KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2012 – 2013 Môn thi: TOÁN Hưng Yên
lượt xem 27
download
Tài liệu tham khảo về KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2012 – 2013 Môn thi: TOÁN Hưng Yên. Đây là đề thi chính thức của Sở giáo dục và đào tạo trong kỳ thi tuyển sinh vào lớp 10 THPT. Thời gian làm bài là 120 phút không kể thời gian giao đề. Mời các bạn cùng tham khảo.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2012 – 2013 Môn thi: TOÁN Hưng Yên
- Tuyển sinh khu vực Tp Đông Hà và các huyện lân cận các lớp 9, 10, 11, 12, các môn Toán, Lý, Hoá,…Các em có thể học tại nhà theo nhóm hoặc cá nhân, hoặc học tại trung tâm 40 học sinh/ 1lớp. Cung cấp tài liệu, đề thi trắc nghiệm miến phí . SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT HƯNG YÊN NĂM HỌC 2012 - 2013 ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút (không kể thời gian giao đề) PHẦN A: TRẮC NGHIỆM KHÁCH QUAN (2 điểm) Từ câu 1 đến câu 8, hãy chọn phương án đúng và viết chữ cái đứng trước phương án đó vào bài làm Câu 1: giá trị của biểu thức 2 8 bằng: A. 10 B. 3 2 C. 6 D. 24 Câu 2: Biểu thức x 1 x 2 có nghĩa khi: A. x < 2 B. x 2 C. x 1 D. x 1 Câu 3: đường thẳng y = (2m – 1)x + 3 song song với đường thẳng y = 3x – 2 khi: A. m = 2 B. m = - 2 C. m 2 D. m 2 2 x y 3 Câu 4: Hệ phương trình có nghiệm (x;y) là: x y 3 A. (-2;5) B. (0;-3) C. (1;2) D. (2;1) Câu 5: Phương trình x2 – 6x – 5 = 0 có tổng hai nghiệm là S và tích hai nghiệm là P thì: A. S = 6; P = -5 B. S = -6; P = 5 C. S = -5; P = 6 D. S = 6; P = 5 Câu 6: Đồ thị hàm số y = -x2 đi qua điểm: A. (1;1) B. (-2;4) C. (2;-4) D. ( 2 ;-1) Câu 7: Tam giác ABC vuông tại A có AB = 4cm; AC = 3cm thì độ dài đường cao AH là: 3 12 5 4 A. cm B. cm C. cm D. cm 4 5 12 3 Câu 8: Hình trụ có bán kính đáy và chiều cao cùng bằng R thì thể tích là A. 2 R 3 B. R 2 C. R 3 D. 2 R 2 PHẦN B: TỰ LUẬN ( 8,0 điểm) Bài 1: (1 điểm) a) Tìm x biết 3 x 2 2 x 2 Trần Hải Nam - Tell: 01662 843844 – TT luyện thi Tầm Cao Mới Tell: 01684 356573 – 0533564384 – 0536513844 – 0944323844 1
- Tuyển sinh khu vực Tp Đông Hà và các huyện lân cận các lớp 9, 10, 11, 12, các môn Toán, Lý, Hoá,…Các em có thể học tại nhà theo nhóm hoặc cá nhân, hoặc học tại trung tâm 40 học sinh/ 1lớp. Cung cấp tài liệu, đề thi trắc nghiệm miến phí . 2 b) Rút gọn biểu thức: A 1 3 3 Bài 2: (1,5 điểm) Cho đường thẳng (d): y = 2x + m – 1 a) Khi m = 3, tìm a để điểm A(a; -4) thuộc đường thẳng (d). b) Tìm m để đường thẳng (d) cắt các trục tọa độ Ox, Oy lần lượt tại M và N sao cho tam giác OMN có diện tích bằng 1. Bài 3: (1,5 điểm) Cho phương trình x2 – 2(m + 1)x + 4m = 0 (1) a) Giải phương trình (1) với m = 2. b) Tìm m để phương trình (1) có nghiệm x1, x2 thỏa mãn (x1 + m)(x2 + m) = 3m2 + 12 Bài 4: (3 điểm) Từ điểm A ở bên ngoài đường tròn (O), kẻ các tiếp tuyến Am, AN với đường tròn (M, N là các tiếp điểm). Đường thẳng d đi qua A cắt đường tròn (O) tại hai điểm phân biệt B,C (O không thuộc (d), B nằm giữa A và C). Gọi H là trung điểm của BC. a) Chứng minh các điểm O, H, M, A, N cùng nằm trên một đường tròn, b) Chứng minh HA là tia phân giác của MHN . c) Lấy điểm E trân MN sao cho BE song song với AM. Chứng minh HE//CM. Bài 5 (1,0 điểm) Cho các số thực dương x, y , z thỏa mãn x + y + z = 4. 1 1 Chứng minh rằng 1 xy xz HƯỚNG DẪN GIẢI: Phần trắc nghiệm: Câu Câu Câu Câu Câu Câu Câu Câu B D A D A B B C Phần tự luận: Bài 1: a) Tìm x biết 3 x 2 2 x 2 3x 2 2 x 2 2 x 2 . Vậy x 2 2 b) Rút gọn biểu thức: A 1 3 3 1 3 3 3 1 3 1 . Vậy A 1 Bài 2: a) Thay m = 3 vào phương trình đường thẳng ta có: y = 2x + 2. Để điểm A(a; -4) thuộc đường thẳng (d) khi và chỉ khi: -4 = 2a + 2 suy ra a = -3. 1 m b) Cho x = 0 suy ra y = m – 1 suy ra: ON m 1 , cho y = 0 suy ra x 2 1 m m 1 suy ra OM hayOM 2 2 Trần Hải Nam - Tell: 01662 843844 – TT luyện thi Tầm Cao Mới Tell: 01684 356573 – 0533564384 – 0536513844 – 0944323844 2
- Tuyển sinh khu vực Tp Đông Hà và các huyện lân cận các lớp 9, 10, 11, 12, các môn Toán, Lý, Hoá,…Các em có thể học tại nhà theo nhóm hoặc cá nhân, hoặc học tại trung tâm 40 học sinh/ 1lớp. Cung cấp tài liệu, đề thi trắc nghiệm miến phí . m 1 Để diện tích tam giác OMN = 1 khi và chỉ khi: OM.ON = 2 khi và chỉ khi m 1 . 2 2 Khi và chỉ khi (m – 1)2 = 4 khi và chỉ khi: m – 1 = 2 hoặc m – 1 = -2 suy ra m = 3 hoặc m = -1 Vậy để diện tích tam giác OMN = 1 khi và chỉ khi m = 3 hoặc m = -1. Bài 3: Cho phương trình x2 – 2(m + 1)x + 4m = 0 (1) a) Giải phương trình (1) với m = 2. b) Tìm m để phương trình (1) có nghiệm x1, x2 thỏa mãn (x1 + m)(x2 + m) = 3m2 + 12 HD: a) Thay m = 2 vào phương trình (1) ta được phương trình: x2 – 6x + 8 = 0 Khi và chỉ khi (x – 2)(x – 4) = 0 khi và chỉ khi x = 2 hoặc x = 4 Vậy với m = 2 thì phương trình có 2 nghiệm x1 = 2 , x2 = 4. 2 2 b) Ta có ' m 1 4m m 1 0 vậy phương trình luôn có nghiệm với mọi m. S 2 m 1 Áp dụng định lí Vi-et ta có: P 4m Để (x1 + m)(x2 + m) = 3m2 + 12 khi và chỉ khi x1 x2 + (x1 + x2) m - 2 m2 – 12 = 0. S khi và chỉ khi : 4m + m.2(m + 1) – 2m2 – 12 = 0 khi và chỉ khi 6m = 12 khi và chỉ khi m= 2 Bài 5 : M a) Theo tính chất tiếp tuyến căt nhau ta có : E AMO ANO 900 H C B Do H là trung điểm của BC nên ta có: A O AHO 900 Do đó 3 điểm A, M, H, N, O thuộc đường tròn đường kính AO N b) Theo tính chất hai tiếp tuyến cắt nhau ta có: AM = AN Do 5 điểm A, M, H, O, N cùng thuộc một đường tròn nên: AHM AHN (góc nội tiếp chắn hai cung bằng nhau) Do đó HA là tia phân giác của MHN c) Theo giả thiết AM//BE nên MAC EBH ( đồng vị) (1) Do 5 điểm A, M, H, O, N cùng thuộc một đường tròn nên: M MAH MNH (góc nội tiếp chắn cung MH) (2) E H C Từ (1) và (2) suy ra ENH EBH B A O Suy ra tứ giác EBNH nội tiếp Suy ra EHB ENB Mà ENB MCB (góc nội tiếp chắn cung MB) N Trần Hải Nam - Tell: 01662 843844 – TT luyện thi Tầm Cao Mới Tell: 01684 356573 – 0533564384 – 0536513844 – 0944323844 3
- Tuyển sinh khu vực Tp Đông Hà và các huyện lân cận các lớp 9, 10, 11, 12, các môn Toán, Lý, Hoá,…Các em có thể học tại nhà theo nhóm hoặc cá nhân, hoặc học tại trung tâm 40 học sinh/ 1lớp. Cung cấp tài liệu, đề thi trắc nghiệm miến phí . Suy ra: EHB MCB Suy ra EH//MC. Bài 5 (1,0 điểm) Cho các số thực dương x, y , z thỏa mãn x + y + z = 4. 1 1 Chứng minh rằng 1 xy xz Hướng dẫn: Vì x + y + z = 4 nên suy ra x = 4 – (y + z) 1 1 11 1 1 1 Mặt khác: 1 1 x do x dương. (*) xy xz x y z y z Thay x = 4 – (y + z) vào (*) ta có : 2 2 1 1 1 1 1 1 4 y z 2 y 2 z 0 y z 0 y z y z y z Luôn đúng với mọi x, y, z dương, dấu bằng xảy ra khi và chỉ khi : y = z = 1, x = 2. “Bề dày thời gian tồn tại – Chất lượng giáo viên, lòng nhiệt tình - Số lượng lớn học sinh theo học và đạt thành tích cao- Số lượng tài liệu khổng lồ được học sinh, giáo viên, phụ huynh sử dụng CHÍNH LÀ NIỀM TỰ HÀO, SỰ KHẲNG ĐỊNH CỦA TT GIA SƯ – TT LUYỆN THI TẦM CAO MỚI” - Các em học sinh trên địa bàn Đông Hà (Quảng Trị) và các huyện lân cận (Cam Lộ, Triệu Phong, Gio Linh,…) hoàn toàn có thể đăng kí và học tại nhà, để được hướng dẫn cụ thể các em hãy gọi theo số máy trung tâm. Ngoài ra các em có thể học tại trung tâm hoặc học tại nhà các giáo viên của trung tâm. - Các em có thế đăng kí học các môn: Toán, Lý, Hóa, Sinh, Anh, Văn (các khối 9-12, Luyện thi đại học cấp tốc, luyện thi vào lớp 10 cấp tốc, luyện thi tốt nghiệp 12 cấp tốc). Riêng các lớp học từ khối 8 trở xuống, phụ huynh hay học sinh nào yêu cầu trung tâm sẽ cho giáo viên phù hợp về dạy kèm các em - Đối với giáo viên muôn tham gia trung tâm hãy điện thoại để biết thêm chi tiết cụ thể MỌI CHI TIẾT XIN LIÊN HỆ 01662 843 844 – 0533 564384 – 0536 513844 – 0944323844 Trần Hải Nam - Tell: 01662 843844 – TT luyện thi Tầm Cao Mới Tell: 01684 356573 – 0533564384 – 0536513844 – 0944323844 4
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Kỳ thi tuyển sinh vào lớp 10 môn toán THPT năm học 2013 - 2014 - Sở giáo dục đào tạo Nam Định
3 p | 656 | 167
-
Kỳ thi tuyển sinh vào lớp 10 môn toán THPT năm học 2013 - 2014 - Trường chuyên Lê Hồng Phong Sở giáo dục đào tạo TP.HCM
1 p | 549 | 114
-
Kỳ thi tuyển sinh vào lớp 10 môn toán THPT năm học 2013 - 2014 - Sở giáo dục đào tạo Nghệ An
3 p | 165 | 27
-
Kỳ thi tuyển sinh vào lớp 10 môn toán THPT năm học 2013 - 2014 - Sở giáo dục đào tạo tỉnh Đồng Nai
2 p | 171 | 23
-
Kỳ thi tuyển sinh vào lớp 10 môn toán THPT năm học 2013 - 2014 - Sở giáo dục đào tạo tỉnh Lào Cai
4 p | 215 | 21
-
Kỳ thi tuyển sinh vào lớp 10 môn toán THPT năm học 2013 - 2014 - Sở giáo dục đào tạo Hải Phòng
8 p | 189 | 15
-
Kỳ thi tuyển sinh vào lớp 10 môn toán THPT năm học 2013 - 2014 - Sở giáo dục đào tạo Long An
4 p | 144 | 15
-
Kỳ thi tuyển sinh vào lớp 10 môn toán THPT năm học 2013 - 2014 - Sở giáo dục đào tạo Lạng Sơn
3 p | 125 | 12
-
Kỳ thi tuyển sinh vào lớp 10 môn toán THPT năm học 2013 - 2014 - Sở giáo dục đào tạo Lâm Đồng
3 p | 144 | 9
-
Kỳ thi tuyển sinh vào lớp 10 môn toán THPT năm học 2013 - 2014 - Sở giáo dục đào tạo Hà Tĩnh
1 p | 160 | 8
-
Kỳ thi tuyển sinh vào lớp 10 THPT năm học 2013 - 2014 môn toán - Sở giáo dục đào tạo Thái Bình
1 p | 108 | 6
-
Kỳ thi tuyển sinh vào lớp 10 THPT chuyên năm học 2013 - 2014 môn toán - Sở giáo dục đào tạo Quảng Nam
2 p | 107 | 6
-
Kỳ thi tuyển sinh vào lớp 10 THPT năm học 2013 - 2014 môn toán - Sở giáo dục đào tạo Quảng Ngãi
1 p | 115 | 6
-
Kỳ thi tuyển sinh vào lớp 10 THPT chuyên năm học 2013 - 2014 môn toán - Sở giáo dục đào tạo Đăk Lăk
4 p | 83 | 5
-
Kỳ thi tuyển sinh vào lớp 10 THPT năm học 2013 - 2014 môn toán - Sở giáo dục đào tạo Quảng Ninh
2 p | 63 | 2
-
Kỳ thi tuyển sinh vào lớp 10 THPT năm học 2013 - 2014 môn toán - Sở giáo dục đào tạo Quảng Bình
1 p | 86 | 2
-
Kỳ thi tuyển sinh vào lớp 10 THPT năm học 2013 - 2014 môn toán - Sở giáo dục đào tạo Ninh Thuận
1 p | 70 | 2
-
Đề thi tuyển sinh vào lớp 10 THPT không chuyên môn Toán năm học 2018-2019
6 p | 55 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn