intTypePromotion=1

Giáo trình phân tích hệ số ứng dụng trong hình học phẳng theo dạng đại số của số phức p1

Chia sẻ: Ngo Thi Nhu Thao | Ngày: | Loại File: PDF | Số trang:5

0
46
lượt xem
3
download

Giáo trình phân tích hệ số ứng dụng trong hình học phẳng theo dạng đại số của số phức p1

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Trước hết biến hai đường tròn lồng nhau hai đường thẳng song song bằng cách biến điểm i th nh điểm ∞. Sau đó dùng phép tĩnh tiến v phép vi tự để điều chỉnh băng ngang th nh băng ngang đối xứng v có độ rộng thích hợp. Cuối cùng dùng phép quay để nhận được băng đứng. Ví dụ 6 Tìm h m giải tích w = f(z) biến hình bảo giác miền D.Chương 2. H m BiếnPhức cung γ(t) nối z1 với z2 v nằm gọn trong D. Khi đó tham số cung foγ(t) nối w1 với...

Chủ đề:
Lưu

Nội dung Text: Giáo trình phân tích hệ số ứng dụng trong hình học phẳng theo dạng đại số của số phức p1

  1. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c .d o .d o c u -tr a c k c u -tr a c k Ch−¬ng 1 Giáo trình phân tích hệ è phøc dụng trong hình S số ứng học phẳng theo dạng đại số của số phức §1. Tr−êng sè phøc • KÝ hiÖu ∀ = 3 × 3 = { (x, y) : x, y ∈ 3 }. Trªn tËp ∀ ®Þnh nghÜa phÐp to¸n céng v phÐp to¸n nh©n nh− sau ∀ (x, y), (x’, y’) ∈ ∀ (x, y) + (x’, y’) = (x + x’, y + y’) (x, y) × (x’, y’) = (xx’ - yy’, xy’ + x’y) (1.1.1) VÝ dô (2, 1) + (-1, 1) = (1, 2) v (2, 1) × (-1, 1) = (-3, 1) §Þnh lý (∀, +, × ) l mét tr−êng sè. Chøng minh KiÓm tra trùc tiÕp c¸c c«ng thøc (1.1.1) PhÐp to¸n céng cã tÝnh giao ho¸n, tÝnh kÕt hîp, cã phÇn tö kh«ng l (0, 0) ∀ (x, y) ∈ ∀, (x, y) + (0, 0) = (x, y) Mäi phÇn tö cã phÇn tö ®èi l -(x, y) = (-x, -y) ∀ (x, y) ∈ ∀, (x, y) + (-x, -y) = (0, 0) PhÐp to¸n nh©n cã tÝnh giao ho¸n, tÝnh kÕt hîp, cã phÇn tö ®¬n vÞ l (1, 0) ∀ (x, y) ∈ ∀, (x, y) × (1, 0) = (x, y) −y Mäi phÇn tö kh¸c kh«ng cã phÇn tö nghÞch ®¶o l (x, y)-1 = ( 2 x 2 , 2 ) x + y x + y2 −y x ∀ (x, y) ∈ ∀ - {(0, 0)}, (x, y) × ( ,2 ) = (1, 0) x + y x + y2 2 2 Ngo i ra phÐp nh©n l ph©n phèi víi phÐp céng • Tr−êng (∀, +, × ) gäi l tr−êng sè phøc, mçi phÇn tö cña ∀ gäi l mét sè phøc. Theo ®Þnh nghÜa trªn mçi sè phøc l mét cÆp hai sè thùc víi c¸c phÐp to¸n thùc hiÖn theo c«ng thøc (1.1.1). Trªn tr−êng sè phøc phÐp trõ, phÐp chia v phÐp luü thõa ®Þnh nghÜa nh− sau. ∀ (n, z, z’) ∈ ∠ × ∀ × ∀* víi ∀* = ∀ - { (0, 0) } z = z × (z’)-1 v z0 = 1, z1 = z v zn = zn-1 × z z - z’ = z + (- z’), (1.1.2) z' • B»ng c¸ch ®ång nhÊt sè thùc x víi sè phøc (x, 0) . Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 5
  2. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 1. Sè Phøc .d o .d o c u -tr a c k c u -tr a c k x ≡ (x, 0), 1 ≡ (1, 0) v 0 ≡ (0, 0) tËp sè thùc trë th nh tËp con cña tËp sè phøc. PhÐp céng v phÐp nh©n c¸c sè phøc h¹n chÕ lªn tËp sè thùc trë th nh phÐp céng v phÐp nh©n c¸c sè thùc quen thuéc. x + x’ ≡ (x, 0) + (x’, 0) = (x + x’, 0) ≡ x + x’, ... Ngo i ra trong tËp sè phøc cßn cã c¸c sè kh«ng ph¶i l sè thùc. KÝ hiÖu i = (0, 1) gäi l ®¬n vÞ ¶o. Ta cã i2 = (0, 1) × (0, 1) = (-1, 0) ≡ -1 Suy ra ph−¬ng tr×nh x2 + 1 = 0 cã nghiÖm phøc l x = − 1 ∉ 3. Nh− vËy tr−êng sè thùc (3, +, ×) l mét tr−êng con thùc sù cña tr−êng sè phøc (∀, +, ×). §2. D¹ng ®¹i sè cña sè phøc • Víi mäi sè phøc z = (x, y) ph©n tÝch (x, y) = (x, 0) + (0, y) = x(1, 0) + y(0, 1) §ång nhÊt ®¬n vÞ thùc (1, 0) ≡ 1 v ®¬n vÞ ¶o (0, 1) ≡ i, ta cã z = x + iy (1.2.1) D¹ng viÕt (1.2.1) gäi l d¹ng ®¹i sè cña sè phøc. Sè thùc x = Rez gäi l phÇn thùc, sè thùc y = Imz gäi l phÇn ¶o v sè phøc z = x - iy gäi l liªn hîp phøc cña sè phøc z. KÕt hîp c¸c c«ng thøc (1.1.1) - (1.2.1) suy ra d¹ng ®¹i sè cña c¸c phÐp to¸n sè phøc. (x + iy) + (x’ + iy’) = (x + x’) + i(y + y’) (x + iy) × (x’ + iy’) = (xx’ - yy’) + i(xy’ + x’y) xx ′ + yy ′ x ′y − xy ′ x + iy =2 +i 2 , ... (1.2.2) x ′ + iy ′ x ′ + y′ 2 x ′ + y′ 2 VÝ dô Cho z = 1 + 2i v z’ = 2 - i 1 + 2i z z × z’ = (2 + 2) + i(-1 + 4) = 4 + 3i, = =i 2−i z' z2 = (1 + 2i) × (1 + 2i) = -3 + 5i, z3 = z2 × z = (-3 + 5i) × (1 + 2i) = -13 - i • Tõ ®Þnh nghÜa suy ra z =z ⇔ z∈3 z = - z ⇔ z ∈ i3 z=z z z = Re2z + Im2z z + z = 2Rez z - z = 2iImz (1.2.3) Ngo i ra liªn hîp phøc cßn cã c¸c tÝnh chÊt sau ®©y. §Þnh lý ∀ (n, z, z’) ∈ ∠ × ∀ × ∀ . Trang 6 Gi¸o Tr×nh To¸n Chuyªn §Ò
  3. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 1. Sè Phøc .d o .d o c u -tr a c k c u -tr a c k z + z' = z + z' 1. z n = (z ) n 2. zz' = z z' z z z −1 = ( z ) −1 = 3. z′ z′ Chøng minh 1. Suy ra tõ ®Þnh nghÜa zz' = (x + iy) × (x ′ + iy ′) = (xx’ - yy’) - i(xy’ + x’y) 2. Ta cã z z' = (x - iy) × (x’ - iy’) = (xx’ - yy’) + i(-xy’ -x’y) Qui n¹p suy ra hÖ thøc thø hai. zz −1 = z z −1 = 1 ⇒ z −1 = ( z )-1 3. Ta cã z / z ′ = z(z ′) −1 = z z ′ −1 Suy ra • Víi mäi sè phøc z = x + iy, sè thùc | z | = x 2 + y 2 gäi l module cña sè phøc z. NÕu z = x ∈ 3 th× | z | = | x |. Nh− vËy module cña sè phøc l më réng tù nhiªn cña kh¸i niÖm trÞ tuyÖt ®èi cña sè thùc. Tõ ®Þnh nghÜa suy ra | Rez |, | Imz | ≤ | z | | z | = | -z | = | z | = | - z | z z = z z = | z |2 z 1 z-1 = 1 2 z = z(z’)-1 = z z' (1.2.4) | z' | 2 z' |z| Ngo i ra module cña sè phøc cßn cã c¸c tÝnh chÊt sau ®©y. §Þnh lý ∀ (n, z, z’) ∈ ∠ × ∀ × ∀ |z|≥0 |z|=0⇔z=0 1. | z z’ | = | z || z’ | | zn | = | z |n 2. z |z| | z-1 | = | z |-1 3. = z′ | z′ | | z + z’ | ≤ | z | + | z’ | || z | - | z’|| ≤ | z - z’ | 4. Chøng minh 1. Suy ra tõ ®Þnh nghÜa | zz’ |2 = zz’ zz' = (z z )(z’ z ′ ) = (| z || z’| )2 2. Ta cã Qui n¹p suy ra hÖ thøc thø hai. | z z-1 | = | z || z-1| = 1 ⇒ | z-1 | = 1 / | z | 3. Ta cã | z / z’ | = | z (z’)-1 | = | z | | (z’)-1 | Suy ra z z ′ + z z’ = 2Re(z z ′ ) ≤ | z z ′  = | z || z’| 4. Ta cã | z + z’ 2 = (z + z’)( z + z' ) =  z 2 + 2Re(z z ′ ) + | z’|2 ≤ (| z | + | z’|)2 Suy ra §3. D¹ng l−îng gi¸c cña sè phøc . Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 7
  4. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 1. Sè Phøc .d o .d o c u -tr a c k c u -tr a c k • Víi mäi sè phøc z = x + iy ∈ ∀* tån t¹i duy nhÊt sè thùc ϕ ∈ (-π, π] sao cho y x cosϕ = v sinϕ = (1.3.1) |z| |z| TËp sè thùc Argz = ϕ + k2π, k ∈ 9 gäi l argument, sè thùc argz = ϕ gäi l argument chÝnh cña sè phøc z. Chóng ta qui −íc Arg(0) = 0. KÝ hiÖu r = | z | tõ c«ng thøc (1.3.1) suy ra x = rcosϕ v y = rsinϕ Thay v o c«ng thøc (1.2.1) nhËn ®−îc z = r(cos + isinϕ) (1.3.2) D¹ng viÕt (1.3.2) gäi l d¹ng l−îng gi¸c cña sè phøc. • Tõ ®Þnh nghÜa suy ra argz = ϕ ⇒ arg(-z) = ϕ - π, arg z = - ϕ v arg(- z ) = π - ϕ x < 0, argx = π x > 0, argx = 0 y > 0, arg(iy) = π/2 y < 0, arg(iy) = -π/2 ... (1.3.3) Ngo i ra argument cña sè phøc cßn cã c¸c tÝnh chÊt sau ®©y. §Þnh lý ∀ (n, z, z’) ∈ ∠ × ∀ × ∀ arg(zz’) = argz + argz’ [2π] arg(zn) = n argz [2π] 1. arg(z-1) = - argz [2π] arg(z / z’) = argz - argz’ [2π] 2. Chøng minh 1. Gi¶ sö z = r(cosϕ + isinϕ) v z’ = r’(cosϕ’ + isinϕ’) Suy ra zz’ = rr’[(cosϕcosϕ’ - sinϕsinϕ’) + i(sinϕcosϕ’ + cosϕsinϕ’)] = rr’[cos(ϕ + ϕ’) + isin(ϕ + ϕ’)] Qui n¹p suy ra hÖ thøc thø hai. 2. Ta cã arg(zz-1) = arg(z) + arg(z-1) = 0 [2π] ⇒ arg(z-1) = - arg(z) [2π] Suy ra arg(z / z’) = arg(zz’-1) = argz + arg(z’-1) VÝ dô Cho z = 1 + i v z’ = 1 + 3 i zz’ = [ 2 (cos π + isin π )][2(cos π + isin π )] = 2 2 (cos 5π + isin 5π ) Ta cã 4 4 6 6 12 12 z100 = ( 2 )100[cos(100 π ) + isin(100 π )] = -250 4 4 • Víi mäi sè thùc ϕ ∈ 3, kÝ hiÖu eiϕ = cosϕ + i sinϕ (1.3.4) . Trang 8 Gi¸o Tr×nh To¸n Chuyªn §Ò
  5. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 1. Sè Phøc .d o .d o c u -tr a c k c u -tr a c k Theo c¸c kÕt qu¶ ë trªn chóng ta cã ®Þnh lý sau ®©y. §Þnh lý ∀ (n, ϕ, ϕ’) ∈ ∠ × 3 × 3 eiϕ ≠ 0 eiϕ = 1 ⇔ ϕ = k2π e iϕ = e-iϕ 1. ei(ϕ+ϕ’) = eiϕeiϕ’ (eiϕ)-1 = e-iϕ (eiϕ)n = einϕ 2. Chøng minh Suy ra tõ c«ng thøc (1.3.4) v c¸c kÕt qu¶ ë trªn HÖ qu¶ ∀ (n, ϕ) ∈ ∠ × 3 (cosϕ + isinϕ)n = cosnϕ + isinnϕ 1. (1.3.5) 1 1 cosϕ = (eiϕ + e-iϕ) sinϕ = (eiϕ - e-iϕ) 2. (1.3.6) 2 2i C«ng thøc (1.3.5) gäi l c«ng thøc Moivre, c«ng thøc (1.3.6) gäi l c«ng thøc Euler. n n ∑ cos kϕ v S = ∑ sin kϕ VÝ dô TÝnh tæng C = k =0 k =0 i ( n +1) ϕ −1 n e ∑e ikϕ Ta cã C + iS = = iϕ e −1 k =0 1 cos( n + 1)ϕ − cos nϕ + cos ϕ − 1 1 sin( n + 1)ϕ − sin nϕ − sin ϕ Suy ra C= v S= cos ϕ − 1 cos ϕ − 1 2 2 • Sè phøc w gäi l c¨n bËc n cña sè phøc z v kÝ hiÖu l w = n z nÕu z = wn NÕu z = 0 th× w = 0 z = reiϕ ≠ 0 v w = ρeiθ XÐt tr−êng hîp wn = ρneinθ = reiϕ Theo ®Þnh nghÜa ρn = r v nθ = ϕ + m2π Suy ra ϕ + m 2π víi m ∈ 9 ρ= n r v θ = Hay n n Ph©n tÝch m = nq + k víi 0 ≤ k < n v q ∈ 9. Ta cã ϕ ϕ + m 2π ≡ + k 2π [2π] n n n n Tõ ®ã suy ra ®Þnh lý sau ®©y. §Þnh lý C¨n bËc n cña sè phøc kh¸c kh«ng cã ®óng n gi¸ trÞ kh¸c nhau ϕ ϕ wk = n r [cos ( + k 2π ) + isin( + k 2π )] víi k = 0 ... (n - 1) (1.3.7) n n n n VÝ dô . Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 9
ADSENSE
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2