YOMEDIA
ADSENSE
Lecture Control system design: The stability of linear feedback systems - Nguyễn Công Phương
50
lượt xem 2
download
lượt xem 2
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Lecture Control system design: The stability of linear feedback systems include all of the following content: The concept of stability, the Routh – Hurwitz stability criterion, the stability of state variable systems, system stability using control design software.
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Lecture Control system design: The stability of linear feedback systems - Nguyễn Công Phương
- Nguyễn Công Phương CONTROL SYSTEM DESIGN The Stability of Linear Feedback Systems
- Contents I. Introduction II. Mathematical Models of Systems III. State Variable Models IV. Feedback Control System Characteristics V. The Performance of Feedback Control Systems VI. The Stability of Linear Feedback Systems VII. The Root Locus Method VIII.Frequency Response Methods IX. Stability in the Frequency Domain X. The Design of Feedback Control Systems XI. The Design of State Variable Feedback Systems XII. Robust Control Systems XIII.Digital Control Systems sites.google.com/site/ncpdhbkhn 2
- The Stability of Linear Feedback Systems 1. The Concept of Stability 2. The Routh – Hurwitz Stability Criterion 3. The Stability of State Variable Systems 4. System Stability Using Control Design Software sites.google.com/site/ncpdhbkhn 3
- The Concept of Stability (1) • Stability is of the utmost importance. • A close – loop feedback system that is unstable is of little value. • A stable system is a dynamic system with a bounded response to a bounded input. sites.google.com/site/ncpdhbkhn 4
- The Concept of Stability (2) http://www.ctc.org.uk/cyclists-library/bikes-and-other- cycles/cycle-styles/city-bike sites.google.com/site/ncpdhbkhn 5
- The Concept of Stability (4) Bk s Ck M N M N Ae D e 1 Ai i t k t Y ( s) y (t ) 1 sin(k t k ) s i i k k 1 s 2 k s ( k k ) 2 2 2 s i 1 i 1 k 1 j 1 1 10 1 0 0 0 0 -1 -1 -1 -10 0 5 10 0 5 10 0 5 10 0 5 10 1 1 10 1 0 0 0 0 -1 -1 -1 -10 0 5 10 0 5 10 0 5 10 0 5 10 1 1 2 10 0.5 0.5 1 5 0 0 0 0 0 5 10 0 5 10 0 5 10 0 5 10 sites.google.com/site/ncpdhbkhn 6
- The Stability of Linear Feedback Systems 1. The Concept of Stability 2. The Routh – Hurwitz Stability Criterion 3. The Stability of State Variable Systems 4. System Stability Using Control Design Software sites.google.com/site/ncpdhbkhn 7
- The Routh – Hurwitz Stability Criterion (1) q( s ) an s n an 1s n 1 an 2 s n 2 ... a1s a0 0 sn an an 2 an 4 1 an an 2 an 1an 2 an an 3 bn 1 , s n 1 an 1 an 3 an 5 an 1 an 1 an 3 an 1 s n 2 bn 1 bn 3 bn 5 1 an an 4 bn 3 , s n 3 cn 1 cn 3 cn 5 an 1 an 1 an 5 1 an 1 an 3 s 0 hn 1 cn 1 , bn 1 bn 1 bn 3 The Routh – Hurwitz criterion states that the number of roots of q(s) with positive real parts is equal to the number of changes in sign of the first column of the Routh array sites.google.com/site/ncpdhbkhn 8
- The Routh – Hurwitz Stability Criterion (2) q( s ) an s n an 1s n 1 an 2 s n 2 ... a1s a0 0 1. No element in the 1st column is sn an an 2 an 4 zero. s n 1 an 1 an 3 an 5 2. There is a zero in the 1st column, but some other elements of the row s n 2 bn 1 bn 3 bn 5 containing the zero in the 1st column are nonzero. s n 3 cn 1 cn 3 cn 5 3. There is a zero in the 1st column, and the other elements of the row containing the zero are also zero. s0 hn 1 4. Repeated roots of the characteristic equation on the jω – axis. The Routh – Hurwitz criterion states that the number of roots of q(s) with positive real parts is equal to the number of changes in sign of the first column of the Routh array sites.google.com/site/ncpdhbkhn 9
- The Routh – Hurwitz Stability Ex. 1 Criterion (3) q( s ) a2 s 2 a1s a0 sn an an 2 an 4 s2 a2 a0 s2 a2 a0 s n 1 an 1 an 3 an 5 s1 a1 0 s1 a1 0 s n 2 bn 1 bn 3 bn 5 s0 b1 0 s0 a0 0 s n 3 cn 1 cn 3 cn 5 1 an an 2 1 a2 a0 bn 1 b1 a0 an 1 an 1 an 3 a1 a1 0 s0 hn 1 The Routh – Hurwitz criterion states that the number of roots of q(s) with positive real parts is equal to the number of changes in sign of the first column of the Routh array The system is stable if a2, a1 & a0 are all positive or all negative sites.google.com/site/ncpdhbkhn 10
- The Routh – Hurwitz Stability Ex. 2 Criterion (4) q( s ) s 3 s 2 2 s 50 sn an an 2 an 4 s3 1 2 s3 1 2 s n 1 an 1 an 3 an 5 s2 1 50 s2 1 50 s n 2 bn 1 bn 3 bn 5 s1 b1 b0 s1 48 0 s n 3 cn 1 cn 3 cn 5 s0 c1 c0 s0 50 0 s0 hn 1 1 1 2 1 1 0 1 1 50 1 1 0 b1 48, b0 0, c1 50, c0 0 1 1 50 1 1 0 48 48 0 48 48 0 The Routh – Hurwitz criterion states that the number of roots of q(s) with positive real parts is equal to the number of changes in sign of the first column of the Routh array sites.google.com/site/ncpdhbkhn 11
- The Routh – Hurwitz Stability Ex. 3 Criterion (5) q( s ) a3s 3 a2 s 2 a1s a0 s3 a3 a1 s2 a2 a0 a2 a1 a0a3 b1 , c1 a0 s1 b1 0 a2 s0 c1 0 a3 0 a3 0 a 0 a3 0 a 0 2 a 0 2 2 a2 a1 a0a3 b1 0 0 a2 a1 a0a3 0 a2 c1 0 a0 0 a0 0 q( s ) s 3 2 s 2 6s 10, a2 a1 a0a3 2 6 10 1 2 sites.google.com/site/ncpdhbkhn 12
- The Routh – Hurwitz Stability Ex. 4 Criterion (6) q( s ) s 5 2 s 4 2 s 3 4 s 2 11s 10 s5 1 2 11 s5 1 2 11 s4 2 4 10 s4 2 4 10 s3 0 6 0 s3 6 0 s2 c1 10 0 s2 c1 10 0 s1 d1 0 0 s1 d1 0 0 s0 10 s0 10 4 12 12 6c 10 c1 4 , d1 1 6 10 c1 Two sign changes two roots with positive real part the system is unstable sites.google.com/site/ncpdhbkhn 13
- The Routh – Hurwitz Stability Ex. 5 Criterion (7) q( s ) s 4 s 3 s 2 s K s4 1 1 K s4 1 1 K s3 1 1 0 s3 1 1 0 s2 0 K 0 s2 K 0 s1 c1 0 0 s1 c1 0 0 s1 K s1 K K K c1 1 One sign change one root with positive real part the system is unstable for all values of K sites.google.com/site/ncpdhbkhn 14
- The Routh – Hurwitz Stability Ex. 6 Criterion (8) q( s ) s 5 s 4 4 s 3 24 s 2 3s 63 ( s s s 21)( s 3) 3 2 3 s5 1 4 3 s5 s 4 4 s 3 24 s 2 3s 63 s 2 3 s4 1 24 63 s5 3s 3 s 3 s 2 s 21 s3 20 60 0 s 4 s 3 24 s 2 3s 63 s2 21 63 0 s4 3s 2 s1 s 3 21s 2 3s 63 0 0 0 s3 3s U ( s ) 21s 2 63 21( s 2 3) 21s 2 63 21s 2 63 0 sites.google.com/site/ncpdhbkhn 15
- The Routh – Hurwitz Stability Ex. 6 Criterion (9) q( s ) s 5 s 4 4 s 3 24 s 2 3s 63 ( s s s 21)( s 3) 3 2 3 s5 1 4 3 s4 1 24 63 s3 1 1 20 60 3 s 0 2 s2 1 21 s 21 63 0 s1 0 0 0 s1 20 0 s0 21 0 Two sign changes two roots with positive real part the system is unstable sites.google.com/site/ncpdhbkhn 16
- The Routh – Hurwitz Stability Ex. 7 Criterion (10) K (s a) 1 R( s ) K (s a) 1 Y ( s) G( s) s 1 s( s 2)( s 3) s 1 s( s 2)( s 3) ( ) G( s) K (s a) T ( s) 4 1 G ( s ) s 6s 3 11s 2 ( K 6) s Ka 60 K q( s ) s 6s 11s ( K 6) s Ka 6 0 4 3 2 s4 b3 ( K 6) 6 Ka 1 11 Ka 0 b 3 s3 6 K 6 0 Ka 0 s2 b3 Ka 0 s1 c3 0 K 60 0 0 (60 K )( K 6) s1 Ka a 36 K 60 K b ( K 6) 6 Ka b3 , c3 3 6 b3 sites.google.com/site/ncpdhbkhn 17
- The Stability of Linear Feedback Systems 1. The Concept of Stability 2. The Routh – Hurwitz Stability Criterion 3. The Stability of State Variable Systems 4. System Stability Using Control Design Software sites.google.com/site/ncpdhbkhn 18
- The Stability of State Variable Ex. 1 Systems (1) 1 3 x1 3x1 x2 1 K 1 U ( s) X1 ( s) x2 x2 Kx1 Ku 1/ s X 2 ( s) X2 1/ s 1 L1 s 1 , L2 3s 1 , L3 Ks 2 N 1 L n 1 n n ,m Ln Lm n ,m , p Ln Lm Lp ... nontouching nontouching 1 ( L1 L2 L3 ) ( L1L2 ) 1 2s 1 ( K 3) s 2 q( s ) s 2 2 s ( K 3) K 3 0 K 3 sites.google.com/site/ncpdhbkhn 19
- The Stability of State Variable Ex. 2 Systems (2) a 0 1 0 dx u 0 x 0 1 1 dt u2 0 0 0 0 0 a 0 0 det( I A ) det 0 0 0 0 0 0 0 [ 2 ( ) ( 2 )] q( ) [ 2 ( ) ( 2 )] 0 0 2 sites.google.com/site/ncpdhbkhn 20
ADSENSE
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn