Luận văn Thạc sĩ Khoa học: Nghiên cứu chế tạo và tính chất vật lý của vật liệu nano tinh thể SixGe1-x trên nền SiO2
lượt xem 7
download
Luận văn được tiến hành dựa trên các phương pháp thực nghiệm sẵn có tại cơ sở nghiên cứu, bao gồm: Chế tạo vật liệu nano tinh thể SixGe1-x với các thành phần Si và Ge khác nhau trên nền vật liệu SiO2 bằng phương pháp phóng xạ catot; các phương pháp nghiên cứu tính chất vật lý của vật liệu nano tinh thể SixGe1-x gồm nhiễu xạ kế tia X (XRD), hiển vi điện tử truyền qua (TEM), hiển vi điện tử quét (SEM), quang phổ kế Raman, hệ hấp thụ quang học.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Luận văn Thạc sĩ Khoa học: Nghiên cứu chế tạo và tính chất vật lý của vật liệu nano tinh thể SixGe1-x trên nền SiO2
- ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN Trương Thị Thanh Thủy NGHIÊN CỨU CHẾ TẠO VÀ TÍNH CHẤT VẬT LÝ CỦA VẬT LIỆU NANO TINH THỂ SixGe1x TRÊN NỀN SiO2 LUẬN VĂN THẠC SĨ KHOA HỌC
- Hà Nội – Năm 2015
- ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN Trương Thị Thanh Thủy NGHIÊN CỨU CHẾ TẠO VÀ TÍNH CHẤT VẬT LÝ CỦA VẬT LIỆU NANO TINH THỂ SixGe1x TRÊN NỀN SiO2 Chuyên ngành: Quang học Mã số: 60440109 LUẬN VĂN THẠC SĨ KHOA HỌC GIÁO VIÊN HƯỚNG DẪN: TS. NGÔ NGỌC HÀ
- Hà Nội – Năm 2015
- LỜI CẢM ƠN Lời đầu tiên tôi xin chân thành cám ơn thầy hướng dẫn TS. Ngô Ngọc Hà Viện Đào tạo Quốc tế về Khoa học Vật liệu (ITIMS) – Trường Đại học Bách khoa Hà Nội (ĐHBKHN) đã nhiệt tình giúp đỡ tôi trong thời gian thực hiện luận văn này. Xin chân thành cảm ơn NCS. Nguyễn Trường Giang, Viện ITIMS đã giúp tôi đọc, góp ý và chỉnh sửa các lỗi chính tả cũng như bố cục của luận văn. Tôi cũng xin gửi lời cảm ơn tới TS. Nguyễn Đức Dũng – Viện Tiên tiến về khoa học và công nghệ (AIST), ĐHBKHN và các bạn của tôi đã dành thời gian hướng dẫn, hỗ trợ tôi trong việc đo đạc, xử lý số liệu. Những góp ý quý báu của bạn đã giúp tôi hoàn thành quyển luận văn này một cách tốt nhất. Tôi muốn gửi lời cảm ơn tới tất cả các thành viên trong nhóm quang điện tử, Viện ITIMS đã giúp đỡ tôi trong quá trình hoàn thành luận văn. Tôi cũng xin được cảm ơn các Thầy cô giáo trong khoa Vật lý, Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội, đã dạy dỗ, dìu dắt tôi trong suốt thời gian học tập chương trình thạc sĩ tại đây. Xin được cảm ơn Ban giám đốc Viện ITIMS và toàn thể các Thầy cô giáo của Viện đã tạo điều kiện cho tôi được làm việc tại đây để hoàn thiện cuốn luận văn này. Cuối cùng, tôi xin cảm ơn tới chồng con và toàn thể gia đình tôi. Đây là nguồn động viên to lớn nhất, là sự hỗ trợ không mệt mỏi của tôi trong suốt thời gian học tập, nghiên cứu và hoàn thành luận văn này!. Hà Nội, ngày 20 tháng 9 năm 2015 Học viên Tr ương Th ị Thanh Th ủy
- LỜI CAM ĐOAN Tôi xin cam đoan nội dung bản luận văn này là những gì chính tôi đã nghiên cứu trong suốt thời gian học thạc sĩ, các số liệu và kết quả là trung thực chưa được công bố ở công trình nào hoặc cơ sở nào khác dưới dạng luận văn. Người cam đoan Tr ương Th ị Thanh Th ủy 6
- MỤC LỤC DANH MỤC CÁC CHỮ VIẾT TẮT Từ viết tắt Từ đầy đủ Ý nghĩa The energydispersive xray EDS Phổ tán xạ năng lượng tia X spectroscopy
- FFT Fourier Transformation Biến đổi Fourier nhanh FCC Facecentered cubic Tinh thể lập phương tâm mặt Highresolution Hiển vi điện tử truyền qua HRTEM Transmission Electron độ phân giải cao Microscopy Nhiễu xạ điện tử lựa chọn SAED Selected area diffraction vùng SEM Scanning Electron Microscope Hiển vi điện tử quét Transmission Electron Kính hiển vi điện tử truyền TEM Microscopy qua XRD Xray diffraction Nhiễu xạ tia X 8
- DANH MỤC ĐỒ THỊ Chương 1 Hình 2.4: Kính hiển vi điện tử quét SEM30 Hình 2.5: Kính hiển vi điện tử truyền qua TEM32 Hình 2.6: Sơ đồ nguyên lý hoạt động của quang phổ kế UVVIS35 Chương 3 Hình 3.1: Ảnh nhiễu xạ tia X ứng với mẫu M337 Hình 3.2: Ảnh nhiễu xạ tia X khi thành phần x thay đổi ứng với các mẫu38 Hình 3.3: Sự phụ thuộc của tỉ phần Si, x đối với hằng số mạng a tương ứng.40 Hình 3.4: Sự phụ thuộc của kích thước tinh thể vào nồng độ tỉ phần Si,x42 Hình 3.5: Ảnh TEM, HRTEM, SAED43 Hình 3.6: Cấu trúc vùng năng lượng của Germani trong vùng E144 Hình 3.7: Sự phụ thuộc của hệ số hấp thụ vào năng lượng photon hấp thụ của mẫu tại 600oC45 Hình 3.8: Năng lượng hấp thụ được xác định cho phép chuyển đổi trực tiếp E1 mẫu M14 khi ủ ở 600 , 800 , và 1000 ° C Sự phụ thuộc của hệ số hấp thụ vào năng lượng photon hấp thụ của mẫu tại 600oC48 DANH MỤC BẢNG BIỂU Chương 1
- MỞ ĐẦU Khi các nguồn năng lượng truyền thống như than đá, dầu mỏ đang dần cạn kiệt, nguồn cung cấp không ổn định với những bất lợi về điều kiện địa lý và công nghệ khai thác, nhiều nguồn năng lượng tái tạo như năng lượng sinh học, năng lượng gió, năng lượng địa nhiệt, năng lượng thủy triều và sóng biển, … đang được quan tâm nghiên cứu và khai thác, trong đó và đặc biệt nhất là một nguồn năng lượng gần như vô tận – năng lượng mặt trời. Sự phát triển nhanh chóng về khoa học và công nghệ, điện năng sinh ra từ nguồn năng lượng mặt trời không còn quá đắt đỏ đối với người tiêu dùng. Hơn nữa, việc khai loại năng lượng này chỉ yêu cần đầu tư ban đầu một lần và có thể dùng được trong nhiều năm tùy thuộc vào chất lượng và sự ổn định của vật liệu và linh kiện chế tạo. Nằm trên vùng khí hậu nhiệt đới và cận nhiệt đới, Việt nam có giải phân bổ ánh nắng mặt trời thuộc loại cao trên bản đồ bức xạ mặt trời của thế giới, tiềm năng khai thác năng lượng mặt trời được đánh giá rất lớn. Pin năng lượng mặt trời (hay pin quang điện, tế bào quang điện) là thiết bị thu nhận năng lượng mặt trời và chuyển đổi thành điện năng. Cấu tạo của pin mặt trời cơ bản gồm các điốt pn. Dưới ánh sáng mặt trời nó có khả năng tạo ra dòng điện nhờ các điện tử và lỗ trống được sinh ra dựa trên hiệu ứng quang điện. Các pin năng lượng mặt trời có rất nhiều ứng dụng. Chúng đặc biệt thích hợp cho các vùng mà mạng lưới điện chưa vươn tới, các loại thiết bị viễn thám, cầm tay như các vệ tinh quay xung quanh quỹ đạo trái đất, máy tính cầm tay, điện thoại di động,... Pin năng lượng mặt trời thường được chế tạo thành các module hay các tấm năng lượng mặt trời nhằm tạo ra các tấm pin có diện tích tiếp xúc với ánh sáng mặt trời lớn. Vật liệu dùng để chế tạo pin mặt 10
- trời hiện nay chủ yếu là Si, mặc dù hiệu suất của loại vật liệu này chưa cao, khoảng 15% cho các sản phẩm thương mại. Hiệu suất chuyển đổi năng lượng mặt trời lý thuyết có thể lên đến khoảng 33 %, tuy nhiên để nâng cao được hiệu suất pin mặt trời trên cơ sở Si, yêu cầu về việc chế tạo vật liệu và linh kiện là rất cao và tốn kém. Trong kĩ thuật điện tử chỉ sử dụng một số chất bán dẫn có cấu trúc đơn tinh thể, quan trọng nhất là hai nguyên tố Germani (Ge) và Silic (Si) thuộc nhóm 4 trong bảng tuần hoàn. Thông thường Ge và Si được dùng làm chất chính còn các chất như Bo, Indi (nhóm 3), photpho, Asen (nhóm 5) làm tạp chất cho các vật liệu bán dẫn chính. Đặc điểm cấu trúc mạng tinh thể này là độ dẫn điện của nó rất nhỏ khi ở nhiệt độ thấp và nó sẽ tăng theo lũy thừa với sự tăng của nhiệt độ và tăng gấp bội khi có trộn thêm tạp chất. Si và Ge có tính chất chung trong cấu tạo nguyên tử của chúng là có 4 electron hóa trị ở trên phân lớp ngoài. Giữa các nguyên tử Si (Ge) có sự liên kết đồng hóa trị, mỗi nguyên tử liên kết với 4 nguyên tử xung quanh bằng cách trao đổi electron của chúng với nhau [1, 2]. Vật liệu Ge khối có vùng dẫn xiên khoảng 0,66 eV có khả năng duy trì thời gian sống của hạt tải và một vùng dẫn thẳng trong khoảng 0,8 eV ở nhiệt độ phòng [2]. Với năng lượng vùng cấm này, vật liệu Ge được lựa chọn làm các linh kiện chuyển đổi ánh sáng hồng ngoại thành các tín hiệu điện – detector hồng ngoại với hiệu suất hấp thụ photon là khá tốt [20]. Chỉ xét riêng về độ rộng vùng cấm thì vật liệu Ge có khe năng lượng khá gần với năng lượng lý thuyết lý tưởng cho hiệu suất cao nhất của pin mặt trời đơn lớp bán dẫn. Hơn nữa Ge thân thiện với môi trường, nó có triển vọng lớn trong việc kết hợp và thay thế các loại vật liệu kể trên trong việc thực hiện hóa các loại pin mặt trời hiệu suất cao. Việc pha trộn hai loại vật liệu Si và Ge đã được quan tâm 11
- nghiên cứu từ rất sớm [8, 1719], tùy thuộc vào cấu thành của loại hỗn hợp này người ta có thể thay đổi được độ rộng vùng cấm của vật liệu [2]. Ở kích thước nano, các tính chất vật lý của các loại vật liệu này thay đổi rất lớn, đôi khi nhiều tính chất mới thú vị được đưa ra. Các giải thích về sự thay đổi này chủ yếu dựa trên hiệu ứng giam cầm lượng tử [3]. Những tính chất vật lý mới này đôi khi khá phức tạp và khó kiểm soát, phụ thuộc vào nhiều yếu tố như kích thước và hình thái của vật liệu [3, 5]. Trong khi Si đã thể hiện một số biến thể quá trình nhân hạt tải điện như hiệu ứng cắt lượng tử hay cắt photon. Quá trình này một photon hấp thụ tại một hạt nano có thể tạo ra nhiều hơn hai cặp điện tử lỗ trống trong vật liệu. Điều này có ý nghĩa vô cùng to lớn trong việc tăng hiệu suất của pin mặt trời trên cơ sở Si. Tuy nhiên, độ rộng vùng cấm của vật liệu nano Si thường khá lớn (~ 2eV) dẫn đến khả năng áp dụng trong việc thu nhận và biến đổi năng lượng mặt trời là ít hiệu quả bởi phần lớn phổ mặt trời có năng lượng nhỏ hơn 2 eV sẽ không được tận dụng. Việc thay đổi độ rộng vùng cấm của nano Si là rất có ý nghĩa. Các nghiên cứu cơ bản việc pha trộn giữa Si và Ge nhằm tạo ra các tinh thể nano có các tính chất vật lý phù hợp với định hướng ứng dụng làm tăng hiệu suất quang điện tử là cần thiết [8, 20, 22, 23, 24]. Với yêu cầu như trên, chúng tôi thực hiện đề tài: “Nghiên cứu chế tạo và tính chất vật lý của vật liệu nano tinh thể SixGe1x trên nền SiO2”. Luận văn được tiến hành dựa trên các phương pháp thực nghiệm sẵn có tại cơ sở nghiên cứu, bao gồm: * Chế tạo vật liệu nano tinh thể SixGe1x với các thành phần Si và Ge khác nhau trên nền vật liệu SiO2 bằng phương pháp phún xạ catot. * Các phương pháp nghiêu cứu tính chất vật lý của vật liệu nano tinh thể SixGe1x gồm nhiễu xạ kế tia X (XRD), hiển vi điện tư truyền qua (TEM), Hiển vi điện tử quét (SEM), quang phổ kế Raman, hệ hấp thụ quang học. 12
- Để thực hiện đề tài chúng tôi đã chia đề tài thành những phần sau: Chương 1. Tổng quan về Si, Ge: Giới thiệu chung về cấu tạo, tính chất của Si, Ge, SiO2 và SixGe1x. Chương 2. Thực nghiệm: Trình bày ưu điểm cơ chế, quy trình của công nghệ phún xạ, các kĩ thuật thực nghiệm để khảo sát cấu trúc, hình thái và tính chất vật lý của vật liệu như nhiễu xạ kế tia X, hiển vi điện tử quét (SEM), hiển vi điện tử truyền qua (TEM), hệ quang phổ kế hấp thụ dải nhìn thấy và cực tím (UVVIS). Chương 3. Kết quả và thảo luận: Trình bày một số kết quả đạt được trong phân tích cấu trúc của vật liệu trên cơ sở các phép đo nhiễu xạ tia X, hiển vi điện tử quet SEM và các k ́ ết quả về phép đo phổ hấp thụ Kết quả thu được: Chọn được phương pháp thực nghiệm phù hợp với điều kiện cho phép để chế tạo được vật liệu lai hóa SiGe có cấu trúc nano. Chế tạo được mẫu theo các thành phần mong muốn. Nắm bắt được một số tính chất vật lý cơ bản của vật liệu như sự thay đổi của hằng số mạng tinh thể, chuyển mức thẳng và chuyển mức xiên trong vật liệu bán dẫn, sự phụ thuộc của một số chuyển mức cơ bản vào thành phần, cấu trúc và kích thước nano tinh thể. Có một bài báo được đăng trong tạp chí Nanotechnology (8/2015), Nhà xuất bản Viện Vật lý, Vương quốc Anh (IOP), với chỉ số tác động năm đã xét trong năm 2014 – Impact factor IF = 3.82. 13
- CHƯƠNG 1 TỔNG QUAN 1.1. Tính chất quang của vật liệu bán dẫn 1.1.1. Đặc điểm cấu trúc vùng năng lượng của chất bán dẫn Cấu trúc vùng năng lượng của bán dẫn quyết định trực tiếp đến tính chất phát quang của bán dẫn, vì vậy việc tìm hiểu cấu trúc năng lượng của nó là cần thiết. Ở nhiệt độ thấp, bán dẫn là những chất có phổ năng lượng gồm các vùng cho phép điền đầy hoàn toàn và các vùng trống hoàn toàn. Trong đó vùng trống hoàn toàn thấp nhất là vùng dẫn, mức năng lượng cực tiểu của vùng dẫn gọi là đáy vùng dẫn, kí hiệu EC. Vùng điền đầy cao nhất là vùng hóa trị gọi là đỉnh vùng hóa trị, kí hiệu EV. Khoảng cách năng lượng Eg = EC EV gọi là bề rộng vùng cấm. Trạng thái điện tử trong các vùng năng lượng cho phép được đặc trưng bởi năng lượng và vectơ sóng. Tại lân cận các điểm cực trị, sự phụ thuộc giữa năng lượng E và vectơ sóng trong các vùng năng lượng cho phép rất phức tạp. Lân cận các điểm cực trị này sự phụ thuộc E() có thế xem gần đúng có dạng một hàm bậc hai, tương ứng như sau [2, 4, 8]: Đối với điện tử: (1.1) Đối với lỗ trống: (1.2) Trong trường hợp tổng quát khối lượng hiệu dụng của điện tử m*e và lỗ trống m*p là những đại lượng tenxơ phụ thuộc vào hướng trong tinh thể. Dựa vào cấu trúc của vùng cấm, người ta chia bán dẫn ra làm 2 loại khác nhau: + Bán dẫn có đỉnh của vùng hóa trị và đáy vùng dẫn có cùng một vectơ sóng gọi là vùng cấm thẳng. Sự chuyển mức mức năng lượng trong cùng một vectơ sóng gọi là chuyển mức thẳng. 14
- + Bán dẫn có đỉnh của vùng hóa trị và đáy vùng dẫn không cùng một vectơ sóng gọi là bán dẫn vùng cấm xiên. Sự chuyển mức xảy ra giữa hai mức năng lượng này trong bán dẫn này gọi là chuyển mức xiên [2, 9]. 1.1.2. Các quá trình phát quang xảy ra trong vật liệu bán dẫn Sự phát quang của vật liệu bán dẫn gồm hai quá trình chính là quá trình hấp thụ và quá trình tái hợp. Quá trình hấp thụ xảy ra khi điện tử chuyển lên vùng dẫn khi được kích thích bởi năng lượng bên ngoài như quang năng, nhiệt năng [2, 9]. Khi điện tử được kích thích lên trạng thái có năng lượng cao, nó luôn có xu hướng hồi phục về giá trị năng lượng thấp và giải phóng ra năng lượng. Quá trình này gọi là quá trình tái hợp. Năng lượng giải phóng ra trong quá trình tái hợp có thể thể hiện dưới (1) dạng ánh sáng – tái hợp phát xạ; (2) nhiệt năng bằng việc truyền năng lượng cho mạng tinh thể bởi quá trình sinh ra các dao động mạng phonon; (3) truyền năng lượng cho hạt tải khác – tái hợp Auger [2, 9]. Quá trình tái hợp thứ (2) và (3) là các quá trình tái hợp không phát xạ. Đối với hai loại bán dẫn vùng cấm thẳng và vùng cấm xiên, quá trình tái hợp hoàn toàn khác nhau. Điều này đồng nghĩa với quá trình phát quang của các loại vật liệu này là khác nhau. 1.1.2.1. Tái hợp chuyển mức thẳng Chuyển mức thẳng là chuyển mức vùng vùng xẩy ra trong quá trình bán dẫn có đỉnh vùng hóa trị và đáy vùng dẫn nằm trên cùng một vecto sóng. Khi điện tử hấp thụ một photon, nếu năng lượng của photon kích thích ≥ Eg thì điện tử sẽ chuyển lên vùng dẫn. Trong khi đó, ở vùng hóa trị đồng thời xuất hiện một lỗ trống tương ứng và lỗ trống này có xu hướng chuyển về đỉnh vùng hóa trị. Khi ở trong vùng dẫn các điện tử có xu hướng chuyển về đáy vùng dẫn [9]. 15
- Hình 1.: Mô hình tái hợp chuyển mức thẳng Thời gian hồi phục của điện tử và lỗ trống về đáy vùng dẫn và đỉnh vùng hóa trị tương ứng là 1014 đến 1012 giây. Sau thời gian hồi phục, điện tử và lỗ trống đã ở điểm cực trị của các vùng năng lượng, sau đó xảy ra quá trình tái hợp giữa điện tử và lỗ trống. Quá trình tái hợp vùng – vùng của chuyển mức thẳng xảy ra tuân theo định luật bảo toàn năng lượng và bảo toàn xung lượng. 1.3 1.4 Ở đây EC là năng lượng cực tiểu của vùng dẫn, EV là năng lượng cực đại của vùng hóa trị là vectơ sóng của điện tử và lỗ trống [2, 9]. Mô hình tái hợp chuyển mức thẳng mô tả như hình 1.1 1.1.2.2. Tái hợp chuyển mức xiên Trong bán dẫn này nếu đáy vùng dẫn và đỉnh vùng hóa trị không nằm trên một vectơ sóng thì chuyển mức trong bán dẫn là chuyển mức vùng – vùng không thẳng gọi là chuyển mức xiên. Quá trình chuyển mức này luôn kèm theo sự hấp thụ hoặc bức xạ phonon [9] 1.5 1.6 16
- Trong đó Ep là năng lượng của phonon, là vectơ sóng của phonon. Trong quá trình hấp thụ cơ bản chuyển mức xiên có sự tham gia của ba hạt (điện tử, photon, phonon). Giải thích quá trình chuyển mức xiên thành hai giai đoạn “Hình 1.2”. trong giai đoạn thứ nhất, điện tử từ vùng hóa trị hấp thụ photon và chuyển lên mức thẳng lên một trạng thái giả định, thời gian sống của trạng thái giả định rất nhỏ nên độ bất định của trạng thái này có thể rất lớn nên không nhất thiết phải thỏa mãn định luật bảo toàn năng lượng trong giai đoạn thứ nhất này. Hình 1.: Mô hình tái hợp chuyển mức xiên Trong giai đoạn thứ hai, điện tử chuyển từ trạng thái giả định trong vùng dẫn vào trạng thái cuối ở cực tiểu EC của vùng dẫn bằng cách hấp thụ bức xạ một phonon [2, 9]. Sự tái hợp chuyển mực xiên, biểu diễn trên hình 1.2 17
- 1. 2. Giới thiệu về vật liệu bán dẫn Silic: 1.2.1. Vật liệu bán dẫn Silic tinh thể khối. Silic (Si) là nguyên tố nhóm IV của bảng hệ thống tuần hoàn Medeleev (được phát hiện năm 1824). Nó là nguyên tố phổ biến thứ 2 sau Oxy trong tự nhiên, Si chiếm khoảng ¼ khối lượng vỏ trái đất. Những thông số chính xác của Si như sau [1, 2, 4]: Bảng 1.: Các thông số vật lý cơ bản của vật liệu Si khối ở nhiệt độ 0 tuyệt đối (0 K) và nhiệt độ phòng (300K). [1, 2, 4, 9] Các tính chất vật lý Các thông số Số nguyên tử 14 Nguyên tử lượng 28,1 Cấu hình điện tử (1s2 )( 2s2 )(2p6 )(3s2 )(3p2) Kiểu kim cương (Lập phương tâm Cấu trúc tinh thể mặt) Trọng lượng riêng 2,3283 g/cm3 Hằng số điện môi 12 Số nguyên tử/cm3 5,0.1022 18
- Năng lượng vùng cấm ở 0 K và 300K 1,17 eV ; 1,12 eV Hằng số mạng ở 300 K (5,43072 ± 0,00001) Å Nhiệt độ nóng chảy 1412 oC ni(cm3);ni2 =1,5.1033T3.eEg/kT Nồng độ hạt dẫn riêng Với T = 300K thì ni = 1,5.1010 cm−3 Hình 1. : (a) Mô hình cấu trúc tinh thể kiểu kim cương với hai mạng lập phương tâm mặt lồng vào nhau [2, 10]. (b) Vùng Brilouin thứ nhất của Silic [2, 10]. 1.2.2. Cấu trúc vùng năng lượng và tính chất quang của Silic tinh thể khối Nguyên tử Si có 14 điện tử, với cấu hình vỏ điện tử (1s2)(2s2)(2p6)(3s2) (3p2), có hai lớp điện tử đầy hoàn toàn toàn, lớp thứ ba chưa điền đầy. Nếu như kết tinh thành tinh thể, các vùng năng lượng cho phép hình thành đúng như từ các mức năng lượng nguyên tử cô lập thì Si sẽ là kim loại. Vùng năng lượng được tạo nên từ mức np2 sẽ chứa được 6N điện tử (N số nguyên tử trong tinh 19
- thể), nhưng trong tinh thể Si chỉ có 2N điện tử chính vì vậy Si thể hiện tính dẫn điện của kim loại. [2, 9, 10] Trong thực tế Si là chất bán dẫn điển hình, nguyên nhân là do khi hình thành tinh thể mức p và mức s trong nguyên tử tự do kết hợp với nhau và tạo thành hai vùng cho phép ngăn cách nhau bởi một vùng cấm. Vùng phía dưới chứa được 4N điện tử và điền đầy hoàn toàn, tạo nên vùng hóa trị của tinh thể. Vùng phía trên cũng chứa được 4N điện tử nhưng trống hoàn toàn và trở thành vùng dẫn. Trong vùng hóa trị của Si có các vùng con chồng lên nhau, các vùng con được gọi là nhánh năng lượng. Cực đại của nhánh thứ nhất và nhánh thứ hai trùng nhau và nằm ở tâm vùng Brillouin, cực đại của nhánh thứ 3 cũng ở tâm vùng Brillouin nhưng hạ thấp xuống một khoảng ΔES= 0,035 eV do tương tác spin quỹ đạo. Một điểm quan trọng của vùng dẫn là theo hướng tinh thể [100] nhánh năng lượng đánh số 2 có một cực tiểu tuyệt đối nằm gọn trong vùng Brillouin. Do tính đối xứng của tinh thể nên có tất cả 6 cực tiểu như thế trong vùng Brillouin thứ nhất [10]. 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tóm tắt luận văn thạc sĩ khoa học xã hội và nhân văn: Ảnh hưởng của văn học dân gian đối với thơ Tản Đà, Trần Tuấn Khải
26 p | 789 | 100
-
Tóm tắt luận văn thạc sĩ khoa học: Bài toán tô màu đồ thị và ứng dụng
24 p | 493 | 83
-
Luận văn thạc sĩ khoa học: Hệ thống Mimo-Ofdm và khả năng ứng dụng trong thông tin di động
152 p | 328 | 82
-
Tóm tắt luận văn thạc sĩ khoa học: Bài toán màu và ứng dụng giải toán sơ cấp
25 p | 372 | 74
-
Tóm tắt luận văn thạc sĩ khoa học: Bài toán đếm nâng cao trong tổ hợp và ứng dụng
26 p | 414 | 72
-
Tóm tắt luận văn thạc sĩ khoa học: Nghiên cứu thành phần hóa học của lá cây sống đời ở Quãng Ngãi
12 p | 544 | 61
-
Tóm tắt luận văn Thạc sĩ Khoa học: Nghiên cứu vấn đề an ninh mạng máy tính không dây
26 p | 517 | 60
-
Luận văn thạc sĩ khoa học Giáo dục: Biện pháp rèn luyện kỹ năng sử dụng câu hỏi trong dạy học cho sinh viên khoa sư phạm trường ĐH Tây Nguyên
206 p | 301 | 60
-
Tóm tắt luận văn thạc sĩ khoa học: Bài toán tìm đường ngắn nhất và ứng dụng
24 p | 344 | 55
-
Tóm tắt luận văn thạc sĩ khoa học: Bất đẳng thức lượng giác dạng không đối xứng trong tam giác
26 p | 313 | 46
-
Tóm tắt luận văn Thạc sĩ Khoa học xã hội và nhân văn: Đặc trưng ngôn ngữ và văn hóa của ngôn ngữ “chat” trong giới trẻ hiện nay
26 p | 322 | 40
-
Tóm tắt luận văn thạc sĩ khoa học: Bài toán ghép căp và ứng dụng
24 p | 265 | 33
-
Tóm tắt luận văn thạc sĩ khoa học xã hội và nhân văn: Phật giáo tại Đà Nẵng - quá khứ hiện tại và xu hướng vận động
26 p | 236 | 22
-
Tóm tắt luận văn Thạc sĩ Khoa học: Nghiên cứu ảnh hưởng của quản trị vốn luân chuyển đến tỷ suất lợi nhuận của các Công ty cổ phần ngành vận tải niêm yết trên sàn chứng khoán Việt Nam
26 p | 287 | 14
-
Tóm tắt luận văn Thạc sĩ Khoa học xã hội và nhân văn: Thế giới biểu tượng trong văn xuôi Nguyễn Ngọc Tư
26 p | 250 | 13
-
Tóm tắt luận văn Thạc sĩ Khoa học xã hội và nhân văn: Đặc điểm ngôn ngữ của báo Hoa Học Trò
26 p | 215 | 13
-
Tóm tắt luận văn Thạc sĩ Khoa học xã hội và nhân văn: Ngôn ngữ Trường thơ loạn Bình Định
26 p | 194 | 5
-
Luận văn Thạc sĩ Khoa học giáo dục: Tích hợp nội dung giáo dục biến đổi khí hậu trong dạy học môn Hóa học lớp 10 trường trung học phổ thông
119 p | 5 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn