Soriano và N.Walker đã thành công trong việc phân lập và tinh sạch được Nitrosomonas spp.và Nitrosocystis spp. bằng việc sử dụng môi trường agar tinh chế và một phương pháp thu nhận những tập đoàn với những pipet mao quản thủy tinh được hoạt động bởi máy vi thao tác đơn trước đây đã được mô tả bởi Soriano (1935). 2 SVTH: HỒ THỊ HẠNH NGUYÊN
- ĐỒ ÁN TỐT NGHIỆP – GVHD: ThS. HUỲNH VĂN THÀNH 2.2 Tại Việt Nam: Trần Liên Hà, Phạm Tuấn Anh, Nguyễn Thị Thanh (2007) đã phân lập được 4 chủng vi khuẩn nitrate hóa ứng dụng vào xử lý nước hồ bị ô nhiễm. Hoàng Phương Hòa, Trần Văn Nhị, Phạm Việt Cường, Nguyễn Thị Kim Cúc (2008) đã phân lập được 6 chủng vi khuẩn nitrate hóa từ nước lợ nuôi tôm và ứng dụng xử lý nitơ trong ao nước nuôi tôm. 3. Mục đích nghiên cứu: Tìm hiểu về quá trình nitrat hoá và các yếu tố ảnh hưởng đến quá trình này. Qui trình tăng sinh, phân lập, các cách xác định hoạt tính của vi khuẩn Nitrosomonas spp. và Nitrobacter spp. Biết được các phương pháp định lượng nitrite và amoni trong các mẫu nước thải. Tìm hiểu về ứng dụng của vi khuẩn nitrat hoá trong nghành công nghiệp hiện nay. 4. Nhiệm vụ nghiên cứu Tìm hiểu về qui trình tăng sinh, phân lập, xác định hoạt tính của vi khuẩn Nitrosomonas spp. và Nitrobacterspp. có nguồn gốc từ các mẫu nước thải. Tìm hiểu về ứng dụng của vi khuẩn nitrat hoá trong nghành công nghiệp hiện nay 3 SVTH: HỒ THỊ HẠNH NGUYÊN
- ĐỒ ÁN TỐT NGHIỆP – GVHD: ThS. HUỲNH VĂN THÀNH CHƯƠNG 1: TỔNG QUAN TÀI LIỆU 4 SVTH: HỒ THỊ HẠNH NGUYÊN
- ĐỒ ÁN TỐT NGHIỆP – GVHD: ThS. HUỲNH VĂN THÀNH 1.1 Những ảnh hưởng của những chất thải có bản chất nitơ đến môi trường sống và nước thải: Sự hiện diện của những chất thải có bản chất nitơ và những chất thải có chứa nitơ trong nước thải cuối cùng của một hệ thống nước thải nhà máy hay xí nghiệp được thải ra, có thể tác động bất lợi và gây ô nhiễm đến chất lượng của nguồn nước tiếp nhận (các nguồn nước mặt như: sông, suối, ao, hồ…). Nguồn gốc của những chất thải có bản chất nitơ gây ô nhiễm nguồn nước nhận chính là những ion NH4+, NO2- và NO3-. Những tác động gây ô nhiễm quan trọng có liên quan tới sự hiện diện của những chất thải có bản chất nitơ ấy bao gồm: sự cạn kiệt oxi hòa tan (DO), độc tính (Toxicity), sự thiếu oxi trong nước (Eutrophications) và sự làm mất khả năng vận hành oxi trong máu (Methemoglobinemia). Để giảm bớt những ảnh hưởng bất lợi của những chất thải có bản chất nitơ cho nguồn nước tiếp nhận, một hệ thống xử lý nước thải (Hệ thống bùn hoạt tính) phải đảm bảo yêu cầu xử lý và giảm lượng chất thải có bản chất nitơ xuống dưới hoặc bằng mức cho phép của tiêu chuẩn xả thải trong nước thải đầu ra của hệ thống xử lý nước thải ấy. Hệ thống xử lý nước thải (Hệ thống bùn hoạt tính) phải đảm bảo quá trình oxi hóa nitơ (nitrify) và quá trình khử nitơ (denitrify) những chất thải có bản chất nitơ xảy ra hoàn tất trong cả quá trình hoạt động của hệ thống. Yêu cầu của quá trình nitrate hóa (nitrification) thường được đưa ra như giới hạn thải ra NH3 và yêu cầu của quá trình phản nitrate (denitrification) thường được đưa ra như giới hạn Tổng nitơ hay Tổng nitơ Kjeldahl (TKN). 1.1.1 Sự cạn kiệt oxi hòa tan (DO): Việc thải ra những chất thải có bản chất nitơ vào nguồn nước nhận là kết quả của sự cạn kiệt nguồn oxi hòa tan trong nguồn nước nhận ấy. Sự cạn kiệt xảy ra thông qua sự tiêu thụ oxi hòa tan bởi hoạt động của vi khuẩn. Đầu tiên, NH4+ được oxi hóa thành NO2- và NO2- được oxi hóa thành NO3- bên trong nguồn nước tiếp nhận. Quá trình oxi hóa mỗi ion xảy ra bằng oxi hòa tan được di chuyển từ nguồn nước tiếp nhận vào vi khuẩn và gia tăng thêm NH4+ và NO2-. Tiếp theo, NH4+, NO2- và NO3- đáp ứng như là nguồn nitơ dinh dưỡng cho sự 5 SVTH: HỒ THỊ HẠNH NGUYÊN
- ĐỒ ÁN TỐT NGHIỆP – GVHD: ThS. HUỲNH VĂN THÀNH tăng trưởng của những thực vật sống ở nước, chủ yếu là những loài tảo. Khi những thực vật ấy chết đi, oxi hòa tan sẽ được di chuyển từ nguồn nước tiếp nhận vào vi khuẩn để phân hủy những thực vật đã chết ấy. + O2 + O2 + - NH4 NO2 NO3- 1.1.2 Độc tính (Toxicity): Ba ion có bản chất nitơ trên (NH4+, NO2- & NO3-) có thể là độc chất cho sự sống của những loài thủy sinh vật, đặc biệt nhất là cá. Những ion NH4+ và NO2- là vô cùng độc. Và NO2- là độc nhất trong 3 loại ion có bản chất nitơ. Mặc dù NH4+ là nguồn dinh dưỡng nitơ ưa thích nhất cho phần lớn sinh vật sống, NH4+ được biến đổi thành NH3 với sự tăng lên của pH và gây độc cho sự sống của thủy sinh vật. 1.1.3 Sự thiếu oxi trong nước (Eutrophication): Trong khi phosphate (PO42-) là nguồn gốc chính yếu của sự thiếu oxi trong nước thì những chất thải có bản chất nitơ cũng góp phần quan trọng cho vấn đề ô nhiễm nước này. Sự thiếu oxi trong nước nói đến sự thải ra những chất dinh dưỡng của thực vật (chủ yếu là: phốt pho và nitơ) vào nước sạch (như: hồ và ao). Sự hiện diện những chất dinh dưỡng này kích thích sự tăng trưởng nhanh chóng hay sự ra hoa của thực vật thủy sinh, bao gồm cả tảo. Khi những thực vật thủy sinh này già và chết đi, xác của chúng sẽ làm cho nguồn nước thiếu oxi do quá trình hoạt động phân hủy hiếu khí của những vi sinh vật diễn ra. Sự thiếu oxi trong nước dẫn đến sự lão hóa nhanh chóng của nguồn nước ngọt khi chúng mất khá nhiều oxi cho sự phân hủy này. Và sự tích lũy xác những thực vật thủy sinh ngày càng nhiều dẫn đến khả năng phân hủy của nguồn nước bị giảm đi đến mức chúng không thể phân hủy được nữa, không tự làm sạch được nữa thì dẫn đến nguồn nước ấy bị ô nhiễm. 6 SVTH: HỒ THỊ HẠNH NGUYÊN
- ĐỒ ÁN TỐT NGHIỆP – GVHD: ThS. HUỲNH VĂN THÀNH 1.1.4 Sự làm mất khả năng vận hành oxi trong máu (Methemoglobinemia): Từ “Methemoglobinemia” hay “Hội chứng da xanh ở trẻ em” nói đến một căn bệnh của những đứa trẻ còn nhỏ (dưới 6 tháng tuổi) ăn uống phải nước ngầm đã nhiễm bẩn NO3-. Khi một đứa bé ăn uống những thứ được làm ra từ nước ngầm đã bị nhiễm bẩn NO3- thì những ion này dễ dàng được biến đổi thành NO2- trong đường tiêu hóa của đứa bé. Ion NO2- này xâm nhập vào hệ tuần hoàn của đứa trẻ và nhanh chóng liên kết với Fe trong nhân của Hemoglobin hay những tế bào hồng cầu. Sự hiện diện của NO2- trong nhân ngăn cản Hemoglobin thu được oxi khi nó đi qua phổi của đứa trẻ. Sự thiếu oxi trong cơ thể của đứa trẻ dẫn đến da của đứa trẻ trở nên xanh xao, vì thế mới có thuật ngữ “Blue baby syndrome”. Nếu thiếu oxi trong não của đứa trẻ, chứng liệt hay chết có thể xuất hiện. Methemoglobinemia thường xuất hiện ở những vùng nông thôn, nơi mà nước dùng để uống được thu từ nước ngầm. Methemoglobinemia không có dấu hiệu để cảnh báo và mặc dù nó có thể xuất hiện với những người trưởng thành, nó có thể độc hơn nhiều với những đứa trẻ sơ sinh bởi vì pH trong cơ thể chúng thấp hơn và trọng lượng cơ thể chúng thấp hơn khi so sánh với những người trưởng thành. Và khi ion NO3- ở nồng độ cao cũng có thể làm tăng nguy cơ gây ung thư dạ dày ở mọi lứa tuổi. 1.2 Chu trình nitơ trong nước thải (The Wastewater Nitrogen Cycle): 7 SVTH: HỒ THỊ HẠNH NGUYÊN
- ĐỒ ÁN TỐT NGHIỆP – GVHD: ThS. HUỲNH VĂN THÀNH Hình 1.1: Chu trình nitơ trong nước thải. Có nhiều hợp chất có bản chất nitơ tồn tại trong môi trường sống và trong hệ thống xử lý nước thải. Phần lớn nitơ tìm thấy trong môi trường sống tồn tại dưới dạng nitơ phân tử (N2) trong bầu khí quyển chúng ta (chúng chiếm tới 76% trong bầu khí quyển so với các khí khác). Mặc dù sự cấu thành không nhiều của nitơ trong sinh khối so với carbon hay oxi nhưng nitơ là một yếu tố thiết yếu của tất cả sự sống sinh vật. Nó được kết hợp chặt chẽ trong nguyên liệu tế bào và được dùng cho sự tăng trưởng, tạo ra enzyme và thông tin về di truyền học. Tuy nhiên, nitơ phân tử được cấu tạo từ 2 nguyên tử nitơ nối với nhau bằng 3 dây nối N N, nó rất khó để hầu hết sinh vật có thể bẻ gãy. May thay, nitơ phân tử được tạo ra sẵn có cho sự sống sinh vật khi mà liên kết 3 bị bẻ gãy bởi một nhóm vi khuẩn duy nhất và được cố định lại hay biến đổi thành NH4+. 8 SVTH: HỒ THỊ HẠNH NGUYÊN
- ĐỒ ÁN TỐT NGHIỆP – GVHD: ThS. HUỲNH VĂN THÀNH Những vi khuẩn biến đổi nitơ phân tử thành NH4+ là những vi khuẩn cố định nitơ. Những vi khuẩn này có thể sống tự do trong đất xung quanh rễ của thực vật hay có thể tăng trưởng cộng sinh trong rễ của những cây họ đậu. Sự cố định nitơ tức là sự chuyển đổi nitơ phân tử thành NH4+, được hoàn thành bởi enzyme nitrogenase chỉ được tìm thấy trong những vi khuẩn cố định nitơ. Trước khi sự sử dụng phân bón nitơ lan rộng, thực vật tăng trưởng nốt sần hay những cây họ đậu cung cấp nitơ cho đất. Ví dụ những cây họ đậu bao gồm: Cỏ linh lăng, Cỏ ba lá và những cây Đậu nành. Một vài loài tảo cũng có thể sử dụng nitơ phân tử để sản xuất ra amino acid và protein. Tảo lấy nitơ phân tử từ không khí và đồng hóa chúng thành những phân tử hữu cơ. Cuối cùng, những phân tử hữu cơ này với nitơ liên kết thành cấu trúc của chúng và được tiêu thụ trong suốt chiều dài của chuỗi thức ăn; như là tảo được tiêu thụ bởi những dạng sống cao hơn. Sự di chuyển của nitơ và sự thay đổi chính nó trong các trạng thái oxi hóa từ không khí sang sinh vật sống đến hệ thống xử lý nước thải (Hệ thống bùn hoạt tính) và sự trở lại của nó vào không khí là chu trình nitơ trong nước thải. Chu trình này liên kết với những hợp chất có bản chất nitơ then chốt liên tiếp như: nitơ phân tử (N2), amino acid, protein, urea, NH4+, NH3, NO2- và NO3-. Trong đó, amino acid và protein là những dạng hữu cơ của nitơ; còn nitơ phân tử (N2), NH4+, NH3, NO2- và NO3- là những dạng vô cơ của nitơ. Sự sản sinh ra NO2- và NO3- trong hệ thống cống rãnh là hiếm thấy. Những điều kiện trong hệ thống cống rãnh là không phù hợp cho sự tạo ra hay quá trình nitrate hóa của những ion này. Những điều kiện bất lợi trong hệ thống cống rãnh ngăn cản quá trình nitrate hóa bao gồm: sự thiếu oxi thích hợp, quần thể vi khuẩn nitrate hóa nhỏ và thời gian nước được giữ lại ngắn. Tuy nhiên, lượng rất lớn NO2- và NO3- có thể được tìm thấy trong hệ thống cống rãnh nếu chúng được thải ra từ nguồn nước thải công nghiệp có những ion này, như là nước thải nhà máy thép. Những amino acid và protein trong mô thực vật, trong rễ, trong hạt và từ thịt vật nuôi được thải trực tiếp vào hệ thống cống rãnh (rác vứt bỏ đi, nước thải chế 9 SVTH: HỒ THỊ HẠNH NGUYÊN
- ĐỒ ÁN TỐT NGHIỆP – GVHD: ThS. HUỲNH VĂN THÀNH biến thực phẩm) và gián tiếp vào hệ thống cống rãnh (chất thải có bản chất là phân). Nhiều vi khuẩn trong hệ thống cống rãnh khử nhóm amino (-NH2) ra khỏi các amino acid và protein. Sự khử nhóm NH2 được hoàn thành với enzyme deaminase và đưa đến kết quả là tạo ra NH4+. Sự tạo thành NH4+ còn được biết đến như là quá trình amôn hóa. Sự khử nhóm NH2 của amino acid phenylalanine được cho thấy: Phenylalanine–Proteus NH4+ Phenylpyruvic acid Urea: là một hợp chất nitơ hữu cơ, chúng được tìm thấy trong nước tiểu, phân bón và những chất thải từ chăn nuôi. Khi mà được thủy phân bởi enzyme urease của vi khuẩn, NH4+ được giải phóng. Enzyme urease được tìm thấy trong nhiều sinh vật dị dưỡng hóa năng hữu cơ liên kết với phân bao gồm: Citrobacter. Sự thủy phân urea thành NH3 và CO2 bởi hoạt động của vi khuẩn là rất nhanh chóng. Ở pH của hệ thống cống rãnh NH3 nhanh chóng được biến đổi thành NH4+. NH2COHN2 H2O –Citrobacter 2NH3 CO2 Những amino acid và những protein không được phân hủy trong hệ thống cống rãnh có thể được phân hủy trong hệ thống xử lý nước thải (bể aerotank). Sự phân hủy những amino acid và protein trong bể aerotank cũng đưa đến kết quả sản sinh ra NH4+. Những ion NH4+ trong hệ thống xử lý nước thải (Hệ thống bùn hoạt tính) có vài nhiệm vụ. Chúng có thể được dùng như nguồn dinh dưỡng nitơ bởi những sinh vật dị dưỡng hóa năng hữu cơ và vi khuẩn nitrate hóa. Chúng có thể được giải phóng ra ngoài không khí như NH3 ở pH cao và dưới những điều kiện hoạt động thích hợp, Nitrosomonas có thể oxi hóa chúng thành NO2-. Nếu những ion NH4+ không được sử dụng như nguồn dinh dưỡng, hóa thành khí hay oxi hóa, chúng được chảy vào trong hệ thống nhánh của bể aerotank. Dưới nhiệt độ lạnh hay điều kiện phương pháp hệ thống có giới hạn, ion NO2- có thể tích lũy lại trong hệ thống xử lý nước thải (Hệ thống bùn hoạt tính). NO2- cũng có một vài nhiệm vụ trong hệ thống bùn hoạt tính. NO2- còn có thể được oxi 10 SVTH: HỒ THỊ HẠNH NGUYÊN
- ĐỒ ÁN TỐT NGHIỆP – GVHD: ThS. HUỲNH VĂN THÀNH hóa sinh học bởi Nitrobacter tạo thành NO3- dưới những điều kiện hoạt động thuận lợi. Nếu NH4+ và NO2- không có sẵn trong bể aerotank, NO3- được dùng như là nguồn dinh dưỡng nitơ bởi những sinh vật dị dưỡng hóa năng hữu cơ. Nếu những ion NO2- không bị oxi hóa hay được dùng như nguồn dinh dưỡng nitơ, chúng được chảy vào hệ thống nhánh của bể aerotank. Trong bể lắng 2, NO2- có thể được khử thành các khí N2O và N2. NO3- trong hệ thống xử lý nước thải (Hệ thống bùn hoạt tính) có một vài nhiệm vụ. Trong sự vắng mặt của NH4+ trong bể aerotank, NO3- có thể được dùng như nguồn dinh dưỡng nitơ. Nếu NO3- không được dùng như một nguồn dinh dưỡng nitơ thì chúng được chảy vào hệ thống nhánh của bể aerotank. Trong bể lắng 2, NO3- có thể được khử nitrate. Những ion NO3- là quan trọng chủ yếu trong chu trình nitơ nước thải. Chúng là sản phẩm của quá trình nitrate hóa, cơ chất của quá trình phản nitrate hóa và là nguồn dinh dưỡng nitơ khi mà NH4+ không có sẵn. NO3- được sử dụng như nguồn dinh dưỡng nitơ thông qua một hệ thống sinh học được biết như sự đồng hóa nitrate. Những ion NO3- rất dồi dào, nguồn nitơ vô cơ trong nguồn nước. Sự phản nitrate có thể xảy ra trong lớp bùn của bể lắng 2 (trong Hệ thống xử lý nước thải) khi mà điều kiện kỵ khí xảy ra trong lớp bùn. Ở đây vi khuẩn kỵ khí tùy nghi sử dụng NO2- và NO3- để phân hủy cBOD hòa tan (carbonaceous BOD). Sự phân hủy này được liên kết với sự giải phóng phân tử nitơ. Những ion NH4+ có thể được loại bỏ bởi hoạt động trộn hay sự hóa khí vào không khí như NH3. Tuy nhiên lượng NH3 mất đi qua sự hóa khí là rất nhỏ, tức là ít hơn 10%. Khi mà những chất thải nitơ hữu cơ không còn có sẵn nữa để giải phóng ra NH4+, lượng NH4+ giảm. Sự giảm NH4+ xảy ra vì chúng được dùng như là nguồn dinh dưỡng nitơ và bị oxi hóa thành NO2- và NO3-. Nếu quá trình nitrate hóa bắt đầu một cách đúng đắn, không có sự tích lũy của NO2- xảy ra. Một vài ion NO3- có thể được loại bỏ đi như là nguồn dinh dưỡng nitơ khi mà NH4+ bị cạn kiệt. Nếu quá trình phản nitrate xảy ra thì lượng NO3- sẽ bị giảm rất lớn, có lẽ được loại trừ. 11 SVTH: HỒ THỊ HẠNH NGUYÊN
- ĐỒ ÁN TỐT NGHIỆP – GVHD: ThS. HUỲNH VĂN THÀNH 1.3 Quá trình nitrate hoá 1.3.1 Giới thiệu về quá trình nitrate hóa trong môi trường (Introduction to Nitrification): Quá trình nitrate hóa sinh học là sự biến đổi hay oxi hóa NH4+ thành NO2- và sau đó thành NO3-. Trong thời gian oxi hóa NH4+ và NO2-, oxi được cộng thêm vào những ion này bởi một nhóm sinh vật duy nhất, những vi khuẩn nitrate hóa. Quá trình nitrate hóa xảy ra trong tự nhiên và trong hệ thống xử lý nước thải (Hệ thống bùn hoạt tính). Quá trình nitrate hóa trong đất là đặc biệt quan trọng trong tự nhiên, bởi vì nitơ được hấp thu bởi thực vật như là nguồn dinh dưỡng dưới dạng NO3-. Quá trình nitrate hóa trong nước có liên quan đến xử lý nước thải, nhất là đảm bảo yêu cầu xả thải theo đúng quy chuẩn cho phép. NH4+ và NH3 là những dạng của hợp chất nitơ, chúng được oxi hóa trong suốt quá trình nitrate hóa. Số lượng của NH4+ và NH3 trong bể aerotank của hệ thống xử lý nước thải được quyết định bởi pH và nhiệt độ trong hệ thống. Sự oxi hóa NH4+ và NO2- được hoàn thành thông qua sự thêm vào oxi hòa tan bên trong những tế bào vi khuẩn. Bởi vì quá trình nitrate hóa hay sự thêm vào oxi của những phản ứng hóa sinh xảy ra bên trong những tế bào sinh học, quá trình nitrate hóa xảy ra thông qua những phản ứng hóa sinh. Những ion NH4+ được tạo ra trong nước thải từ sự thủy phân urea và sự phân hủy những hợp chất nitơ hữu cơ. Sự thủy phân và sự phân hủy những hợp chất nitơ hữu cơ đưa đến kết quả là sự giải phóng ra những nhóm amino (-NH2) và sự tạo thành NH4+. Mặc dù có nhiều sinh vật có khả năng oxi hóa NH4+ và NO2-, nhưng những sinh vật ban đầu chịu trách nhiệu chính trước nhất cho quá trình nitrate hóa trong hệ thống xử lý nước thải (Hệ thống bùn hoạt tính) đó là 2 giống vi khuẩn nitrate hóa, Nitrosomonas và Nitrobacter. Những giống này sở hữu những enzyme và cấu trúc tế bào đặc biệt cho phép chúng hoàn thành quá trình nitrate hóa quan trọng này. 12 SVTH: HỒ THỊ HẠNH NGUYÊN
- ĐỒ ÁN TỐT NGHIỆP – GVHD: ThS. HUỲNH VĂN THÀNH Tốc độ của quá trình nitrate hóa đạt được bởi những vi khuẩn nitrate hóa thường là 1.000 – 10.000 lần lớn hơn tốc độ của quá trình nitrate hóa bằng những sinh vật khác. Bên cạnh những vi khuẩn nitrate hóa, có 2 Protozoa chúng hiện diện với số lượng rất lớn trong lúc quá trình nitrate hóa diễn ra nhanh nhất. Những Protozoa này là: Epistylis và Vorticella. Mặc dù hệ thống bùn hoạt tính được dùng cho quá trình nitrate hóa, nhưng hệ thống này không phải là lý tưởng cho quá trình nitrate hóa. Vì kích thước quần thể lớn và sự tăng trưởng nhanh chóng của các sinh vật khác trong bể aerotank so sánh với kích thước quần thể nhỏ và sự tăng trưởng chậm của những vi khuẩn nitrate hóa, kích thước quần thể của những vi khuẩn nitrate hóa được làm giảm đi từ từ, tạo ra khó khăn để đạt được và duy trì quá trình nitrate hóa mong muốn. Khoảng chừng 90% đến 97% vi khuẩn trong hệ thống bùn hoạt tính là những sinh vật dị dưỡng hóa năng hữu cơ, còn khoảng chừng 3% đến 10% là vi khuẩn nitrate hóa. 1.3.2 Những vi khuẩn oxi hóa nitơ hay vi khuẩn nitrate hóa (Nitrifying Bacteria) Vi khuẩn nitrate hóa sống rất đa dạng trong môi trường sống của chúng ta bao gồm: nước ngọt, nước có thể uống được, nước thải, nước biển, nước lợ và trong đất. Mặc dù một vài giống vi khuẩn nitrate hóa có khả năng sử dụng một vài hợp chất hữu cơ để thu carbon, giống chủ yếu của những vi khuẩn nitrate hóa trong hệ thống xử lý nước thải (Hệ thống bùn hoạt tính), Nitrosomonas và Nitrobacter, sử dụng CO2 hay carbon vô cơ như là nguồn carbon cho sự tổng hợp nguyên liệu tế bào. Mỗi phân tử CO2 đồng hóa thành nguyên liệu tế bào bởi những vi khuẩn nitrate hóa, khoảng chừng 30 phân tử của NH4+ hay 100 phân tử của NO2- có thể được oxi hóa. Vì lượng NH4+ và NO2- rất lớn cần để đồng hóa CO2, vi khuẩn nitrate hóa có tốc độ sinh sản rất chậm. Thậm chí dưới những điều kiện tốt nhất thì tốc độ sinh sản của vi khuẩn nitrate hóa là rất nhỏ. 13 SVTH: HỒ THỊ HẠNH NGUYÊN
- ĐỒ ÁN TỐT NGHIỆP – GVHD: ThS. HUỲNH VĂN THÀNH Vi khuẩn nitrate hóa thu được năng lượng bởi quá trình oxi hóa những cơ chất vô cơ, cụ thể là NH4+ và NO2-. Ion NO2- là sản phẩm của sự oxi hóa NH4+ bởi Nitrosomonas cung cấp như là cơ chất cho Nitrobacter. Nếu NO2- không được thải ra khỏi hệ thống bùn hoạt tính thì NO2- có thể được sản sinh ra trong bể aerotank để mà Nitrobacter dùng làm cơ chất năng lượng. Có 2 phản ứng sinh năng lượng xảy ra trong suốt quá trình nitrate hóa. Nhiều năng lượng được lấy từ dạng phản ứng đầu tiên, tức là, sự oxi hóa NH4+, hơn là phản ứng thứ 2, tức là sự oxi hóa NO2-. NH4+ 1.5O2–Nitrosomonas NO2- 2H+ H2O Năng lượng. NO2- 0.5O2–Nitrobacter NO3- Năng lượng. Phản ứng sinh năng lượng xảy ra trong những tế bào vi khuẩn và cả 2 phản ứng này đều sử dụng oxi phân tử tự do. Từ đó sự tích lũy NO2- không xuất hiện. Toàn bộ phản ứng nitrate hóa được điều khiển bằng sự oxi hóa NH4+ sang NO3-. Toàn bộ phản ứng nitrate hóa là một sự kết hợp của 2 phản ứng sinh năng lượng trên: NH4+ 2O2–Vi khuẩn Nitrate hóa NO3- 2H+ H2O. Mặc dù NH4+ được dùng như một nguồn năng lượng bởi những vi khuẩn nitrate hóa, không phải tất cả NH4+ có trong tế bào vi khuẩn đều được nitrate hóa. Một vài ion NH4+ được dùng như là nguồn dinh dưỡng nitơ và được đồng hóa thành nguyên liệu tế bào mới (C5H7O2N). Sự tăng trưởng của những tế bào mới trong hệ thống bùn hoạt tính được tạo thành do sự tăng lên của những chất rắn lơ lửng huyền phù trộn lẫn trong nước (MLVSS) (Mixed liquor volatile suspended solids). 4CO2 HCO3- NH4+ 4H2O C5H7O2N 5O2 3H2O. Có vài giống vi khuẩn nitrate hóa. Các giống có thể được tập hợp lại thành nhóm với nhau dựa vào oxi hóa NH4+ hay NO2- 14 SVTH: HỒ THỊ HẠNH NGUYÊN
- ĐỒ ÁN TỐT NGHIỆP – GVHD: ThS. HUỲNH VĂN THÀNH Bảng 1.1. Các giống vi khuẩn nitrat hoá tập hợp lại thành nhóm dựa vào sự oxi hoá NH4+ hay NO2- Cơ chất năng lượng Sản phẩm oxi hóa Các giống vi khuẩn (Energy Substrate) (Oxidized Product) nitrate hóa (Genera of Nitrifying Bacteria) NH4+ NO2- Nitrosococcus Nitrosocystis Nitrosolobus Nitrosomonas Nitrosospira NO2- NO3- Nitrobacter Nitrococcus Nitrospira Những vi khuẩn nitrate hóa không có khả năng gây bệnh, chúng không có trong đường ruột của con người. Vì vậy những vi khuẩn nitrate hóa không đi vào hệ thống cống rãnh và hệ thống xử lý nước thải với lượng lớn thông qua nước thải gia đình. Vi khuẩn nitrate hóa xuất xứ từ đất và nước. Những vi khuẩn nitrate hóa Nitrosomonas và Nitrobacter có ở mức độ lớn, nếu không hoàn toàn, là nguyên nhân của quá trình nitrate hóa trong đất. Bởi vì những vi khuẩn nitrate hóa bị tiêu diệt bởi ánh sáng tử ngoại, chúng không được tìm thấy lượng lớn trên bề mặt của đất. Tuy nhiên, chúng được tìm thấy với số lượng lớn trực tiếp bên dưới bề mặt của đất nơi ánh sáng cực tím không thể lọt vào được. Trong hệ thống xử lý nước thải, 2 loài vi khuẩn nitrate hóa chịu trách nhiệm chính cho sự oxi hóa NH4+ và NO2- là Nitrosomonas europeae và Nitrobacter 15 SVTH: HỒ THỊ HẠNH NGUYÊN
- ĐỒ ÁN TỐT NGHIỆP – GVHD: ThS. HUỲNH VĂN THÀNH winogradsky. Những giống vi khuẩn nitrate hóa khác cũng quan trọng không kém trong hệ thống xử lý nước thải (Hệ thống bùn hoạt tính). Nitrosomonas và Nitrobacter là những vi khuẩn gram âm và hiếu khí bắt buộc, chúng yêu cầu oxi phân tử tự do hay oxi hòa tan nhằm để oxi hóa cơ chất. Mặc dù những vi khuẩn nitrate hóa có thể sinh trưởng phát triển và sinh sản trong sự hiện diện của phần lớn những hợp chất hữu cơ, một vài dạng hợp chất hữu cơ có thể ức chế hoạt động của chúng, tức là, ức chế quá trình nitrate hóa. Những hợp chất ức chế đó bao gồm: Cồn và Acid. Một vài hợp chất hữu cơ có chứa nhóm amino (-NH2), như là Methylamine (CH2NH2), cũng ức chế hoạt động của vi khuẩn nitrate hóa. Với vài ngoại lệ, những vi khuẩn nitrate hóa là những sinh vật tự dưỡng bắt buộc (nghiêm ngặt). Bởi vì chúng là những vi sinh vật tự dưỡng bắt buộc, vài dạng hợp chất hữu cơ đơn giản còn lại trong bể aerotank có thể ức chế vi khuẩn nitrate hóa, tức là, ức chế quá trình nitrate hóa. Vì vậy một quần thể sinh vật tự dưỡng hóa năng hữu cơ lớn và đa dạng hiện diện trong bể aerotank để mà oxi hóa những hợp chất hữu cơ có dạng đơn giản ấy. Vi khuẩn nitrate hóa có thể tăng trưởng và sinh sản bằng những tế bào riêng biệt hay khối tập hợp nhỏ dính chặt vào nhau trong chất nhờn. Trong hệ thống bùn hoạt tính, những vi khuẩn nitrate hóa được tìm thấy hút bám trên bề mặt của những hạt keo và lơ lửng trong bể. Những vi khuẩn nitrate hóa sinh sản vô tính. Nitrosomonas: sinh sản bằng sự tự phân đôi hay sự phân cắt hoàn toàn thành hai phần; trong khi đó, Nitrobacter: sinh sản bằng cách nảy chồi. Vì những vi khuẩn nitrate hóa thu được một lượng rất nhỏ năng lượng từ sự oxi hóa NH4+ và NO2-, sự sinh sản hay thời gian thế hệ là chậm và quần thể nhỏ. Kích thước quần thể vi khuẩn nitrate hóa trong hệ thống bùn hoạt tính là rất nhỏ khi mà so sánh với kích thước quần thể của các sinh vật dị dưỡng hóa năng hữu cơ. 16 SVTH: HỒ THỊ HẠNH NGUYÊN
- ĐỒ ÁN TỐT NGHIỆP – GVHD: ThS. HUỲNH VĂN THÀNH Sự khác nhau trong kích thước quần thể giữa vi khuẩn nitrate hóa và những vi khuẩn dị dưỡng hóa năng hữu cơ là do 2 lý do. Thứ nhất, trong hầu hết hệ thống bùn hoạt tính thành phố và công nghiệp, nồng độ của chất thải có bản chất carbon vượt quá giới hạn nồng độ của những chất thải có bản chất nitơ. Vì vậy nhiều cơ chất có giá trị để tăng trưởng nhiều vi khuẩn dị dưỡng hóa năng hữu cơ. Thứ hai, những vi khuẩn dị dưỡng hóa năng hữu cơ thu được nhiều năng lượng từ sự sinh sản hơn những vi khuẩn nitrate hóa khi chúng oxi hóa những cơ chất tương ứng của chúng. Vì vậy những vi khuẩn dị dưỡng hóa năng hữu cơ có thể sinh sản nhanh hơn nhiều những vi khuẩn nitrate hóa có thể sinh sản. So sánh thời gian thế hệ của những vi khuẩn dị dưỡng hóa năng hữu cơ với vi khuẩn nitrate hóa thì vi khuẩn nitrate hóa dài hơn nhiều. Thời gian thế hệ của hầu hết những vi khuẩn dị dưỡng hóa năng hữu cơ trong hệ thống bùn hoạt tính là 15 đến 30 phút. Dưới những điều kiện thuận lợi,thời gian thế hệ của những vi khuẩn nitrate hóa trong hệ thống bùn hoạt tính là 48 đến 72 giờ. Trong quần thể vi khuẩn nitrate hóa cũng có một kích thước quần thể khác biệt giữa Nitrosomonas và Nitrobacter. Kích thước quần thể Nitrosomonas là lớn hơn Nitrobacter. Bởi vì Nitrosomonas thu được nhiều năng lượng từ sự oxi hóa NH4+ hơn Nitrobacter thu được từ sự oxi hóa NO2-, Nitrosomonas có thời gian thế hệ ngắn hơn và có thể tăng nhanh chóng về số lượng khi so sánh với Nitrobacter. Một kích thước quần thể lớn của Nitrosomonas hơn Nitrobacter trong hệ thống bùn hoạt tính đáp ứng cho khả năng oxi hóa NH4+ nhiều hơn khả năng oxi hóa NO2-. Sự khác nhau trong thời gian thế hệ giữa Nitrosomonas và Nitrobacter ảnh hưởng trực tiếp đến quá trình nitrate hóa. Sự khác nhau ấy là nguyên nhân gây nên sự tích lũy NO2- trong suốt thời gian những điều kiện hoạt động không thuận lợi trong hệ thống bao gồm: nhiệt độ lạnh, quá trình rửa trôi cơ học, mức oxi hòa tan thấp, độc chất… Mặc dù kích thước quần thể cơ bản của vi khuẩn nitrate hóa phụ thuộc vào lượng cơ chất sẵn có (NH4+ và NO2-), sự tăng trưởng và sinh sản của quần thể bị ảnh hưởng mạnh bởi vài yếu tố hoạt động bao gồm: oxi hòa tan, tính kiềm và pH, 17 SVTH: HỒ THỊ HẠNH NGUYÊN
- ĐỒ ÁN TỐT NGHIỆP – GVHD: ThS. HUỲNH VĂN THÀNH nhiệt độ, chất ức chế, chất độc và phương thức hoạt động của cả hệ thống xử lý nước thải. 1.4 Những sinh vật chỉ thị hay những chất chỉ thị cho quá trình Nitrate hóa (Indicators of Nitrification): Hệ thống bùn hoạt tính (của một hệ thống xử lý nước thải) oxi hóa nitơ nếu NO2- và NO3- được sinh ra trong bể aerotank. Dù có nhiều cơ chế khác nhau của sự mất đi và sinh ra NH4+ trong bể aerotank, do đó, một mình sự giảm nồng độ của NH4+ trong bể aerotank không biểu lộ quá trình nitrate hóa. Quá trình nitrate hóa được chứng minh bằng sự sản sinh ra NO2- hay NO3-. Tuy nhiên, nếu sự kiểm tra NO2- hay NO3- trong hệ thống không được thực hiện, thì quá trình nitrate hóa có thể được nghi ngờ bởi sự hiện diện của sinh vật chỉ thị sinh học, chất chỉ thị hóa học và những sinh vật báo hiệu tự nhiên khác. Những sinh vật chỉ thị sinh học của quá trình nitrate hóa bao gồm: sự tăng trưởng của Tảo và Bèo tấm trong bể lắng 2, sự tăng lên có ý nghĩa của nhu cầu oxi pha trộn trong nước và sự giảm đi có ý nghĩa của mức oxi hòa tan trong hệ thống. Tảo và Bèo tấm thu được chất dinh dưỡng nitơ từ NO3-. Vì vậy sự hiện diện của chúng trong bể lắng 2 là một sự chỉ thị của sự sản sinh ra NO3- hay quá trình nitrate hóa trong bể aerotank. Bèo tấm: là những thực vật có hoa bé nhỏ nhất và đơn giản nhất. Bèo tấm sinh sôi nảy nở nhanh chóng và nổi trên mặt nước. Có 3 giống Bèo tấm chúng được tìm thấy trong hệ thống bùn hoạt tính của hệ thống xử lý nước thải. Những giống này là: Lemna, Spirodella, và Wolffia. Khi mà quá trình nitrate hóa xảy ra trong bể aerotank, lượng lớn oxi hòa tan được tiêu thụ bởi những vi khuẩn nitrate hóa do chúng oxi hóa NH4+ và NO2-. Vì vậy, khi quá trình nitrate hóa xảy ra, sự đòi hỏi có ý nghĩa của sinh khối về oxi hòa tan xuất hiện và mức độ oxi hòa tan trong bể aerotank giảm đi. Những chất chỉ thị hóa học của quá trình nitrate hóa bao gồm sự tăng lên nhu cầu Cl2 để khử trùng trong phụ lưu bể lắng 2. Nếu quá trình nitrate hóa không hoàn 18 SVTH: HỒ THỊ HẠNH NGUYÊN
- ĐỒ ÁN TỐT NGHIỆP – GVHD: ThS. HUỲNH VĂN THÀNH tất xảy ra, NO2- tích lũy và NO2- phản ứng nhanh chóng với Cl2, đưa đến kết quả là sự tiêu diệt coliform kém đi trong phụ lưu của bể lắng 2. Sự sản sinh ra NO2- trong bể aerotank đưa đến kết quả là sự phá hủy tính kiềm. Sự phản nitrate hóa trong bể lắng 2 (do kết quả nitrate hóa trong bể aerotank) trả lại tính kiềm cho nước thải. Sự trả lại tính kiềm đưa đến sự tăng tính kiềm hay pH. Nếu vài sinh vật chỉ thị sinh học, hóa học hay tự nhiên của quá trình nitrate hóa xảy ra trong hệ thống bùn hoạt tính chúng không được yêu cầu nitrate hóa, khi đó sự nitrate hóa sẽ bị nghi ngờ. Để xác định dạng nitrate hóa đang xảy ra, sự kiểm tra nước trong hệ thống về nồng độ NH4+, NO2- và NO3- sẽ được thực hiện. 1.5 Cơ chế hoạt động của vi khuẩn Nitrat hoá Các loại vi khuẩn hoá năng vô cơ (chemolithotrophic) thường là loại tự dưỡng, đều sử dụng chu trình Calvin để cố định CO2 như nguồn carbon duy nhất. Ở vi khuẩn nitrate hoá được xếp vào loại tự dưỡng sẽ sử dụng năng lượng thu được từ quá trình oxi hoá ammonia hay nitrite để phục vụ cho việc khử CO2 thành carbonhydrat. Khi một phân tử CO2 đi vào chu trình Calvin, nó cần đến 3 phân tử ATP và 2 phân tử NADH. Điều khó khăn là năng lượng thu từ quá trình oxi hoá các phân tử vô cơ (nói chung) của vi khuẩn nitrate lại nhỏ hơn rất nhiều so với việc oxi hoá hoàn toàn glucose ở loại vi khuẩn thông thường. Tỉ lệ P/O trong quá trình oxi hoá phosphoryl hoá ở vi khuẩn nitrate hoá thường bằng 1, chính vì tỉ lệ quá thấp như vậy nên vi khuẩn nitrate hoá nói riêng và các loại vi khuẩn hoá năng vô cơ khác nói chung cần oxi hoá một lượng lớn các hợp chất vô cơ để sinh trưởng và sinh sản, điều này nói lên tác động của hệ vi khuẩn này đối với môi trường sống rất sâu sắc. 19 SVTH: HỒ THỊ HẠNH NGUYÊN
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đồ án tốt nghiệp: Tìm hiểu về động cơ điện một chiều
91 p | 2276 | 836
-
Đồ án tốt nghiệp - tìm hiểu về virut máy tính và cách phòng chống
248 p | 797 | 225
-
Đồ án tốt nghiệp: Tìm hiểu về rong câu và nghiên cứu sản xuất thạch rau câu
99 p | 935 | 219
-
Đồ án tốt nghiệp: Tìm hiểu về HACCP và nghiên cứu ứng dụng HACCP vào công nghệ sản xuất trà sữa
113 p | 476 | 140
-
Đồ án tốt nghiệp: Tìm hiểu việc xây dựng một số văn bản cho hệ thống quản lý chất lượng theo HACCP đối với dây chuyền sản xuất giò lụa tại công ty thực phẩm dinh dưỡng Sài Gòn
181 p | 370 | 135
-
Đồ án tốt nghiệp: Tìm hiểu về sen và các sản phẩm từ sen
73 p | 3779 | 114
-
Đồ án tốt nghiệp: Tìm hiểu công nghệ thực tế ảo và ứng dụng
48 p | 592 | 105
-
ĐỒ ÁN TỐT NGHIỆP - TÌM HIỂU VỀ TẤN CÔNG TRÊN MẠNG DÙNG KỸ THUẬT DOS DDOS
15 p | 566 | 89
-
Đồ án tốt nghiệp: Tìm hiểu, thử nghiệm hệ thống VPN dựa trên OpenSwan
69 p | 97 | 71
-
Đồ án tốt nghiệp: Tìm hiểu về trái bơ và sản xuất thử nghiệm một số sản phẩm từ phần nạc của bơ
70 p | 327 | 71
-
Đồ án tốt nghiệp: Tìm hiểu về hàm băm Ripemd và ứng dụng trong chữ ký số
58 p | 59 | 50
-
Đồ án tốt nghiệp: Tìm hiểu về Vmware esx server
84 p | 343 | 44
-
Đồ án tốt nghiệp: Tìm hiểu về WiMAX 2 (IEEE 802.16m)
95 p | 213 | 29
-
Đồ án tốt nghiệp: Tìm hiểu prebiotic trong các sản phẩm sữa
89 p | 139 | 21
-
Đồ án tốt nghiệp: Tìm hiểu hệ thống vận chuyển tro đáy của công ty Nhiệt điện Cao Ngạn - Thái Nguyên
21 p | 132 | 19
-
Đồ án tốt nghiệp: Tìm hiểu về mạng máy tính và giải pháp bảo mật thông tin cho mạng máy tính của Công ty CMC
81 p | 28 | 14
-
Đồ án tốt nghiệp: Tìm hiểu, triển khai một số cơ chế mã hóa dữ liệu trong HQTCSDL PostgreSQL
65 p | 21 | 11
-
Đồ án tốt nghiệp: Tìm hiểu giao thức xác thực và thỏa thuận khóa trong mạng di động 5G
76 p | 19 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn