luận văn: NGHIÊN CỨU CẤU TRÚC CỦA ỐNG NANO CARBON DƯỚI TÁC ĐỘNG CỦA BỨC XẠ NĂNG LƯỢNG CAO ĐỊNH HƯỚNG ỨNG DỤNG TRONG MÔI TRƯỜNG VŨ TRỤ
lượt xem 54
download
Do có nhiều tính chất rất đáng chú ý như khả năng dẫn điện, độ cứng cao, độ dẫn nhiệt tốt. Vật liệu nano carbon (CNTs) không chỉ được ứng dụng trong các vật liệu nano composite, vật liệu chịu nhiệt, vật liệu hấp thụ sóng điện từ, đầu dò và đầu phát điện tử mà còn được sử dụng trong nhiều lĩnh vực khác nhau như tàu vũ trụ, lò phản ứng hạt nhân, và các ứng dụng môi trường...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: luận văn: NGHIÊN CỨU CẤU TRÚC CỦA ỐNG NANO CARBON DƯỚI TÁC ĐỘNG CỦA BỨC XẠ NĂNG LƯỢNG CAO ĐỊNH HƯỚNG ỨNG DỤNG TRONG MÔI TRƯỜNG VŨ TRỤ
- 0124567896 24
- 2 8 ! 44"
- # %& ( + *-, $ '& )* *, ./01 )* 4,5-% 7 23 1 65 4/8 29 /0 .: *, % , ; / # # # # 4&? B =@ A # 4C DF HI E GI
- 12356789 73
- 5 3 9 ! 55" #$%&%'()*)+),+ -./012()03+4,$546 3.7)+18./$-9+: .; 7?ACCE?GHJ@M J ?NL OP @B DCF IK EK KC C L C 7?ACCE?QRIRITKV @B DC E S ?QU 3%W
- 5a7F d bc9eb5
- 5f! 5 > > > > > > > 5Egh jk K ik
- i Lời cảm ơn Trước tiên, tôi xin gửi lời cảm ơn và bày tỏ lòng biết ơn sâu sắc đến Cô giáo PGS.TS.Vũ Thị Bích, Thầy giáo TS. Nguyễn Thanh Bình, người đã tận tình giúp đỡ, hỗ trợ, hướng dẫn tôi trong suốt quá trình thực hiện và hoàn thành luận văn này. Xin cám ơn các Thầy, Cô giáo đã giảng dạy, hướng dẫn tôi trong suốt chương trình học cao học. Cám ơn các cô, chú, anh, chị, các bạn đồng nghiệp thuộc Trung tâm điện tử học lượng tử thuộc Viện Vật lý đã tận tình giúp đỡ tạo điều kiện thuận lợi cho tôi trong quá trình học tập, nghiên cứu cũng như thực hiện luận văn này. Tôi xin cảm ơn sự hợp tác và giúp đỡ của GS. TS.Nguyễn Văn Đỗ, TS. Phạm Đức Khuê trung tâm Vật Lý Hạt Nhân và cảm ơn sự hỗ trợ kinh phí từ đề tài nghiên cứu cơ bản thuộc Chương trình Khoa học và Công nghệ Vũ trụ - Viện Khoa Học và Công Nghệ Việt Nam Cuối cùng, tôi xin tỏ lòng biết ơn đến gia đình và những người thân của mình đã luôn hỗ trợ về vật chất, động viên tinh thần và tạo điều kiện cho tôi trong suốt thời gian thực hiện luận văn này. Xin chân thành cám ơn! Tác giả Nguyễn Đình Hoàng
- ii Lời cam đoan Tôi xin cam đoan đây là công trình của riêng tôi dưới sự hướng dẫn của TS. Nguyễn Thanh Bình. Các số liệu và kết quả nêu trong luận văn là trung thực và chưa được ai công bố trong luận văn, luận án khoa học nào khác Tác giả Nguyễn Đình Hoàng
- iii Mục lục Lời cảm ơn .................................................................................................... i Lời cam đoan ................................................................................................ ii Mục lục .......................................................................................................... iii Danh mục các bảng ...................................................................................... v Danh mục các hình vẽ .................................................................................. vi Lời nói đầu .................................................................................................... 1 Chương 1 - Ống nano carbon ...................................................................... 2 1.1. Lịch sử hình thành ........................................................................... 2 1. 2. Một số dạng cấu hình phổ biến của vật liệu carbon....................... 2 1.3. Cơ chế mọc ống nano carbon ......................................................... 5 1.4. Các phương pháp chế tạo ống nano carbon .................................... 6 1.5. Tính chất của ống nano carbon ....................................................... 8 1.6. Các sai hỏng có thể tồn tại trong mạng của ống nano carbon ........ 10 1.7. Một số ứng dụng của ống nano carbon ........................................... 11 Chương 2 – Lý thuyết tán xạ Raman ........................................................ 16 2.1. Hiệu ứng Raman ............................................................................. 16 2.2. Tán xạ Raman cộng hưởng ............................................................. 17 2.3. Các mode dao động của ống nano carbon ..................................... 17 2.4. Phổ kế raman ................................................................................... 20 Chương 3 – Nguồn bức xạ năng lượng cao ................................................ 22 3.1. Tia vũ trụ ......................................................................................... 22 3.2. Nguồn bức xạ nhân tạo ................................................................... 23 3.2.1. Máy gia tốc tuyến tính ......................................................... 24 3.2.2. Nguồn Americium-241, phát tia X ...................................... 26 3.2.3. Nguồn Radium-226, phát gamma ........................................ 26 Chương 4 –Thực nghiệm ............................................................................. 27
- iv 4.1. Nghiên cứu sự ảnh hưởng của bức xạ laser lên CNTs.................... 28 4.2. Nghiên cứu sự ảnh hưởng của bức xạ hãm lên CNTs .................... 31 4.3. Sự ảnh hưởng của tia X và tia Gamma lên cấu trúc CNTs ............. 37 KẾT LUẬN ................................................................................................... 41 TÀI LIỆU THAM KHẢO ........................................................................... 42 Các công trình đã công bố có liên quan đến luận văn .............................. 44
- v Danh mục các bảng Bảng 1. Tần số mode D, G , tỷ số ID/IG theo cường độ laser của CNTs khi chưa chiếu xạ Bảng 2. Các đồng vị phóng xạ được nhận diện từ mẫu ống nano carbon. Bảng 3. Tần số mode D, G , tỷ số ID/IG theo cường độ laser của CNTs sau khi được chiếu bằng bức xạ hãm. Bảng 4. Tần số mode D, G , tỷ số ID/IG theo cường độ laser của CNTs sau khi được chiếu bằng tia X. Bảng 5. Tần số mode D, G , tỷ số ID/IG theo cường độ laser của CNTs sau khi được chiếu bằng tia Gamma.
- vi Danh mục các hình vẽ Hình 1.1. Cấu trúc của than chì Hình 1.2. Cấu trúc của kim cương Hình 1.3. Cấu trúc của carbon C60 (một dạng của fullerene) Hình 1.4. Cấu trúc của ống đơn tường SWCNTs và đa tường MWCNTs Hình 1.5. Ảnh SEM của CNTs với hạt xúc tác ở đáy ống và ở đầu ống Hình 1.6. Ảnh TEM các ống carbon nano đa tường Hình 1.7. Cơ chế mọc ống nano carbon Hình 1.8. Hệ thiết bị chế tạo CNTs bằng phương pháp CVD Hình 1.9. Hệ thiết bị chế tạo CNTs bằng phương pháp hồ quang điện Hình 1.10. Hệ tạo CNTs bằng phương pháp chùm laser Hình 1.11. Ống nano carbon kiểu armchair có tính chất kim loại và nano carbon kiểu zig-zag có tính chất bán dẫn Hình 1.12. Sai hỏng Stone Wales tạo ra cặp ngũ giác và thất giác trong CNTs Hình 1.13. Mô hình sự xen giữa của Li và hấp thụ H2 Hình 1.14. Màn hình hiển thị sử dụng CNTs Hình 1.15. Típ STM, AFM có gắn CNTs Hình 1.16. Típ CNTs biến tính Hình 1.17. Vật liệu CNTs-COOH dùng cho sensor xác định nồng độ cồn Hình 1.18. Áo chống đạn siêu bền, vỏ tàu vũ trụ làm bằng CNTs Hình 1.19. Transistor trường sử dụng ống nanno carbon Hình 2.1. C. V. Raman Hình 2.2. Tán xạ Raman thu được khi kích thích phân tử bằng laser Hình 2.3. Nguyên lý của quá trình tán xạ raman Hình 2.4. Phổ tán xạ Raman của CNTs đa tường
- vii Hình 2.5. Một số mode dao động của CNTs, Hình bên trái: mode hướng tâm, các nguyên tử dao động theo phương bán kính, hình bên phải: mode tiếp tuyến tương ứng với dao động dọc theo trục và xung quanh trục Hình 2.6. Sơ đồ khối của phổ kế Raman Hình 2.7. Phổ kế Raman của hãng Renishaw Hình 3.1. Phổ năng lượng của tia vũ trụ Hình 3.2. Sự ảnh hưởng của các tia vũ trụ theo độ cao Hình 3.3.Máy gia tốc electron tuyến tính, trung tâm gia tốc Pohang, Hàn Quốc Hình 3.4. Nơi đặt mẫu được chiếu xạ Hình 3.5. Nguyên lý tạo ra bức xạ hãm Hình 3.6. Phổ bức xạ hãm thu được từ bắn máy gia tốc Hình 4.1. Sơ đồ bố trí thí nghiệm chiếu xạ CNTs bằng bức xạ hãm Hình 4.2. Phổ Raman của CNTs khi chưa chiếu khi tăng cường độ laser từ 3 đến 60 kW/cm2 và giảm cường độ laser từ 60 xuống 3 kW/cm2(a- 3 kW/cm2, b- 15 kW/cm2 ,c-30 kW/cm2, d-60 kW/ cm2). Hình 4.3. Tần số mode D và mode G của CNTs khi chưa chiếu khi tăng cường độ laser từ 3 đến 60 kW/cm2 và giảm cường độ laser từ 60 xuống 3 kW/cm2 Hình 4.4. Tỷ số về cường độ ID/IG của ống nano carbon khi chưa chiếu xạ Hình 4.5. Hệ phổ kế gamma HPGe (CANBERRA, Mỹ) Hình 4.6. Phổ gamma đặc trưng của ống nano carbon Hình 4.7. Suất lượng tạo thành các đồng vị phóng xạ trong mẫu ống nano carbon khi chiếu bởi chùm photon hãm năng lượng cực đại 60 MeV. Hình 4.8. Ảnh SEM của CNTs (a) ban đầu và (b) sau khi được chiếu bằng bức xạ hãm. Hình 4.9. Phổ Raman của CNTs sau khi chiếu bằng bức xạ hãm, khi tăng cường độ laser từ 3 đến 60 kW/cm2 và giảm cường độ laser từ 60 xuống 3 kW/cm2(a- 3 kW/cm2, b- 15 kW/cm2 ,c-30 kW/cm2, d-60 kW/ cm2).
- viii Hình 4.10. (a)Tần số mode D, (b)Tần số mode G, và (c)tỷ lệ cường độ của chúng của CNTs sau khi chiếu bằng bức xạ hãm, khi tăng cường độ laser từ 3 đến 60 kW/cm2 và giảm cường độ laser từ 60 xuống 3 kW/cm2 Hình 4.11. Phổ Raman của CNTs sau khi chiếu bằng tia X, khi tăng cường độ laser từ 3 đến 60 kW/cm2 và giảm cường độ laser từ 60 xuống 3 kW/cm2(a- 3 kW/cm2, b- 15 kW/cm2 ,c-30 kW/cm2, d-60 kW/ cm2). Hình 4.12. Phổ Raman của CNTs sau khi chiếu bằng tia Gamma, khi tăng cường độ laser từ 3 đến 60 kW/cm2 và giảm cường độ laser từ 60 xuống 3 kW/cm2(a- 3 kW/cm2, b- 15 kW/cm2 ,c-30 kW/cm2, d-60 kW/cm2). Hình 4.13. Độ dịch tần số của (a) đỉnh D và (b) đỉnh G và ( c) tỷ lệ về cường độ đỉnh của CNTs chưa chiếu, và sau khi chiếu bằng tia X, tia Gamma, khi tăng cường độ laser từ 3 đến 60 kW/cm2 và giảm cường độ laser từ 60 xuống 3 kW/cm2
- 1 MỞ ĐẦU Do có nhiều tính chất rất đáng chú ý như khả năng dẫn điện, độ cứng cao, độ dẫn nhiệt tốt. Vật liệu nano carbon (CNTs) không chỉ được ứng dụng trong các vật liệu nano composite, vật liệu chịu nhiệt, vật liệu hấp thụ sóng điện từ, đầu dò và đầu phát điện tử mà còn được sử dụng trong nhiều lĩnh vực khác nhau như tàu vũ trụ, lò phản ứng hạt nhân, và các ứng dụng môi trường[10][12][16]. Trong môi trường vũ trụ, CNTs có thể được dùng để làm vỏ tầu, các linh kiện điện tử, thiết bị lưu trữ hidro, pin lithium và pin nhiên liệu... Ở điều kiện này, các thiết bị này chịu sự tương tác của nhiều loại hạt, các loại bức xạ điện từ có năng lượng cao như proton, electron, alpha, photon, nơtron, các ion nặng, vì vậy có thể dẫn đến sự biến đổi về cấu trúc mạng, đưa vào mạng các nguyên tử lạ, làm thay đổi các tính chất cơ, hóa, lý,...ảnh hưởng đến khả năng hoạt động của các thiết bị này[8]. Thêm vào đó, các bức xạ, hạt có năng lượng cao còn gây ra các phản ứng hạt nhân, tạo thành các đồng vị phóng xạ, có thể gây ra sự thay đổi tính chất của vật liệu. Nhằm mục đích mô phỏng quá trình tương tác của các bức xạ trên vũ trụ lên các vật liệu nano người ta thường tiến hành các nghiên cứu thử nghiệm trên mặt đất với các nguồn bức xạ nhân tạo, trong đó chủ yếu được tạo ra từ các máy gia tốc hạt và các nguồn đồng vị phóng xạ. Luận văn này đã đưa một số kết quả nghiên cứu thực nghiệm trong việc nhận diện các đồng vị phóng xạ và xác định suất lượng của chúng được tạo thành từ các vật liệu CNTs khi chiếu bởi chùm photon hãm năng lượng cực đại 60 MeV trên máy gia tốc electron tuyến tính, đồng thời đã khảo sát ảnh hưởng của các nguồn bức xạ khác nhau như: bức xạ hãm, tia gama, tia X, tia laser có mật độ năng lượng cao lên cấu trúc của CNTs bằng phương pháp phân tích phổ raman.
- 2 Chương 1 - Ống nano carbon 1.1. Lịch sử hình thành Ống nano carbon được tạo ra bởi các nguyên tử carbon, các nguyên tử carbon này liên kết hóa trị với nhau bằng lai hóa sp2.Năm 1991, khi nghiên cứu Fulleren C60, Tiến sĩ Iijima một nhà khoa học Nhật Bản đã phát hiện ra trong đám muội than, sản phẩm phụ trong quá trình phóng điện hồ quang có những ống tinh thể cực nhỏ và dài bám vào catốt. Hình ảnh từ kính hiển vi điện tử truyền qua cho thấy rằng các ống này có nhiều lớp carbon, ống này lồng vào ống kia. Các ống sau này được gọi là ống nano carbon đa tường (MWCNTs- multi wall carbon nanotubes). Mặc dù có nhiều tính chất đặc biệt, nhưng không dễ dàng để phân tích ống nano carbon bằng phương pháp quang phổ, do vậy điều này đã cản trở việc nghiên cứu về chúng. Năm 1993, ống nano carbon đơn tường (SWCNTs- single wall carbon nanotubes) đã được phát hiện, đó là các ống rỗng đường kính từ 1,5 - 2 nm, dài cỡ micrômét. Vỏ của ống bao gồm các nguyên tử carbon sắp xếp theo các đỉnh sáu cạnh rất đều đặn. Sự phát hiện này đã thúc đẩy sự nghiên cứu của các nhà khoa học trên toàn thế giới. Phương pháp quang phổ Raman là phương pháp đơn giản, rẻ tiền so với kính hiển vi điện tử, được dùng rộng rãi để nghiên cứu trên CNTs trong thập kỉ trước. 1. 2. Một số dạng cấu hình phổ biến của vật liệu carbon 1.2.1.Than chì Hình 1.1. Cấu trúc của than chì
- 3 Than chì là dạng tồn tại phổ biến nhất của carbon, có màu đen, tỉ trọng nhỏ và thường gặp trong tự nhiên. Cấu trúc của than chì là các lớp mạng lục giác các nguyên tử carbon lai hoá sp2. Các lớp này liên kết với nhau bằng lực hút Van de Wall. Khoảng cách giữa hai nguyên tử carbon là 1,42 A0. 1.2.2. Kim cương Hình 1.2. Cấu trúc của kim cương Kim cương là dạng tinh thể được tạo thành từ các nguyên tử carbon, có cấu trúc tứ diện, trạng thái lai hoá của các nguyên tử carbon trong kim cương là sp3. Kim cương được biết đến là một loại đá quí với giá trị sử dụng cao. Với các đặc tính đặc biệt như rất cứng, truyền nhiệt tốt, tính thẩm mỹ cao..., kim cương được sử dụng rất nhiều trong thực tế. 1.2.3. Fullerene Hình 1.3. Cấu trúc của carbon C60 (một dạng của fullerene) Fullerene là những phân tử cấu thành từ các nguyên tử cacbon, chúng có dạng rỗng như mặt cầu, ellipsoid. Fullerene có cấu trúc tương tự với than chì, là
- 4 tổ hợp của lớp than chì độ dày một nguyên tử (còn gọi là graphene) liên kết với nhau tạo thành vòng lục giác; nhưng chúng cũng có thể tạo thành vòng ngũ giác hoặc thất giác. Fullerene đầu tiên được khám phá ra, và trở thành tên gọi tương tự cho nhiều fullerene sau này, đó là buckminsterfullerene (C60), do các nhà khoa học Harold Kroto, James Heath, Sean O'Brien, Robert Curl và Richard Smalley tại đại học Rice công bố năm 1985. Sự khám phá ra fullerene đã trở thành một bước tiến lớn trong sự hiểu biết về thù hình cacbon, mà trước đó chỉ bỉ giới hạn ở than chì, kim cương, và cacbon vô định hình như muội than và than gỗ. 1.2.4. Ống nano carbon (Carbon nanotube) - CNTs Khác với fullerene, CNTs có dạng hình trụ rỗng và có thể tồn tại ở dạng đơn tường hoặc đa tương (gồm các ống đơn tường lồng vào nhau). SWCNTs MWCNTs Hình 1.4. Cấu trúc của ống đơn tường SWCNTs và đa tường MWCNTs Hình 1.5. Ảnh SEM của CNTs với hạt xúc tác ở đáy ống và ở đầu ống
- 5 Hình 1.6. Ảnh TEM các ống carbon nano đa tường 1.3. Cơ chế mọc ống nano carbon Có thể hiểu một cách đơn giản quá trình mọc CNTs như sau [3] Hạt xúc tác được tạo trên đế. Khí chứa carbon (CnHm) sẽ bị phân ly thành nguyên tử carbon và các sản phẩm phụ khác do năng lượng nhiệt, năng lượng plasma. Các sản phẩm sau phân ly sẽ lắng đọng trên các hạt xúc tác. Ở đây sẽ xảy ra quá trình tạo các liên kết carbon-carbon và hình thành CNTs. Kích thước của ống CNTs về cơ bản phụ thuộc kích thước hạt xúc tác. Liên kết giữa các hạt xúc tác và đế mà ống nano carbon quyết định cơ chế mọc: mọc từ đỉnh của hạt lên hay mọc từ đế lên tạo thành CNTs. Kích thước của hạt xúc tác kim loại và các điều kiện liên quan khác quyết định ống nano carbon là đơn tường (SWCNTs) hoặc đa tường (MWCNTs). Cơ chế mọc từ đỉnh của hạt xúc tác Cơ chế mọc từ đế Hình 1.7. Cơ chế mọc ống nano carbon
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Luận văn tốt nghiệp: Nghiên cứu cấu trúc hạt nhân
61 p | 208 | 32
-
Luận văn: Cấu trúc vốn và ý nghĩa của việc nghiên cứu cấu trúc vốn
20 p | 241 | 28
-
Khóa luận Cử nhân Tin học: Nghiên cứu kiến trúc hướng dịch vụ (Service-Oriented Architecture) và ứng dụng
266 p | 147 | 25
-
Nghiên cứu cấu trúc hệ thống viễn thông mặt đất để sử dụng hiệu quả vệ tinh vinasat ( nội dung 3)
258 p | 116 | 22
-
Luận văn:Nghiên cứu ứng dụng cấu trúc dữ liệu Trie cho tìm kiếm chuỗi ký tự
23 p | 121 | 15
-
Nghiên cứu cấu trúc hệ thống viễn thông mặt đất để sử dụng hiệu quả vệ tinh vinasat ( quyển 5)
189 p | 116 | 14
-
Nghiên cứu cấu trúc hệ thống viễn thông mặt đất để sử dụng hiệu quả vệ tinh vinasat (quyển 6)
131 p | 121 | 14
-
Khóa luận tốt nghiệp: Nghiên cứu cấu trúc bong bóng trong hạt nhân 54Ca
43 p | 38 | 9
-
Luận văn Thạc sĩ Lâm nghiệp: Nghiên cứu cấu trúc, sinh trưởng và tăng trưởng Keo lá tràm (Acacia auriculiformis) tại Ban quản lý rừng phòng hộ Sông Cầu, tỉnh Phú Yên
88 p | 35 | 9
-
Luận văn:Nghiên cứu kỹ thuật tái cấu trúc dữ liệu
22 p | 71 | 9
-
Luận văn Thạc sĩ Hoá học: Nghiên cứu cấu trúc, tính chất của compozit chịu nhiệt độ cao, cách nhiệt trên cơ sở sợi cacbon và nhựa phenolic
95 p | 24 | 8
-
Bài giảng Phương pháp nghiên cứu khoa học: Chương 10 - TS. Nguyễn Minh Hà
9 p | 79 | 5
-
Luận văn Thạc sĩ Tài chính ngân hàng: Nghiên cứu cấu trúc vốn của các công ty niêm yết trên Sở Giao dịch chứng khoán thành phố Hồ Chí Minh
125 p | 10 | 5
-
Luận văn Thạc sĩ: Nghiên cứu cấu trúc và tính chất từ của hợp kim Heusler Ni-Mn-(Ga,Al…)
66 p | 11 | 5
-
Luận văn Thạc sĩ Khoa học lâm nghiệp: Nghiên cứu cấu trúc rừng tự nhiên thuộc khu bảo tồn thiên nhiên Pù Huống, tỉnh Nghệ An
77 p | 15 | 4
-
Luận văn Thạc sĩ Hóa học: Tổng hợp, nghiên cứu cấu trúc và thăm dò hoạt tính sinh học của phức Fe(III) với 4-phenylthiosemicacbazon salixylandehit
70 p | 13 | 4
-
Luận văn Thạc sĩ Kinh tế: Nghiên cứu cấu trúc tài chính của các công ty cổ phần ngành xi măng tại Việt Nam
85 p | 15 | 3
-
Tóm tắt luận văn Thạc sĩ Tài chính ngân hàng: Nghiên cứu cấu trúc vốn của các công ty niêm yết trên Sở Giao dịch chứng khoán thành phố Hồ Chí Minh
27 p | 6 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn