Giáo trình sản phẩm dầu mỏ thương phẩm - Chương 3
lượt xem 51
download
Sơ lược về lịch sử phát triển của động cơ phản lực và nhiên liệu của nó Nhiên liệu cho động cơ phản lực là một loại nhiên liệu được sử dụng cho các động cơ trên máy bay phản lực, loại động cơ này làm việc trong điều kiện rất đặc biệt (nhiệt độ và áp suất môi trường thấp, ở độ cao lớn). Vì vậy nhiên liệu cho nó đòi hỏi một sự khắt khe nhất trong tất cả các loại phương tiện giao thông. ...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giáo trình sản phẩm dầu mỏ thương phẩm - Chương 3
- Sản Phẩm Dầu Mỏ Thương Phẩm Chương III NHIÊN LIỆU CHO ĐỘNG PHẢN LỰC 3.1. Giới thiệu chung về động cơ phản lực và nhiên liệu của nó 3.1.1. Sơ lược về lịch sử phát triển của động cơ phản lực và nhiên liệu của nó Nhiên liệu cho động cơ phản lực là một loại nhiên liệu được sử dụng cho các động cơ trên máy bay phản lực, loại động cơ này làm việc trong điều kiện rất đặc biệt (nhiệt độ và áp suất môi trường thấp, ở độ cao lớn). Vì vậy nhiên liệu cho nó đòi hỏi một sự khắt khe nhất trong tất cả các loại phương tiện giao thông. Lịch sử chiếc máy bay có thể tính bắt đầu vào ngày 09/09/1890 khi Clement Ader cho thử nghiệm thành công loại thiết bị có thể bay trên mặt đất, chiều dài mỗi chuyến bay khoảng 50 m. Clement Ader đặt tên cho nó là "máy bay". Ngày 17 tháng 12 năm 1903 người ta đã sản xuất được loại máy bay trang bị động cơ piston với công suất 16 sức ngựa có hai cánh quạt, nhưng bước ngoặc trong ngành hàng không phải đợi đến ngày 15 tháng 9 năm 1904 và ngày 20 tháng 9 năm 1904 người ta mới thực hiện được một hành trình trọn vẹn. Động cơ piston cho ngành hành không đã phát triển mạnh mẻ từ năm 1910 đến 1930 và đã đạt được những thành công nhất định dưới gốc độ hiệu suất, nhưng nó bị hiện tượng kích nổ của nhiên liệu không chế do đó ở đây người ta cũng sử dụng khái niệm chỉ số octan như trong nhiên liệu của động cơ xăng. Năm 1911 một kỹ sư người Pháp tên la René Lorin đã thiết kế động cơ phản lực đầu tiên nhưng trên hoả tiễn sau đó nó đã được phát triễn bởi René Leduc năm 1937, những thành công trong lĩnh vực này đã cho phép chế tạo được loại động cơ phản lực thẳng và chuyến bay đầu tiên của nó được thực hiên vào ngày 21/04/1949 ở Pháp. Sau những thành công này người ta đã chế tạo được các loại động cơ phản lực kiểu turbine. Sự thành công của loại này diễn ra trong thời chiến tranh thế giới thứ hai từ năm 1939 đến 1944 với vận tốc cực đại đạt được đã trải qua từ 300 km/h đến 700 km/h. ThS. Trương Hữu Trì Trang 58
- Sản Phẩm Dầu Mỏ Thương Phẩm Ngày 2 tháng 5 năm 1952 người Anh đã thực hiện được chuyến bay dân dụng đầu tiên bằng máy bay phản lực để đánh dấu một kỷ nguyên mới cho loại động cơ này đồng thời loại bỏ hoàn toàn loại máy bay trang bị động cơ piston. Những thành công trong lĩnh vực này tiếp tục được phát triển, nâng cao và được áp dụng rộng rãi cho đến những năm 1970 và được đánh dấu bằng sự ra đời của chiếc máy bay dân dụng Concorde do người Anh và Pháp hợp tác sản xuất. Ngày nay với hơn khoảng 15000 chiếc máy bay dân dụng tồn tại trên toàn thế giới nó tiêu thụ khoảng 700 000 tấn nhiên liệu. Như vậy thế hệ đầu tiên của máy bay là loại trang bị động cơ piston nhiên liệu dùng cho nó được gọi là xăng máy bay. Những thế hệ máy bay tiếp theo được trang bị động cơ phản lực như động cơ phản lực kiểu thẳng, cánh quạt, turbine. Ngày nay hai loại cuối cùng này dược sử dụng phổ biến nhất. Ở trong phần này ta chỉ nghiên cứu nhiên liệu dùng cho hai loại cuối cùng này, loại này dược gọi chung là nhiên liệu cho động cơ phản lực. 3.1.2. Phân loại nhiên liệu dùng cho động cơ phản lực Động cơ phản lực đã trãi qua nhiều thế hệ khác nhau từ khi xuất hiện, do đó nhiên liệu của nó cũng phải thay đổi theo để đáp ứng được các yêu cầu mới. Hơn nữa sự khác nhau này còn phụ thuộc vào mục đích sử dụng là quân sự hay dân dụng mà yêu cầu về nhiên liệu cũng có những khác nhau nhất định. Trong thực tế thì nhiên liệu dùng cho động cơ phản lực gần như giống nhau nhưng chúng được ký hiệu khác nhau ở Hoa Kỳ và các vùng còn lại. ThS. Trương Hữu Trì Trang 59
- Sản Phẩm Dầu Mỏ Thương Phẩm Sự phân loại của khối OTAN Dạng nhiên liệu Phụ gia Ký hiệu Sử dụng Sử dụng cho mục chống đông của cho dân dích quân sự OTAN dụng theo tiêu chuẩn ASTM D1655 JP-8, Kerosen Có F-34 TRO, AVTUR (TRO/ni*, Không F-35 Jet A1 AVTUR) Kerosen có điểm chớt Có F-44 TR5, JP-5 cháy cao Không F-43 (TR5/ni*) Loại phân đoạn rộng Có F-40 TR4, JP-4 Không F-45 Jet B (TR4/ni*) Loại có độ ổn định nhiệt cao Có TS, JP-7 Loại có nhiệt năng thể Có RJ-6, JP-9, JP-10 tích cao Không RJ-4, RJ-5 3.1.3. Nhiên liệu cho động cơ phản lực Như cách phân loại trên thì nhiên liệu cho động cơ phản lực có thể được chia thành ba dạng chính: Dạng Kerosen, dạng Kerosen với điểm chớt cháy cao và dạng phân đoạn rộng. ThS. Trương Hữu Trì Trang 60
- Sản Phẩm Dầu Mỏ Thương Phẩm Loại nhiên liệu được dùng cho các máy bay dân dụng trên thế giới là dạng kerosen Jet A1 tương ứng F-35 của khối OTAN, ở Hoa Kỳ thì dùng cho máy bay dân dụng này là loại Jet A tương tự như loại Jet A1 ở trên nhưng điểm chảy của nó cao hơn (-40oC thay vì -47oC). Đối với dạng thứ hai cho phép tồn chứa rất an toàn trong những khoang chứa của máy bay. Còn loại thứ ba thì có nhiệt độ sôi đầu rất thấp khoảng 70oC, thực chất đây là sản phẩm thu được từ việc phối trộn của phân đoạn naphta nhẹ với Kerosen. Ngoài ra nhiên liệu phản lực còn có nhiều dạng khác nhau phục vụ cho những mục đích khác nhau như loại nhiên liệu co nhiệt năng cao dùng cho hoả tiễn. 3.2. Nguyên tắc hoạt đông của động cơ phản lực Quá trình hoạt động của động cơ phản lực có thể được chia thành ba giai đoạn liên tiếp như sau: Hút và nén khí, cháy đẳng áp và giản nở để sinh công. Quá trình cháy xãy ra liên tục trong một dòng khí có tốc độ lớn. Điểm khác nhau của động cơ phản lực turbine và động cơ phản lực cánh quạt là ở phương thức chuyển động năng của dòng khí cháy thành lực làm chuyển đông máy bay. Ở động cơ phản lực turbine thì chỉ dùng một phần động năng của dòng khi thải do nhiên liệu bị đốt cháy ở trong buồng cháy tạo ra để làm quay burtine - máy nén phần động năng chủ yếu còn lại cho giản nở qua tuye ra ngoài với vận tốc lớn để tạo nên một phản lực tác động lên động cơ làm cho động cơ chuyển động về phía trước. Ở động cơ phản lực cánh quạt thì toàn bộ động năng của dòng khí cháy được giản nở qua turbine nhằm làm quay máy nén và cánh quạt cùng các thiết bị phụ bên ngoài. Sơ đồ nguyên lý của động cơ phản lực như sau: ThS. Trương Hữu Trì Trang 61
- Sản Phẩm Dầu Mỏ Thương Phẩm Không khí đi vào động cơ qua cửa hút sau đó qua thiết bị phân phối. phần đốt cháy được đưa vào máy nén nén đến một áp suất nhất định sau đó dòng khí được giảm vận tốc đến giá trị thích hợp trước khi vào buồng cháy, ở đây không khí sẻ trộn lẫn với nhiên liệu do bơm nhiên liệu đưa vào qua kim phun. Để khởi động động cơ, bugie đánh lửa và hỗn hợp sẻ bắt cháy, khí cháy sinh ra được cho qua turbine tất cả hay chỉ một phần như vừa nêu ở trên. Điều cần chú ý ở đây là bugie chỉ đánh lửa một lần trong khoảng thời gian không quá 30 giây cho mỗi chuyến bay. Qua phân tích nguyên tắc hoạt động của động cơ cho thấy muốn tăng tốc độ của động cơ thì cần tăng động năng của dòng khí thải. Khi muốn tăng vận tốc của dòng khí thải bằng cách tăng áp suất nén thì sẻ làm cho nhiệt độ của khí thải lớn, điều này có thể vượt qua giới hạn chịu nhiệt của vật liệu làm buồng cháy . . . trong thực tế có hai phương pháp để làm tăng vận tốc dòng khí thải như sau: Động cơ phản lực có hai dòng khí nạp (Le Turboréarteur double flux) Động cơ phản lực có hai vùng đốt cháy nhiên liệu. 3.3. Các chỉ tiêu về chất lượng của nhiên liệu cho động cơ phản lực Trước khi nêu và phân tích các chỉ tiêu của nhiên liệu ảnh hưởng đến hoạt động của động cơ phản lực ta có những nhận xét ban đầu về đặc điểm hoạt động của động cơ phản lực như sau: Quá trình cháy trong động cơ phản lực là một quá trình cháy đặc biệt trong dòng khí xoáy có tốc độ lớn và động cơ làm việc trong điều kiện nhiệt độ và áp suất môi trường thấp. Vì vậy để đảm bảo cho hoạt động của động cơ được ổn định thì nhiên liệu phải đạt được những tính chất sau: Những tính chất liên quan đến quá trình cháy Những tính chất liên quan đến điều kiện làm việc ở độ cao lớn Những tính chất liên quan đến quá trình bao quản và phân phối cho động cơ. Cụ thể nhiên liệu phải Đảm bảo các yêu cầu chính sau đây: Có khả năng bắt cháy tốt và không bị tắt trong dòng khí cháy Tốc độ cháy lớn, cháy điều hoà ThS. Trương Hữu Trì Trang 62
- Sản Phẩm Dầu Mỏ Thương Phẩm Cháy hoàn toàn và ít tạo cặn Nhiệt cháy lớn (trên 10200 kcal/kg) Nhiệt độ đông đặt thấp 3.3.1. Những chỉ tiêu liên quan đến quá trình cháy Trong động cơ phản lực thì quá trình cháy diễn ra trong một hệ mở nên tránh được những hiện tượng kích nổ. Vì vậy, ở gốc độ này thì những tính chất liên quan đến sự bắt cháy của nhiên liệu sẻ không ảnh hưởng lớn như trong nhiên liệu xăng và Diesel. Tuy nhiên thành phần hoá học của nhiên liệu củng có những ảnh hưởng nhất định đến tốc độ cháy của nhiên liệu do đó sẻ ảnh hưởng đến chất lượng của quá trình cháy. Các tính chất liên quan đến quá trình cháy này có thể phân thành hai nhóm: Các tính chất vật lý của nhiên liệu Các tính chất về nhiệt hoá học 3.3.2. Các tính chất vật lý của nhiên liệu Như đã nói trong phần trước, trong động cơ phản lực thì nhiên liệu được phun vào trong một dòng khí có tốc độ lớn sau một khoảng thời gian nhất định mới bị đốt cháy, thời gian này cần thiết cho nhiên liệu bay hơi và tạo hỗn hợp với không khí. Chất lượng của quá trình cháy phụ thuộc nhiều vào cấu trúc hình học của buồng cháy và thiết bị phun nhiên liệu. Tuy nhiên, các tính chất như độ bay hơi, sức căng bề mặt độ nhớt của nhiên liệu sẻ có những ảnh hưởng lớn đến sự phun nhiên liệu và sự khuất tán của nó vào trong không khí. Nếu như độ bay hơi lớn thì khả năng bay hơi tạo hỗn hợp với không khí dễ dàng cho quá trình cháy được tốt. Nhưng khi quá trình bay hơi quá lớn thì dễ tạo ra hiện tượng nút hơi ảnh hưởng xấu đến quá trình nạp liệu cũng như các tính chất về an toàn, mất mát vật chất. Nhiên liệu được phun vào buồng cháy dưới dạng các hạt sương, ở đây nó sẻ tiếp xúc với dòng không khí đã được nén đến nhiệt độ và áp suất nhất định, khi đó nhiên liệu sẻ nhận nhiệt từ không khí để bay hơi. Nếu như sức căng bề mặt nhỏ thì khả năng hoá hơi của các hạt sương này tốt do đó nhiên liệu càng dễ hoà trộn với không khí để ThS. Trương Hữu Trì Trang 63
- Sản Phẩm Dầu Mỏ Thương Phẩm tạo hỗn hợp cháy tốt. Ngược lại, khi sức căng bề mặt lớn thì khả năng bay hơi tạo hỗn hợp cháy sẻ kém nên quá trình cháy sẻ kém. Nhiên liệu được phun vào buồng cháy dưới dạng các hạt sương, kích thước của các hạt sương này cùng với không gian trong buồng cháy do các hạt sương này chiếm chổ ngoài việc phụ thuộc vào cấu tạo và áp lực của kim phun thì độ nhớt của nhiên liệu cũng có những ảnh hưởng đến quá trình này. Khi độ nhớt lớn thì các tia nhiên liệu phun ra càng dài, nghĩa là không gian chiếm chổ của nhiên liệu càng lớn, đây là điều có lợi cho quá trình bay hơi, nhưng ngược lại khi độ nhớt lớn thì kích thước của các hạt sương lớn làm cho quá trình bay hơi sẻ kém. Ngoài ra khi độ nhớt lớn thì trở lực trong hệ thống nạp liệu cũng lớn. Ngược lại, khi độ nhớt quá nhỏ thì nguy cơ gây mài mòn hệ thống nạp liệu càng lớn. 3.3.3. Các tính chất về nhiệt hoá học Để bảo đảm cho hiệu suất sử dụng nhiệt cao và kéo dài tuổi thọ của các vật liệu trong buồng cháy, turbine và tuye thì yêu cầu đặt ra là nhiên liệu khi cháy phải có ngọn lửa sáng màu, hạn chế thấp nhất sự bức xạ nhiệt và sự tạo thành cặn cacbon. Đặc trưng cho các tính chất này người ta đưa ra hai chỉ tiêu là điểm khói và chỉ số độ sáng. Điểm khói hay còn được gọi là chiều cao ngọn lửa không khói là chiều cao tính bằng mm của một ngọn lửa thu được khí đốt cháy nhiên liệu trong một ngọn đèn tiêu chuẩn không tạo ra khói. Chiều cao ngọn lửa không khói là một đại lượng đặc trưng cho khả năng chống tạo cặn của nhiên liệu khi bị đốt cháy hay khả năng cháy hoàn toàn của nhiên liệu. Chiều cao ngọn lửa không khói càng lớn thì càng tốt, giá trị của nó liên quan trực tiếp đến thành phần cấu trúc của nhiên liệu. Họ paraffin cho giá trị này cao nhất còn họ aromatic cho giá trị này thấp nhất. Ở đây ta cần phân biệt điểm khói và chỉ số khói, chí số khói thường được dùng cho loại nhiên liệu động cơ phản lực loại phân đoạn rộng và nó liên hệ với điểm khói qua công thức sau: Chỉ số khói = Điểm khói + 0.42Z Trong đó Z là phần trăm chưng cất của nhiên liệu ở 400oF ThS. Trương Hữu Trì Trang 64
- Sản Phẩm Dầu Mỏ Thương Phẩm Chỉ số độ sáng được đo trên cùng ngọn đèn chuẩn của điểm khói nhưng ở đây người ta gắn thêm cặp nhiệt điện để có thể đo nhiệt độ ở các độ cao khác nhau của ngọn lửa. Cường độ sáng của nhiên liệu được so sánh với hỗn hợp hai hydrocacbon là Tetraline và Isooctane trong đó người ta quy định độ sáng của Isooctan là 100 còn Tetraline bằng 0. Đây chính là ly do người ta khống chế hàm lượng của aromatic trong nhiên liệu cho động cơ phản lực dưới 22%. 3.3.4. Các tính chất liên quan đến điều kiện làm việc ở độ cao lớn Các thế hệ máy bay dân dụng ngày nay thường bay ở độ cao khoảng 9000 ÷ 11000 m trong nhiều giờ liền không tiếp nhiên liệu. Ở độ cao này thì nhiệt độ và áp suất bên ngoài vào khoảng -50 oC và 300 mbar. Vì vậy, để đảm bảo cho chuyến bay thì nhiên liệu phải thoả mãn các chỉ tiêu về nhiệt trị, khả năng linh dộng ở nhiệt độ thấp.. . 3.3.4.1. Khối lượng riêng và nhiệt cháy Đối với nhiên liệu cho động cơ phản lực thì người ta nghiên cứu đồng thời khối lượng riêng và nhiệt cháy bởi vì hai đại lượng này có những ảnh hưởng ngược nhau lên hiệu suất sử dụng của nhiên liệu, do đó nó ảnh hưởng lên chiều dài chuyến bay. Đối với mỗi loại máy bay thì kích thước của thùng chứa đã cố định. Khi khối lượng riêng nhỏ sẻ giảm được tổng khối lượng của nhiên liệu mà máy bay phải mang theo trong hành trình của nó. Tuy nhiên, khi khối lượng riêng nhỏ thì nhiệt cháy tổng thể tích hay khối lượng của toàn bộ nhiên liệu chứa trong thùng với cùng một kích thước như trên sẻ nhỏ hơn do đó chiều dài của đường bay sẻ ngắn lại. Ví dụ: Xét hai loại nhiên liệu có khối lượng riêng và nhiệt cháy như sau: Loại I có ρ = 0.790 kg/dm3 với PCIv = 34356 kJ/ dm3, PCIm = 43500 kJ/kg Loại II có ρ = 0.880 kg/dm3 với PCIv = 37180 kJ/ dm3, PCIm = 42250 kJ/kg Giả sử thùng chứa của của máy bay có thể tích 10 000 dm3 khi đó lượng nhiệt của hai nhiên liệu tảo ra khi đốt cháy như sau: Loại I: PCIm1 = 0.790*10000*43500 = 343650000 kJ Loại II: PCIm2 = 0.880*10000*42250 = 371800000 kJ. ThS. Trương Hữu Trì Trang 65
- Sản Phẩm Dầu Mỏ Thương Phẩm Như vậy, khi khối lượng riêng tăng lên thì tổng nhiệt cháy thu được sẻ tăng, nhưng cùng với việc tăng khối lượng riêng thì độ nhớt cũng tăng lên điều này sẻ làm giảm khả năng bay hơi của nhiên liệu do đó dễ dẫn đến quá trình cháy kém tức là quá trình cháy không hoàn toàn, cho nhiều chất ô nhiễm môi trường.Vậy, muốn sử dụng tốt nhiên liệu cho động cơ phản lực thì ta cần nghiên cứu nhiều về mối quan hệ của hai đại lượng này. 3.3.4.2. Độ linh động ở nhiệt độ thấp Như đã trình bày ở trên, khoảng sau vài giờ bay ở một độ cao lớn thì nhiệt độ của nhiên liệu trong thùng chứa sẻ đạt được nhiệt độ của môi trường bên ngoài (khoảng - 50oC), khi đó các phân tử họ paraffin trong thành phần của nhiên liệu dễ kết tinh tạo thành các khung tinh thể chứa phần nhiên liệu còn lại do đó sẻ làm giảm độ linh động của nhiên liệu, hơn nữa các tinh thể này có thể làm bít các lỗ của phim lọc điều này là rất nguy hiểm cho sự hoạt động của động cơ. Để đặc trưng cho điều này người ta đã đưa ra khái niệm: Nhiệt độ biến mất của các tinh thể, đó là nhiệt độ mà ở đó các tinh thể kết tinh khi làm lạnh sẻ biến mất một cách rỏ ràng khi được đun nóng trở lại. Trong thực tế do quá trình chế biến, vận chuyển hoặc do hiện tượng thở của các bồn chứa nhiên liệu mà trong thành phần của nó luôn chứa một lượng nước nhất định. Ở nhiệt độ thấp các tinh thể này sẻ kết tinh nó cũng gây ra những ảnh hưởng xấu như các tinh thể paraffin. Để khắc phục các hiện tượng này thì người ta thương dùng phụ gia chống đông. 3.3.4.3. Sự bay hơi và thoát khí Trong mỗi chuyến bay, sau khi cách cánh khoảng vài chục phút thì máy bay sẻ đạt được độ cao của nó. Ở độ cao này thì nhiệt độ áp suất xuống rất thấp khoảng 0.3 bar cho độ cao 11000 m. Nhiệt độ của nhiên liệu trong thùng chứa cũng giảm dần nhưng với tốc độ chậm hơn, sau khoảng và giờ bay nó mới đạt được nhiệt độ của môi trường bên ngoài. Như vậy, sau khi máy bay cất cánh thì tồn tại một khoảng thời gian nhất định mà ở đó nhiệt độ của nhiên liệu còn khá cao trong khi nhiệt độ và áp suất của môi trường đã xuống rất thấp. Trong những điều kiện này phần nhẹ của nhiên liệu ThS. Trương Hữu Trì Trang 66
- Sản Phẩm Dầu Mỏ Thương Phẩm rất dễ bay hơi và các khí hoà tan trong nhiên liệu cũng dễ dàng thoát ra ngoài (vì độ hoà tan của các khí trong chất lỏng sẻ giảm dần cùng với áp suất). Vì những lý do nêu trên mà trong thanh phần nhiên liệu người ta tránh tối đa sự hoà tan của các chất khí và các phần nhẹ có độ bay hơi lớn và bắt buộc phải có hệ thống điều chỉnh áp suất ở thùng chứa. 3.3.4.4. Độ ổn định nhiệt Nhiên liệu cho động cơ phản lực trước khi đi vào buồng cháy nó có thể đi qua một số vùng có nhiệt độ cao và đôi khi nó được dùng như chất tải nhiệt cho dầu bôi trơn, chất lỏng thuỷ lực hay không khí cho hệ thống điều hoà vì vậy nhiệt độ của nhiên liệu có thể tăng lên cao, do đó cần phải khống chế độ bền nhiệt của nhiên liệu. Độ bền nhiệt của nhiên liệu phụ thuộc vào cấu trúc hoá học của các hợp chất có trong thành phân của nó. Đối với các hydrocacbon thì độ bền nhiệt của paraffin lơn hơn naphten và aromatic, còn đối với các phi hydrocacbon hay chất bẩn khác thì sự có mặt của nó trong nhiên liệu có những ảnh hưởng rất xấu đến độ bền nhiệt. Sự có mặt của oxy hoà tan các hợp chất của nitơ hay nước sẻ thúc đẩy các phản ứng oxy hoá hay polymer hoá tạo các nhựa hay cặn. 3.3.4. Các tính chất liên quan sự an toàn trong tồn chứa và phân phối. Vì điều kiện làm việc của động cơ phản lực rất đặc biệt, một sự trục trặc nhỏ trong quá trình vận hành của có thể gây ra một hậu quả khó lường trước được, vì vậy việc bảo quản trong tồn chứa cũng như khi phân phối cần rất nghiêm ngặt. Các tính chất liên quan đến nó ta sẻ lần lượt nghiên cứu. 3.3.4.1. Điểm chớp cháy Cũng như nhiên liệu xăng hay Diesel điểm chớp cháy của nhiên liệu đặc trưng cho mức độ hoả hoạn trong vận chuyển và bảo quản. 3.3.4.2. Tách loại nước trong nhiên liệu Sự có mặt của nước là môi trường thuận lợi cho sự phát triển của vi sinh vật và mấm. Ngoài ra nước còn gây ra nhiều tác hại khác. ThS. Trương Hữu Trì Trang 67
- Sản Phẩm Dầu Mỏ Thương Phẩm Nước có mặt trong nhiên liệu có thể đến từ nhiều nguồn khác nhau như: Trong dầu thô ban đầu nhưng trong quá trình chế biến chưa tách loại hết hoặc do sự thở của các bồn chứa trong quá trình bảo quản hay khi vận chuyển. Thông thường lượng nước còn lại sau quá trình chế biến là rất thấp có thể dưới dạng vết hoặc chỉ tính bằng phần triệu. Khi vận chuyển đến các bể chứa bằng hệ thống đường ống thì để đẩy hết nhiên liệu trong đường ống người ta dùng nước, lượng nước trộn lẫn trong nhiên liệu ở trường hợp này khá lớn vì vậy các bồn chứa luôn có hệ thống xả nước nằm ở đáy của bồn. 3.3.4.3. Sự ăn mòn của nhiên liệu Sự ăn mòn của nhiên liệu mà ta nghiên cứu ở đây chỉ liên quan đến các hợp chất của lưu huỳnh. Lưu huỳnh tồn tại trong nhiên liệu có thể dưới nhiều dạng khác nhau như lưu huỳnh tự do, mercaptane, sulfua hydro, lưu huỳnh tự do, sulfua hay disulfua. Tuỳ theo dạng tồn tại mà nó có thể gây ăn mòn trực tiếp hay gián tiếp. Trong thực tế thì có nhiều phương pháp khác nhau để xác định hàm lượng các hợp chất này như phương pháp của tiêu chuẩn ASTM D3227 để xác định hàm lượng mercaptane, ASTM D4952 (còn gọi là Doctor test) dùng để xác định H2S, lưu huỳnh tự do và mercaptan hay phương pháp đo độ ăn mòn trực tiếp trên tấm đồng, bạc theo tiêu chuẩn ASTM D130. 3.3.4.4. Độ dẫn điện Khi thực hiện quá trình vận chuyển hay bơm cho máy bay thì nhiên liệu có thể tích một lượng điện tích rất lớn và có thể xãy ra hiện tượng phóng điện. Điều này dễ gây ra hiện tượng nổ. Vì vậy để tránh hiện tượng cháy nổ này thì phải khống chế độ dẫn điện của nhiên liệu. Độ dẫn điện của của nhiên liệu khi chưa có phụ gia rất thấp, khi có mặt của phụ gia thì độ dẫn điện này tăng lên, để không chế độ dẫn điện này người ta dùng phụ gia chống tĩnh điện, phụ gia này sẻ phân tán điện tích tích luỷ trong khi vận chuyển hay bơm nhiên liệu cho may bay. ThS. Trương Hữu Trì Trang 68
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tài liệu về Xăng dầu
12 p | 1467 | 595
-
Giáo trình luật xây dựng - Chương 4
10 p | 443 | 182
-
BÁO CÁO THÍ NGHIỆM CHUYÊN NGÀNH II BÀI 8: ĐO SỨC CĂNG BỀ MẶT
7 p | 1311 | 105
-
Mô đun chưng cất dầu thô ( vận hành thiết bị hóa dầu ) - GIỚI THIỆU VỀ MÔ ĐUN
10 p | 300 | 104
-
Giáo trình công nghệ và thiết bị luyện thép 14
6 p | 257 | 93
-
GIÁO TRÌNH ĐỊNH MỨC XÂY DỰNG CƠ BẢN - CHƯƠNG MỞ ĐẦU
4 p | 311 | 84
-
BÁO CÁO THÍ NGHIỆM CHUYÊN NGÀNH II BÀI 6: XẮC ĐỊNH ĐỘ NHỚT ĐỘNG HỌC
4 p | 1094 | 77
-
Giáo trình sản phẩm dầu mỏ thương phẩm - Chương 6
12 p | 241 | 64
-
BÁO CÁO THÍ NGHIỆM CHUYÊN NGÀNH II Bài 1: XÁC ĐỊNH THÀNH PHẦN CẤT PHÂN ĐOẠN CỦA SẢN PHẨM DẦU MỎ
6 p | 319 | 56
-
BÁO CÁO THÍ NGHIỆM CHUYÊN NGÀNH II BÀI 7: XÁC ĐỊNH NHIỆT ĐỘ CHỚP CHÁY CỐC KÍN
7 p | 295 | 46
-
BÁO CÁO THÍ NGHIỆM CHUYÊN NGÀNH II BÀI 4: XÁC ĐỊNH NHIỆT ĐỘ NHỎ GIỌT CỦA MỠ BÔI TRƠN
14 p | 260 | 40
-
Nhiên liệu dầu khí - Chương 2
12 p | 185 | 40
-
BÁO CÁO THÍ NGHIỆM CHUYÊN NGÀNH II BÀI 3: XÁC ĐỊNH ĐỘ KIM XUYÊN CỦA MỠ
7 p | 405 | 37
-
BÁO CÁO THÍ NGHIỆM CHUYÊN NGÀNH II BÀI 5: XÁC ĐỊNH NHIỆT ĐỘ CHẢY MỀM CỦA BITUM
14 p | 254 | 35
-
Những ứng dụng của dầu mỏ
6 p | 243 | 32
-
BÁO CÁO THÍ NGHIỆM CHUYÊN NGÀNH II BÀI 2: XÁC ĐỊNH KIỀM TỰ DO VÀ ACID HỮU CƠ TỰ DO TRONG MỠ BÔI TRƠN
14 p | 172 | 31
-
Mô phỏng quá trình lan truyền dầu khi xảy ra sự cố tràn dầu tại khu vực ven biển Hải Phòng
9 p | 53 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn