Luận văn:Phát hiện biên biểu diễn fourier elliptic và ứng dụng
lượt xem 42
download
Trong những năm gần đây các nghiên cứu về biên ảnh và phép biến đổi Fourier đã và đang được ứng dụng rộng rãi .Thực tế này đặt ra các bài toán như : đưa những ứng dụng đó vào xã hội và đời sống con người .Một số nhóm nghiên cứu trong và ngoài nước đã đưa ra các phương pháp giải quyết kết hợp các phương pháp phát hiện biên và phép biến đổi Fourier để hoàn thành những ứng dụng góp phần vào sự phát triển trong xã hội....
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Luận văn:Phát hiện biên biểu diễn fourier elliptic và ứng dụng
- ĐẠI HỌC THÁI NGUYÊN KHOA CÔNG NGHỆ THÔNG TIN PHẠM NGỌC QUÝ PHÁT HIỆN BIÊN, BIỂU DIỄN FOURIER ELLIPTIC VÀ ỨNG DỤNG LUẬN VĂN THẠC SĨ CÔNG NGHỆ THÔNG TIN ` Thái Nguyên - 2009 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn
- ĐẠI HỌC THÁI NGUYÊN KHOA CÔNG NGHỆ THÔNG TIN PHẠM NGỌC QUÝ PHÁT HIỆN BIÊN, BIỂU DIỄN FOURIER ELLIPTIC VÀ ỨNG DỤNG Chuyên ngành: Khoa học máy tính Mã số: 604801 ` LUẬN VĂN THẠC SĨ CÔNG NGHỆ THÔNG TIN Ngƣời hƣớng dẫn khoa học: TS. Phạm Việt Bình Thái Nguyên - 2009 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên i http://www.Lrc-tnu.edu.vn
- MỤC LỤC Lời cảm ơn .................................................................................................... i Danh mục các ký hiệu, các chữ viết tắt ......................................................... ii Danh mục các hình ...................................................................................... iii MỞ ĐẦU ..................................................................................................... 1 CHƢƠNG 1. TỔNG QUAN VỀ XỬ LÝ ẢNH VÀ BIÊN ..................................... 3 1.1. Một số khái niệm cơ bản trong xử lý ảnh ............................................... 3 1.1.1. Xử lý ảnh. .................................................................................. 3 1.1.2 Quá trình thu nhận, biểu diễn và lưu giữ ảnh ............................... 3 1.1.3 Histogram của ảnh ...................................................................... 7 1.1.4 Nhận dạng ảnh ............................................................................ 8 1.2 Biên ảnh và vai trò trong nhận dạng ảnh ................................................. 9 1.2.1 Khái niệm về biên ảnh và các phương pháp phát hiện biên cơ bản........................................................................................... 9 1.2.2 Vai trò của biên trong nhận dạng ảnh ........................................ 14 1.2.3 Biểu diễn biên dựa trên mô tả Fourier ....................................... 14 1.2.3.1 Phương pháp dựa trên mô tả Fourier ................................. 16 1.2.3.2 Phương pháp góc quay ............................................... 19 CHƢƠNG 2: MỘT SỐ PHƢƠNG PHÁP PHÁT HIỆN BIÊN VÀ PHÉP BIỂU DIỄN FORIER ELLIPTIC ............................................................. 22 2.1 Một số phương pháp phát hiện biên ...................................................... 22 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên i http://www.Lrc-tnu.edu.vn
- 2.1.1. Phương pháp phát hiện biện trực tiếp ....................................... 22 2.1.2 Phương pháp phát hiện biên gián tiếp ........................................ 31 2.1.3 Phương pháp phát hiện biên kết hợp .......................................... 32 2.1.4 Phát hiện biên dựa vào trung bình cục bộ .................................. 38 2.1.5 Cải thiện và nâng cao chất lượng biên ảnh ................................ 40 2.2 Phép biến đổi Fourier ........................................................................... 49 2.2.1 Định nghĩa ................................................................................ 49 2.2.1 Elliptic Fourier .......................................................................... 50 2.2.3 Biến đổi Fourier rời rạc ............................................................. 55 2.2.4 Các thuộc tính khác của biến đổi Fourier .................................. 61 CHƢƠNG 3: CHƢƠNG TRÌNH THỬ NGHIỆM ..................................................... 62 3.1 Giới thiệu ............................................................................................. 62 3.2 Số hóa biên đối tượng ảnh .................................................................... 62 3.2 Chương trình thử nghiệm ..................................................................... 66 KẾT LUẬN ................................................................................................................. 70 TÀI LIỆU THAM KHẢO ............................................................................................ 72 Tiếng Việt .................................................................................................. 72 Tiếng Anh .................................................................................................. 72 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên ii http://www.Lrc-tnu.edu.vn
- LỜI CẢM ƠN Trong quá trình làm luận văn thạc sĩ với đề tài “Phát hiện biên, biể u diễn Fourier Elliptic và ứng dụng”, em đã nhận được nhiều đóng góp và tạo điều kiện của các thầy cô và đồng nghiệp. Lời đầu tiên em xin chân thành cảm ơn tới toàn thể các thầy cô, những người đã giảng dạy em. Đặc biệt, em xin tỏ lòng cảm ơn chân thành và sâu sắc tới thầy thầy Phạm Việt Bình, người đã luôn tận tình hướng dẫn, định hướng, và có những chỉ bảo cặn kẽ em trong thời suốt thời gian qua. Em rất cảm ơn các bạn, các đồng nghiệp đã động viên, k hích lệ, cũng như trao đổi tài liệu cho em trong thời gian làm luận văn. Em cũng chân thành mong được sự đóng góp ý kiến của các thầy, các cô và các đồng nghiệp để em có phát triển đề tài trong thời gian tới. Xin chân thành cảm ơn ! Thái Nguyên, ngày 12 tháng 11 năm 2009 Học viên Phạm Ngọc Quý Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên i http://www.Lrc-tnu.edu.vn
- Danh mục các ký hiệu, các chữ viết tắt Cơ sở dữ liệu CSDL (Fourier descriptors) - Mô tả Fourier FD Điểm ảnh Pixel Radius Bán kính RGB Không gian màu RGB Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên ii http://www.Lrc-tnu.edu.vn
- Danh mục các hình Hình 1.1 Các giai đoạn chính trong quá trình xử lý ảnh ................................ 3 Hình 1.2 Điểm 8 láng giềng và điểm 4 láng giềng ........................................ 6 Hình 1.3(a) Đồ thị biểu diễn Histogram ảnh ................................................. 8 Hình 1.3(b) Ảnh gốc..................................................................................... 8 Hình 1.3(c) Histogram của ảnh gốc theo RGB và Gray ................................ 8 Hình 1.4 Ví dụ chu tuyến của đối tượng ảnh .............................................. 12 Hình 1.5 Phân loại biểu diễn hình dạng và các kỹ thuật biểu diễn .............. 15 Hình 1.6 Biểu diễn góc quay ...................................................................... 20 Hình 1.7 Biểu diễn góc quay trong trường hợp có thay đổi nhỏ .................. 21 Hình 2.1 Mô hình 8 hướng ......................................................................... 23 Hình 2.2 Ảnh trước khi dò biên .................................................................. 24 Hình 2.3 Ảnh sau khi dò biên ..................................................................... 25 Hình 2.4 (a) Ảnh gốc (b) Đạo hàm bậc nhất (c) Đạo hàm bậc hai ............... 25 Hình 2.5(a) Ảnh gốc (b) Ảnh biên dùng Laplace H1 (a) Ảnh biên H2 ......... 27 Hình 2.6 Minh họa biểu diễn biên nhờ các phép hình thái .......................... 30 Hình 2.7 Ảnh gốc ....................................................................................... 33 Hình 2.8 Ảnh đen trắng .............................................................................. 33 Hình 2.9 Ảnh đen trắng dùng hàm ConvertRGB ........................................ 34 Hình 2.10 Ảnh đen trắng ............................................................................ 34 Hình 2.11 Biên của ảnh đen trắng ............................................................... 35 Hình 2.12 Ảnh gốc ..................................................................................... 36 Hình 2.13 Ảnh biên với cách đánh giá độ chênh lệch mức xám của điểm ảnh..................................................................................................... 36 Hình 2.14 So sánh với mức xám trung bình của cửa sổ ảnh trong trường hợp N=5 .......................................................................................... 36 Hình 2.15 Xác định điểm biên thực sự ....................................................... 37 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên iii http://www.Lrc-tnu.edu.vn
- Hình 2.16 Ảnh biên kết hợp phương pháp kết hợp với N =5 ...................... 37 Hình 2.17 Ma trận điểm ảnh trước và sau lọc ............................................. 39 Hình 2.18 Các ảnh biên kết quả thu được theo thuật toán đề xuất ............... 39 Hình 2.19 Lấy tổ hợp các điểm ảnh lân cận ................................................ 41 Hình 2.20 Một số kiểu mặt nạ sử dụng cho kỹ thuật lọc phi tuyến .............. 41 Hình 2.21 Minh họa thuật toán hậu xử lý ................................................... 46 Hình 2.22 Ví dụ về chain code ................................................................... 51 Hình 2.23 Minh họa sự kết hợp của chuỗi mã 4, 8-láng giềng ................... 52 Hình 2.24 Minh họa chuỗi mã .................................................................... 54 Hình 2.25 Biển đổi xung mẫu ..................................................................... 57 Hình 2.26 Ảnh dùng biến đổi Fourier rời rạc 2D ........................................ 58 Hình 2.27 (a) Ảnh mặt (b) Biển đổi ảnh mặt .............................................. 60 Hình 2.28 Biến đổi Fourier 2D ................................................................... 61 Hình 3.1 Thuật toán số hóa biên ảnh của đối tượng ảnh ............................. 63 Hình 3.2 Thuật toán chaincodeal ................................................................ 64 Hình 3.3 Lá gấc ban đầu ............................................................................. 66 Hình 3.4 Lá gấc sau khi Histogram ............................................................ 67 Hình 3.5 Lá gấc sau khi chain code ............................................................ 67 Hình 3.6 (a) Lá gấc trước khi được xử lý .................................................... 68 Hình 3.6 (b) Lá gấc sau khi được xử lý ...................................................... 68 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên iv http://www.Lrc-tnu.edu.vn
- Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên v http://www.Lrc-tnu.edu.vn
- PHẦN MỞ ĐẦU Xử lý ảnh là một lĩnh vực đã và đang được quan tâm của nhiều nhà khoa học trong và ngoài nước bởi tính phong phú và lợi ích của nó được ứng dụng trong khoa học kỹ thuật, kinh tế, xã hội và đời sống con người. Lĩnh vực xử lý ảnh liên quan tới nhiều ngành khác như: hệ thống tin học, trí tuệ nhân tạo, nhận dạng, viễn thám, y học, nông học... Hiện nay, thông tin hình ảnh đóng vai trò rất quan trọng trong trao đổ i thông tin, bởi phần lớn thông tin mà con người thu được thông qua thị giác. Do vậy, vấn đề nhận dạng trong xử lý ảnh, đặc biệt là nhận dạng biên ảnh đang được quan tâm bởi yêu cầu ứng dụng đa dạng của chúng trong thực tiễn. Mục đích đặt ra cho xử lý ảnh được chia thành hai phần chính: phầ n thứ nhất liên quan đến những khả năng từ các ảnh thu lại các ảnh để rồi từ các ảnh đã được cải biến nhận được nhiều thông tin để quan sát và đánh giá bằng mắt, chúng ta coi như là sự biến đổi ảnh (image transformation) hay sự làm đẹp ảnh (image enhancement). Phần hai nhằm vào nhận dạng hoặc đoán nhậ n ảnh một cách tự động, đánh giá nội dung các ảnh. Quá trình nhận dạng ảnh nhằm phân loại các đối tượng thành các lớp đối tượng đã biết (supervised learning) hoặc thành những lớp đối tượng chưa biết (unsupervised learning). Sau quá trình tăng cường và khôi phục (đối với những ảnh có nhiễu), giai đoạn tiếp theo, người ta phải trích rút các đặc tính quan trọng, quyết định của ảnh cần nhận dạng. Các đặc tính đó có thể là đặc tính hình học, đặc tính ngữ cảnh. Các đặc tính hình học chứa những thông tin về vị trí, kích thước hình học, hình dạng của các đối tượng trong ảnh, là đặc tính rất quan trọng trong xử lý nhận dạng ảnh. Các đặc tính này thường được trích rút ra thông qua việc xác định các đường biên các đối tượng trong ảnh. Biên chứa các thông tin về Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 1 http://www.Lrc-tnu.edu.vn
- hình dạng ngoài của đối tượng ảnh. Có thể nói xác định biên là một trong những vấn đề quan trọng và hấp dẫn trong lĩnh vực nghiên cứu xử lý ảnh bởi khả năng biểu đạt cấu trúc đối tượng và tính ứng dụng rộng rãi của nó vào việc giải quyết nhiều bài toán khó như: nhận dạng tự động, thị thực máy tính, hoạt hình… Bên cạnh đó, trong những năm gần đây các nghiên cứu về biên ảnh và phép biến đổi Fourier đã và đang được ứng dụng rộng rãi. Thực tế này đặt ra các bài toán như: đưa những ứng dụng đó vào xã hội và đời sống con người. Một số nhóm nghiên cứu trong và ngoài nước đã đưa ra các phương pháp giả i quyết kết hợp các phương pháp phát hiện biên và phép biến đổi Fourier để hoàn thành những ứng dụng góp phần vào sự phát triển trong xã hội. Chình vì những ứng dụng thực tiễn đó em đã nghiên cứu luận văn thạc sĩ với đề tài “Phát hiện biên, biểu diễn Forier Elliptic và ứng dụng”. Luận văn gồ m phần mở đầu, phần kết luận, và 3 chương nội dung: Chương 1: Tổng quan về xử lý ảnh và biên. Chương 2: Một số phương pháp phát hiện biên và phép biểu diễ n Fourier Elliptic. Chương 3: Chương trình thử nghiệm. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 2 http://www.Lrc-tnu.edu.vn
- CHƢƠNG 1: TỔNG QUAN VỀ XỬ LÝ ẢNH VÀ BIÊN 1.1. Một số khái niệm cơ bản trong xử lý ảnh 1.1.1. Xử lý ảnh Xử lý ảnh(Image processing) là đối tượng nghiên cứu của lĩnh vực thị giác máy, là quá trình biến đổi từ một ảnh ban đầu sang một ảnh mới với các đặc tính mà tuân theo ý muốn của việc xử lý. Xử lý ảnh có thể là quá trình phân tích, phân lớp các đối tượng, làm tăng chất lượng, phân đoạn và tìm biên, gán nhãn cho vùng hay quá trình biên dịch các thông tin hình ảnh của ảnh. Hình dưới sẽ minh họa các giai đoạn chính trong quá trình xử lý ảnh. L-u tr÷ camera Ph©n tÝch Thu nhËn Sè ho¸ NhËn ¶nh ¶nh d¹ng SENSOR HÖ L-u Q.®Þnh tr÷ Hình 1.1. Các giai đoạn chính trong quá trình xử lý ảnh 1.1.2. Quá trình thu nhận, biểu diễn và lƣu giữ ảnh 1.1.2.1.Quá trình thu nhận ảnh Ảnh tồn tại trong thực tế là một ảnh liên tục cả về không gian cũng như về giá trị độ sáng, và việc thu nhận ảnh có thể dùng Scanner, camera... Muốn đưa ảnh liên tục trong thực tế vào máy tính để xử lý cần phải q ua một khâu trung gian đó là quá trình số hoá. Số hoá là quá trình rời rạc hoá về không gian và lượng tử hoá về giá trị.Quá trình rời rạc hoá về không gian là quá trình thu nhận những điểm rời rạc từ một ảnh liên tục, nhưng phải đảm bảo bằng mắt thường không phân biệt được hai điểm kề nhau. Quá trình này cũng Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 3 http://www.Lrc-tnu.edu.vn
- chính là việc tìm cách biểu diễn cả một ảnh lớn có vô số điểm, bởi một số hữu hạn điểm, sao cho không làm mất đi ha y thay đổi tính chất của ảnh, để việc lưu trữ và xử lý ảnh được dễ dàng. Còn quá trình lượng tử hoá về giá trị là quá trình rời rạc hoá về mặt giá trị để có thể đơn giản hoá việc tính toán và đưa vào máy để xử lý. Tuỳ theo từng loại ảnh, độ chính xác yêu cầu và khả năng xử lý của máy tính mà ta có các mức lượng tử thích hợp. Ví dụ với ảnh 256 cấp xám, ta phải dùng 256 mức lượng tử và biểu diễn trong máy tính bằng 8 bits. 1.1.2.2. Quá trình biểu diễn ảnh Sau quá trình số hoá sẽ thu được một ma trận tương ứng với ảnh cần xét, mỗi phần tử của ma trận tương ứng với một điểm ảnh. Ảnh thường được biểu diễn bởi một mảng hai chiều I(n,p) gồm n dòng và p cột. Như vậy, ảnh gồm nxp pixels và người ta thường kí hiệu I(x,y) để chỉ một pixel cụ thể trong ảnh. Các điểm này được đặc trưng bằng toạ độ màu (R,G,B) tương ứng với nó trên hệ toạ độ màu cơ bản sau: Blue Cyan Mag White Black Green Yellow Red Trong đó R = Red, G = Green, B = Blue Hệ toạ độ (R,G,B ) là hệ cơ bản nhất, người ta đã chứng minh được R,G,B là ba màu độc lập, là một hệ cơ sở. Hầu như các màu khác nhau trong Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 4 http://www.Lrc-tnu.edu.vn
- thực tế đều có thể biểu diễn bởi toạ độ của chúng trong hệ toạ độ này, tức là từ ba màu này chúng ta có thể tổng hợp được nhiều màu trong thực tế. Xét một số trường hợp đặc biệt sau: Màu đen (Black) tạo bởi R=B=G=0 Màu vàng (Yellow) tạo bởi R=G=1, B=0 Màu tím (Magenta) tạo bởi R=B=1, G=0 Màu xanh (Cyan) tạo bởi R=0, G=B=1 Màu trắng (White) tạo bởi R=G=B=1 Từ đó ta có thể thấy rằng, ảnh đa cấp sáng là trường hợp đặc biệt của ảnh màu, trong đó các thành phần tọa độ màu tương ứng bằng nhau (R=G=B=1). Về mặt toán học có thể xem ảnh là một hàm hai biến f(x,y) với x,y là các biến tọa độ. Giá trị số ở điểm (x,y) tương ứng với giá trị xám hoặc độ sáng của ảnh (x là các cột còn y là các hàng). Giá trị của hàm ảnh f(x,y) được hạn chế trong phạm vi của các số nguyên dương. 0 = f(x,y) = fmax Thông thường đối với ảnh xám, giá trị fmax là 255 ( 28=256) và mỗi phần tử ảnh được mã hóa bởi một byte. Ảnh có thể được biểu diễn theo một trong hai mô hình: mô hình Vector hoặc mô hình Raster. Mô hình Raster: là mô hình biểu diễn ảnh thông dụng nhất hiện nay. Ảnh được biểu diễn dưới dạng ma trận các điểm ảnh. Tùy theo nhu cầu thực tế mà mỗi điểm ảnh có thể được biểu diễn bởi một hay nhiều bit. Mô hình Raster thuận lợi cho việc thu nhận, hiển thị và in ấn. Mô hình Vector: Bên cạnh mục đích tiết kiệ m không gian lưu trữ, dễ dàng hiển thị và in ấn, các ảnh biểu diễn theo mô hình vector còn có ưu điểm cho phép dễ dàng lựa chọn, sao chép, di chuyển, tìm kiếm … Theo những yêu cầu này thì kỹ thuật biểu diễn vector tỏ ra ưu việt hơn. Trong mô hình này, người ta sử dụng hướng vector của các điểm ảnh Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 5 http://www.Lrc-tnu.edu.vn
- lân cận để mã hóa và tái tạo lại hình ảnh ban đầu. Các ảnh vector được thu nhận trực tiếp từ các t hiết bị số hóa như Digitalize hoặc được chuyển đổi từ các ảnh Raster thông qua các chương trình vector hóa. Khi xử lý các ảnh Raster chúng ta có thể quan tâm đến mối quan hệ trong vùng lân cận của các điểm ảnh. Các điểm ảnh có thể xếp hàng trên một lưới (raster) hình vuông, lưới hình lục giác hoặc theo một cách hoàn toàn ngẫu nhiên với nhau. Cách sắp xếp theo hình vuông là được quan tâm đến nhiều nhất và có hai loại: điểm 4 láng giềng (4 liền kề) hoặc 8 láng giềng (8 liền kề). Hình dưới đây minh họa điểm 4 láng giềng và điêm 8 láng giềng. H×nh 1.2 : §iÓm 8 l¸ng giÒng vµ ®iÓm 4 l¸ng giÒng 1.1.2.3. Lưu giữ ảnh Trong sự phát triể n công nghệ thông tin nói chung, một vấn đề lớn chi phối các hoạt động thuộc lĩnh vực này là vấn đề bộ nhớ. Cần thiết phát triển quá trình xử lý thông tin sao cho nhanh chóng và chính xác, song cũng cần phát triển khả năng lưu trữ, bảo toàn các thông tin này. Các thế hệ máy tính ngày nay đã có bộ nhớ rất lớn, song bao giờ nó cũng ít đối với những gì chúng ta muốn lưu trữ và xử lý. Trong kĩ thuật xử lý ảnh cũng vậy, vì lượng thông tin chứa trong một bức ảnh là khá lớn, lên việc lưu giữ nó là vấn đề cần quan tâm. Trong thực tế ma trận điểm ảnh tạo ra bởi quá trình số hoá , được Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 6 http://www.Lrc-tnu.edu.vn
- lưu trữ trong máy tính dưới dạnh các files và thường thì các files này được nén để tiết kiệm bộ nhớ . Hầu hết các files ảnh đều có phần đề ở đầu files để ghi những thông tin cơ bản về ảnh như: Kích thước ảnh, số planes, số bits cho một điểm ảnh ... Trong thực tế, ta hay gặp và xử lý đầu vào là các ảnh bitmap đó là ảnh được tạo ra từ các điểm ảnh. Ngoài ra tro ng quá trình thực hiện, sau một số phép biến đổi có thể chuyển nó về dạng vectơ có đơn vị là các đường để tiện cho việc lưu giữ. 1.1.3. Histogram của ảnh Như ta đã biết, mỗi điểm có một giá trị độ sáng nào đó. Histogram của ảnh là đồ thị cho biết tầ n suất hiện các điểm ảnh với các mức biến thiên độ sáng. Thí dụ: Có một ảnh 100 điểm , độ sáng của ảnh được phân thành 5 mức sáng: level1, level2,..., level 5. Số điểm ảnh của các mức tương ứng là 20 , 25, 10, 30, 15. Như vậy tần suất hiện của các điểm ảnh ở mức tương ứng là 20%, 25%, 10%, 30%, 15%, với ảnh này ta có histogram của ảnh như hình 1.3. Từ kết quả histogram của ảnh, chỉ cho ta nhìn nhận tổng quát quá trình phân bố giải độ sáng trên ảnh, chứ không cho ta biết kết cấu chi tiết của ảnh. Ngoài ra, căn cứ vào số đỉnh trên histogram của ảnh sẽ có sự nhìn nhận ban đầu về số vùng của ảnh. Đó là cơ sở cho việc phân vùng ảnh và tìm biên sau này, đặc biệt là phương pháp tìm biên gián tiếp. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 7 http://www.Lrc-tnu.edu.vn
- 30% 0.3 25% 20% 0.2 15% 0.1 10% level 3 4 5 1 2 H×nh 1.3a Đå thÞ biÓu diÔn Histogram ¶nh b) c) Hình 1.3. b) Ảnh gốc; c) Histogram của ảnh gốc theo RGB và Gray 1.1.4. Nhận dạng ảnh Nhận dạng ảnh là quá trình liên quan đến các mô tả đối tượng mà người ta muốn đặc tả nó. Quá trình nhận dạng thường đi sau quá trình trích chọn các đặc tính chủ yếu của đối tượng. Có hai kiểu mô tả đối tượng: - Mô tả tham số (nhận dạng theo tham số). - Mô tả theo cấu trúc ( nhận dạng theo cấu trúc ). Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 8 http://www.Lrc-tnu.edu.vn
- Trên thực tế, người ta đã áp dụng kỹ thuật nhận dạng khá thành công với nhiều đối tượng khác nhau như : nhận dạng ảnh vân tay, nhận dạng chữ (chữ cái, chữ số, chữ có dấu). Nhận dạng chữ in hoặc đánh máy phục vụ cho việc tự động hoá quá trình đọc tài liệu, tăng nhanh tốc độ và chất lượng thu nhận thông tin từ máy tính. Nhận dạng chữ viết tay (với mức độ ràng buộc khác nhau về cách viết, kiểu chữ, v.v.. ) phục vụ cho nhiều lĩnh vực. Ngoài hai kỹ thuật nhận dạng trên, hiện nay một số kỹ thuật nhận dạng mới dựa vào kỹ thuật mạng nơron và fourier đang được áp dụng và cho kết quả khả quan. 1.2 Biên ảnh và vai trò trong nhận dạng ảnh 1.2.1 Khái niệm về biên ảnh và các phương pháp phát hiện biên cơ bản 1.2.1.1 Khái niệm biên ảnh Các phương pháp phát hiện biên là các phương pháp xử lý cục bộ rất quan trọng trong việc xác định sự thay đổi độ sáng của hàm ảnh. Một điểm ảnh được coi là b iên nếu ở đó có sự thay đổi đột ngột về mức xám. Tập hợp các điểm biên tạo thành biên hay đường bao của ảnh. Phương pháp phát hiện biên trực tiếp nhằm làm nổi biên dựa vào sự biến thiên về độ sáng của điểm ảnh. Sử dụng kỹ thuật đạo hàm để phát hiện biên. Nếu lấy đạo hàm bậc nhất của ảnh ta có phương pháp gradient, nếu lấy đạo hàm bậc hai ta có kỹ thuật Laplace. Một hàm ảnh phụ thuộc vào 2 biến đó là toạ độ của điểm ảnh, vì vậy các toán tử mô tả biên ảnh được biểu diễn bởi các đạo hàm riêng (theo 2 hướng x,y). Phương pháp gradient là phương pháp dò biên cục bộ dựa vào cực đại của đạo hàm. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 9 http://www.Lrc-tnu.edu.vn
- Biên ảnh được biểu diễn bởi 1 véc tơ với 2 thành phần: Biên độ của gradient o Và hướng của biên với góc , hướng của biên lệch so với hướng o của gradient một góc -900 Hướng gradient là hướng của sự gia tăng lớn nhất của hàm ảnh. Như mô tả trong hình dưới, các đường biên khép kín là các đường có cùng độ sáng; quy ước hướng là chỉ hướng đông. Biên thường được sử dụng trong phân tích ảnh để xác định đường bao của các vùng trong ảnh. Đường bao và các thành phần của nó (các điểm biên) vuông góc với hướng của gradient Một số dạng của đường bao ảnh Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 10 http://www.Lrc-tnu.edu.vn
- Roof là dạng điển hình cho các đối tượng có đường biên mảnh. Các kỹ thuật phát hiện biên thường được điều chỉnh để phù hợp với dạng của biên ảnh. Đôi khi chúng ta chỉ chú ý đến sự thay đổi biên độ mà không quan tâm đến sự thay đổi về hướng; khi đó chúng ta sử dụng toán tử tuyến tính Laplace để phát hện biên. Toán tử Laplace có cùng tính chất ở mọi hướng, và do đó nó là thành phần bất biến quay trong các ảnh. 1.2.1.2 Các phương pháp phát hiện biên cơ bản Phát hiện biên trực tiếp: Phương pháp này làm nổi biên dựa vào sự biến thiên mức xám của ảnh. Kỹ thuật chủ yếu dùng để phát hiện biên ở đây là dựa vào sự biến đổi theo hướng. Nếu lấy đạo hàm bậc nhất của ảnh ta có kỹ thuật Gradient, nếu lấy đạo hàm bậc hai của ảnh ta có kỹ thuật Laplace. Phát hiện biên gián tiếp: Nếu bằng cách nào đó ta phân được ảnh thành các vùng thì ranh giới giữa các vùng đó gọi là biên. Kỹ thuật dò biên và phân vùng ảnh là hai bài toán đối ngẫu nhau vì dò biên để thực hiện phân lớp đối tượng mà khi đã phân lớp xong nghĩa là đã phân vùng được ảnh và ngược lại, khi đã phân vùng ảnh đã được phân lớp thành các đối tượng, do đó có thể phát hiện được biên. 1.2.1.2.1. Phương pháp phát hiện biên trực tiếp a) Kỹ thuật phát hiện biên Gradient Theo định nghĩa gradient là một véctơ có các thành phần biểu thị tốc độ thay đổi giá trị của điểm ảnh. b) Kỹ thuật phát hiện biên Laplace Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 11 http://www.Lrc-tnu.edu.vn
CÓ THỂ BẠN MUỐN DOWNLOAD
-
LUẬN VĂN: Thế giới quan phật giáo và ảnh hưởng của nó đối với đời sống tinh thần con người Việt Nam hiện nay
103 p | 602 | 200
-
NGHIÊN CỨU MỘT SỐ PHƯƠNG PHÁP PHÁT HIỆN BIÊN VÀ ỨNG DỤNG
13 p | 274 | 46
-
Luận văn tốt nghiệp: Thị trường chứng khoán
48 p | 121 | 42
-
Kỹ chiến thuật chữa cháy Công ty may cổ phần Minh Tuấn.
61 p | 171 | 31
-
Luận văn:Hỗ trợ chẩn đoán tự động tổn thương xuất huyết/tụ máu dựa vào ảnh ct não
84 p | 132 | 27
-
Khóa luận tốt nghiệp: Cách tân nghệ thuật thơ haiku từ Matsuo Basho đến Masaoka Shiki
212 p | 101 | 22
-
Luận văn Thạc sĩ Dân tộc học: Tang ma của người Cống ở xã Nậm Khao, huyện Mường Tè, tỉnh Lai Châu
115 p | 130 | 20
-
Luận văn Thạc sĩ Sư phạm Ngữ văn: Phát triển năng lực tư duy phản biện cho học sinh trong dạy học truyện ngắn Việt Nam giai đoạn sau năm 1975, chương trình Ngữ văn lớp 12
123 p | 53 | 10
-
Luận văn Thạc sĩ Khoa học: Đánh giá tác động của biến đổi khí hậu đến thảm thực vật rừng tại vườn quốc gia Ba Vì, thành phố Hà Nội
82 p | 24 | 7
-
Tóm tắt Khóa luận tốt nghiệp khoa Văn hóa dân tộc thiểu số: Ẩm thực của người Tày ở xã Quốc Khánh, huyện Tràng Định, tỉnh Lạng Sơ
12 p | 82 | 6
-
Luận văn Thạc sĩ Khoa học máy tính: Các kỹ thuật lựa chọn, trích rút, ghi nhận trạng thái biểu cảm cơ bản của mặt người
69 p | 37 | 5
-
Luận văn Thạc sĩ Khoa học giáo dục: Phát triển suy luận đồng biến thiên của học sinh dựa trên các biểu diễn toán động
100 p | 24 | 5
-
Tóm tắt luận án Tiến sĩ Kỹ thuật máy tính: Phát hiện vận động bất thường (ngã) sử dụng cảm biến đeo
27 p | 21 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn