intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Luận văn Thạc sĩ Khoa học: Nghiên cứu tạo kháng thể đa dòng kháng kháng nguyên đặc hiệu trên vỏ bào tử B. anthracis.

Chia sẻ: Na Na | Ngày: | Loại File: PDF | Số trang:55

173
lượt xem
24
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Mục tiêu của đề tài bao gồm: Tạo kháng thể đa dòng kháng lại 1 protein đặc trưng trên vỏ bảo tử vi khuẩn Bacillus anthracis (protein này được sản xuất theo con đường tái tổ hợp); kiểm tra khả năng phản ứng của kháng thể đa dòng này với protein đó trên vỏ bào tử vi khuẩn Bacillus anthracis.

Chủ đề:
Lưu

Nội dung Text: Luận văn Thạc sĩ Khoa học: Nghiên cứu tạo kháng thể đa dòng kháng kháng nguyên đặc hiệu trên vỏ bào tử B. anthracis.

  1. Luận văn thạc sỹ Nguyễn Thành Đạt-K18 Sinh học ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN THÀNH ĐẠT NGHIÊN CỨU TẠO KHÁNG THỂ ĐA DÒNG KHÁNG KHÁNG NGUYÊN ĐẶC HIỆU TRÊN VỎ BÀO TỬ B. anthracis Chuyên ngành: Sinh học thực nghiệm Mã số: 60. 42. 30 LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC GS.TS. ĐỖ NGỌC LIÊN HÀ NỘI, 2012 1
  2. Luận văn thạc sỹ Nguyễn Thành Đạt-K18 Sinh học MỞ ĐẦU Trong lịch sử phát triển lĩnh vực công nghệ sinh học, nghiên cứu ứng dụng miễn dịch học đã được đưa vào thực tiễn từ rất sớm. Cho đến nay, đã có rất nhiều công trình nghiên cứu ứng dụng thành công các sản phẩm của hệ miễn dịch vào các lĩnh vực trong cuộc sống như trong Y học điều trị bệnh ung thư, chẩn đoán lâm sàng phát hiện bệnh, phát hiện các tác nhân vi sinh vật, các loại độc chất, ma túy, khoa học hình sự, phát hiện ô nhiễm môi trường… với nhiều phương pháp như ELISA, Western Blot, Dot Blot, miễn dịch huỳnh quang, sắc ký miễn dịch dòng bên (que thử nhanh dạng sắc ký miễn dịch)…Các kỹ thuật trên đều sử dụng đến sản phẩm của hệ miễn dịch là kháng thể đa dòng và kháng thể đơn dòng. Ngày nay, các vi sinh vật nguy hiểm trong đó có vi khuẩn than (B. anthracis ) đã và đang được sử dụng để chế tạo vũ khí sinh học nhằm mục đích khủng bố. Hiện nay, trên thế giới đã xuất hiện nhiều test nhanh dạng sắc ký miễn dịch đã được thương mại hóa. Chúng có ưu điểm là thời gian cho kết quả nhanh chóng, độ chính xác cao, nhưng giá thành của các loại test này còn ở mức cao và thời gian nhập khẩu lâu. Mặt khác, ở Việt Nam, các vi sinh vật này chủ yếu được phát hiện qua các phương pháp PCR, ELISA...Nhược điểm của các phương pháp này là cần một thời gian lâu để cho kết quả. Do đó, cần phải có công cụ để sàng lọc nhanh nhằm phát hiện sớm sự có mặt các tác nhân vi sinh vật này. Xuất phát từ thực tế trên, chúng tôi tiến hành đề tài: “ Nghiên cứu tạo kháng thể đa dòng kháng kháng nguyên đặc hiệu trên vỏ bào tử B. anthracis.” 2
  3. Luận văn thạc sỹ Nguyễn Thành Đạt-K18 Sinh học Mục tiêu của đề tài bao gồm:  Tạo kháng thể đa dòng kháng lại 1 protein đặc trưng trên vỏ bảo tử vi khuẩn Bacillus anthracis (protein này được sản xuất theo con đường tái tổ hợp)  Kiểm tra khả năng phản ứng của kháng thể đa dòng này với protein đó trên vỏ bào tử vi khuẩn Bacillus anthracis. Đây là bước đầu tiên trên con đường nghiên cứu sử dụng kháng nguyên tái tổ hợp để sản xuất kháng thể đơn dòng tại Viện Kỹ thuật Hóa sinh và Tài liệu Nghiệp vụ - Tổng cục Hậu cần Kỹ thuật-Bộ Công An. 3
  4. Luận văn thạc sỹ Nguyễn Thành Đạt-K18 Sinh học CHƯƠNG 1. TỔNG QUAN TÀI LIỆU 1.1. Vi khuẩn B. anthracis 1.1.1. Đặc điểm vi khuẩn B. anthracis B. anthracis (vi khuẩn than) là vi khuẩn đầu tiên được xác định là vi khuẩn gây bệnh. Vào năm 1877, R. Koch đã nuôi vi khuẩn này dưới dạng chủng thuần khiết, chứng minh được khả năng hình thành bào tử của nó và gây được bệnh than thực nghiệm bằng cách cấy nó vào cơ thể động vật. Vi khuẩn than thuộc loài Bacillus, họ Bacillaceae. Chi Bacillus là các trực khuẩn Gram dương, có bào tử, kỵ khí tuỳ tiện. Các vi khuẩn này gồm nhiều loài, đa số không gây bệnh, một số gây nhiễm trùng nhiễm độc thức ăn (B. cereus), một số có lợi cho con người (B. subtilis , B. thuringiensis, B. mycoides). B. anthracis có đặc điểm khác biệt với 3 loài trực khuẩn hiếu khí có bào tử trên là ở tính có độc lực của nó. B. anthracis có plasmids pXO1; pXO2 và plasmid mã hoá capsule, vỏ chỉ hình thành trong môi trường giàu chất dinh dưỡng, hoặc được nuôi cấy trong môi trường dinh dưỡng 0,7% Natri bicarbonat, ở nhiệt độ 37C trong điều kiện giàu CO2 (20%). [3] Về mặt hình thái, vi khuẩn than hình thẳng, hai đầu vuông, có kích thước từ 11,5 310m, thường xếp thành từng chuỗi giống như cây tre, bắt màu Gram (+). Ở điều kiện ngoại cảnh hoặc trong môi trường nuôi cấy nghèo dinh dưỡng, vi khuẩn hình thành bào tử, nằm giữa thân và không làm thay đổi hình thể vi khuẩn. Trên động vật bị bệnh hoặc môi trường nuôi cấy đặc biệt vi khuẩn có vỏ. Trong môi trường lỏng vi khuẩn không di động. [5] Vi khuẩn B. anthracis Bào tử vi khuẩn B. anthracis 4
  5. Luận văn thạc sỹ Nguyễn Thành Đạt-K18 Sinh học Khuẩn lạc có kích thước lớn, đường kính 0,3 - 0,5 cm. Màu khuẩn lạc trắng đến trắng ghi. Bề mặt khuẩn lạc ướt, hơi dính, không gây tan huyết trên thạch máu cừu (nhưng trên thạch máu thỏ có thể gây tan huyết). Trong các chương trình về vũ khí sinh học (VKSH) vi khuẩn gây bệnh than B. anthracis được coi là tác nhân sinh học thường đựơc chú ý quan tâm nhiều nhất vì trực khuẩn than có thể tồn tại trong thiên nhiên dưới dạng nha bào (bào tử) trong thời gian hơn 10 năm, có khả năng chịu nhiệt 160 độ C trong vòng 5 phút, chịu nước sôi đến 10 phút... . Người bị nhiễm bệnh than qua 3 con đường: qua da, đường tiêu hoá và đường thở. Bào tử than khi bị hít thở qua mũi chúng có khả năng vào tới các phế nang để gây bệnh than thể hô hấp và cư trú ở các phế bào của phế nang, qua hệ thống mạch bạch huyết chuyển tới hạch lympho của trung thất. Tại đó các vi khuẩn gây bệnh than này sinh trưởng và xâm nhập theo đường máu gây nhiễm khuẩn huyết và nhiễm khuẩn nhiều nơi trong cơ thể, gây tỷ lệ tử vong rất cao [3]. Độc tố của vi khuẩn than có sự tham gia của 3 yếu tố cấu thành: kháng nguyên bảo vệ (Protective Antigen-PA), giúp hai cấu tử khác là yếu tố gây phù nề (Edema Factor -EF) và yếu tố gây chết (Lethal Factor -LF) xâm nhập được vào tế bào của vật chủ và gây độc. Về bản chất đây là 3 peptid do bản thân vi khuẩn sinh ra. Yếu tố gây phù nề làm bất hoạt tế bào bạch cầu trung tính của vật chủ làm cho các tế bào này không có khả năng thực bào để tiêu diệt vi khuẩn. Các nhà nghiên cứu cho rằng yếu tố gây chết của vi khuẩn than kích thích các đại thực bào sản sinh TNF-alpha và interleukin-1-beta (cả hai yếu tố này là thành phần của hệ miễn dịch có tác dụng trong phản ứng viêm và sốc phản vệ) và yếu tố này có thể gây chết vật chủ. Đây cũng là yếu tố khác biệt chủ yếu của B. anthracis so với các chủng tương tự như B. cereus…[9,10] 5
  6. Luận văn thạc sỹ Nguyễn Thành Đạt-K18 Sinh học Hình 1: Nguyên lý gây bệnh than của vi khuẩn B. anthracis [3 ] Trước đây việc chẩn đoán xác định B. anthracis trong phòng thí nghiệm chủ yếu dựa vào việc phát hiện hình thái học và đặc điểm sinh học. Các kỹ thuật DNA gần đây đáp ứng được yêu cầu phát hiện chính xác, cho phép phân biệt B. anthracis với các loại trực khuẩn khác trong “nhóm B. cereus” như B. cereus, B. thuringiensis và B. mycoides...Đó là dựa vào sự có mặt của hai plasmids lớn (pXO1; pXO2) của trực khuẩn than chứa gen độc lực. [3,7] 1.1.2. Đặc điểm bào tử vi khuẩn B. anthracis . Bào tử vi khuẩn B. anthracis được hình thành trong môi trường thiếu các chất dinh dưỡng thiết yếu. Trong quá trình hình thành này sẽ có một sự phân chia không đối xứng của tế bào sinh dưỡng tạo ra một phần lớn và một phần nhỏ tương ứng là tế bào mẹ (mother cell) và tiền bào tử (forespore). Các tế bào mẹ sau đó bao lấy phần tiền bào tử, các lớp của bào tử dần được hình thành. Do đó bào tử của B. anthracis bao gồm các lớp chính sau: lõi (spore core), vỏ lõi (cortex), vỏ bào tử (exosporium). Cuối cùng tế bào mẹ phân giải tạo nên các bào tử trưởng thành, các bào tử này không hoạt động nhưng có khả năng sống sót trong môi trường khắc nghiệt qua nhiều năm [10]. 6
  7. Luận văn thạc sỹ Nguyễn Thành Đạt-K18 Sinh học Hình 2: Quá trình hình thành bào tử vi khuẩn than B. anthracis [10] Phần lõi dày là biến đổi của peptidoglycan, lớp vỏ lõi bao lấy phần lõi và chứa khá nhiều protein, lớp vỏ bào tử là phần ngoài cùng có cấu trúc giống như quả bóng, liên kết lỏng lẻo, được xem là nơi tiếp xúc bề mặt giữa bào tử và môi trường [12]. Trong khi ở B. subtilis , lớp áo (coat) là lớp ngoài cùng của bào tử thì ở vi khuẩn B. anthracis , B. thuringiensis, B. cereus có vỏ bào tử là lớp ngoài cùng. Cả áo bào tử và vỏ bào tử đều có cấu trúc linh hoạt, khả năng đàn hồi tốt. Mặt khác trên áo và vỏ bào tử tập trung một số enzyme có tác dụng bảo vệ. Hình 3: Cấu tạo bào tử quan sát dưới kính hiển vi điện tử [3,5 ] 7
  8. Luận văn thạc sỹ Nguyễn Thành Đạt-K18 Sinh học Ở hình 3a, là cấu tạo bào tử của vi khuẩn B. subtilis , có lớp ngoài cùng là áo bào tử (Oc: outer coat layer). Ở lớp này tập trung chủ yếu các protein (chiếm khoảng 30% protein bào tử). Ước tính có khoảng 70 protein trên lớp áo bào tử, phần lớn các protein này là đặc hiệu cho chủng B. subtilis , người ta thường dựa vào các protein đó để kiểm tra sự có mặt của vi khuẩn này. Khác với vi khuẩn B. subtilis có lớp áo bào tử dày với lớp bên trong sáng và lớp bên ngoài tối, vi khuẩn than có áo bào tử mỏng. Lớp này được phân cách với lớp ngoài cùng bởi khoảng giữa (Is: interspace). Đối với các chủng B. anthracis , B. cereus , B. thuringiensis, B. mycoides và một số thuộc nhóm Clostridia thì lớp ngoài cùng là vỏ bào tử. Hình 3b và hình 4 mô tả cấu tạo bào tử của vi khuẩn than. Hình 4: Cấu tạo các lớp của bào tử vi khuẩn than [3,5] Cấu tạo lớp ngoài cùng của bào tử gồm 2 lớp sau: lớp cơ bản (Bl: basal layer) và một phần bên ngoài giống như các sợi lông (Hn: hair-like nap). Khi quan sát dưới kính hiển vi điện tử và dùng nhiễu xạ X-quang, người ta thấy lớp cơ bản dày khoảng 190A0 được hình thành từ các lớp mỏng hơn. Lớp cơ bản gồm 4 tấm kết tinh, mỗi tấm có cấu trúc lỗ có hình lục giác. Ở B. cereus và B. anthracis thì lớp cơ bản dày khoảng 20- 30nm. [14]. Phần lông bao quanh bên ngoài là một glycoprotein gọi là BclA (Bacillus collagen-like protein of anthracis). Phần cấu trúc của BclA sẽ được mô tả cụ thể ở phần 8
  9. Luận văn thạc sỹ Nguyễn Thành Đạt-K18 Sinh học sau. Vỏ bào tử chiếm khoảng 2% khối lượng của bào tử và có khoảng 50% protein, 20% lipid , 20% polysaccharides trung tính, và 10% là các thành phần khác. Chức năng chính của vỏ bào tử là chống lại các tác nhân môi trường, do bề mặt kỵ nước nên làm tăng khả năng kết dính của bào tử. Mặt khác trên vỏ bào tử chứa một số enzyme có chức năng hoạt hoá sự hoạt động của bào tử. Vỏ bào tử cũng chính là điểm đầu tiên để bào tử tương tác với tế bào vật chủ của hệ thống miễn dịch [8]. 1.1.3. Một số protein trên vỏ bào tử của vi khuẩn than Các protein trên vỏ bào tử B. anthracis là đối tượng thường được sử dụng để phát hiện sự có của vi khuẩn than. Theo thống kê của một số tài liệu [14] thì có khoảng gần 20 protein có mặt trên vỏ bào tử của vi khuẩn này. Có thể kể đến một số protein sau: BclA, Alanine racemase (Alr), Inosine hydrolase (InH), Protein ExsF, Protein CotY, Protein Cot E, Protein Cot H, Protein ExsY, Protein CotB, Protein giả thuyết ExsK, Protein BxpB, Protein BclA, Protein BxpA... Các protein nhóm D là các enzyme. Alanine racemase (Alr), Inosine hydrolase (InH), Fe/Mn-SOD (Fe/Mn-superoxide dismutase). Các enzyme này có vai trò trong việc bảo vệ bào tử khỏi phản ứng ôxy hoá đồng thời ngăn chặn sự nảy mầm sớm. Người ta đã chứng minh được rằng những enzyme kể trên xuất hiện ở giai đoạn trưởng thành của vỏ bào tử vi khuẩn. Alr chuyển hoá L-alanine thành D-alanine (một chất ức chế sự nảy mầm), InH sẽ phân huỷ inosine ngăn cản quá trình nảy mầm bằng cách giảm tối thiểu lượng inosine [14]. Các protein nhóm E như ExsY, CotY, CotB. Những protein này có thể được đính ở lớp cơ bản hoặc lớp ngoài của áo bào tử. Chúng tham gia trong quá trình lắp ráp của vỏ bào tử. Nhóm các protein bào tử bao gồm các protein có cùng nguồn gốc với các protein của các protein của B. subtilis có vai trò gắn với lớp áo (coat) hoặc các thành phần phía ngoài áo. 9
  10. Luận văn thạc sỹ Nguyễn Thành Đạt-K18 Sinh học Hình 5: Các protein trên vỏ bào tử của một vài loại vi khuẩn [ 14 ] 10
  11. Luận văn thạc sỹ Nguyễn Thành Đạt-K18 Sinh học Protein nhóm F như BclA, ExsB, ExsC, ExsD,BxpB,... là các protein có trọng lượng phân tử cao. Có thể kể đến những đặc điểm cơ bản của một số protein thuộc nhóm này. BxpB được tìm thấy ở lớp cơ bản nhờ đánh dấu miễn dịch huỳnh quang bằng vàng. Protein này tạo phức liên kết hoá trị mạnh với BclA, các protein khác ở lớp cơ bản và lớp lông bên ngoài gồm ExsY và CotY. Khi BxpB được tách chiết từ bào tử bằng SDS, nó được tách ở cả dạng đơn phân và dạng phức hệ khối lượng phân tử lớn với BclA. BxpB bị đột biến không có khả năng bám với lông bên ngoài, mặc dù BclA vẫn được tổng hợp bình thường. Thiếu BxpB dẫn đến bào tử nảy mầm nhanh hơn. Một nhóm các protein, như BxpA, BxpB (còn gọi ExsFA), BxpC, ExsC... chỉ được tìm thấy ở các vi sinh vật thuộc B. cereus (Bảng 1, nhóm F). Điều này cho thấy vỏ bào tử ở các sinh vật khác được gắn với lớp cơ bản bằng một nhóm các protein khác. Protein trên vỏ bào tử của vi khuẩn mang tính đặc hiệu thường được dùng như maker chỉ thị sự có mặt của vi khuẩn đó [14]. 1.1.4. BclA- kháng nguyên bề mặt vỏ bào tử để xác định sự có mặt của vi khuẩn than Như đã nói ở trên, một trong những thành phần chính của vỏ bào tử là lớp lông bên ngoài của vỏ bào tử có thành phần chủ yếu là BclA (Bacillus collagen-like protein of anthracis). Phần lông và sự liên kết của các sợi lông này lần đầu tiên được mô tả trong vỏ bào tử của B. anthracis vào năm 1966. BclA có cấu trúc giống như quả bóng được tạo nên ít nhất bởi 20 protein khác nhau. BclA cũng được tìm thấy trong nhóm B. cereus . Protein BclA (hình 6) bao gồm phần đầu N và vùng đầu C, thêm 1 vùng giống collagen, vùng này là sự lặp đi lặp lại của bộ GPT glycine, proline, và threonine. [12,16,17,20] Hình 6: Các phần cấu trúc của protein BclA Glycine là gốc acid amin đầu tiên trong các trình tự lặp lại 3 acid amin GXX trong đó X là các acid amin bất kỳ. 39% các gốc không phải glycine trong các trình tự 11
  12. Luận văn thạc sỹ Nguyễn Thành Đạt-K18 Sinh học lặp lại là proline, acid amin này có vai trò làm bền cấu trúc xoắn 3 sợi do giới hạn góc quay của chuỗi polypeptid. Các dự đoán dựa trên mô hình máy tính cho thấy BclA tồn tại dưới dạng xoắn. BclA tái tổ hợp tạo dạng cấu trúc xoắn tự nhiên khi làm nóng hoặc làm lạnh protein này. 35 acid amin vùng domain N của BclA có cấu trúc tương tự các thành viên của họ nhân tố hoại tử ung thư (TNF) và vai trò của nó đến nay vẫn chưa được làm rõ. Giải trình tự đầu N của protein tinh sạch từ bào tử cho thấy 19 gốc acid amin đầu tiên của protein bị xử lý để loại bỏ đầu N sau sinh tổng hợp. Đầu N nằm phía trong lớp cơ bản. Protein vùng lông có tính kỵ nước với khoảng 70 bộ ba các acid amin lặp lại giống collagen (GXX) và 54 bộ ba GPT. Tính chất kỵ nước của BclA có thể giải thích cho tính kỵ nước của cả bào tử. Giữa các aa 41-232 là trình tự lặp lại ((GPT)5GDTGTT)2 đặc trưng cho BclA. Vùng lặp lại của BclA rất đa dạng, cũng như phần đầu N và đầu C có trình tự đa hình, cho phép phân biệt giữa các loài và các chủng. Sự khác nhau về số lượng lặp lại cũng tương ứng với độ dài của lông trên vỏ bào tử. Các đột biến BclA sẽ làm mất khả năng nhìn thấy lông ở ngoài bề mặt vỏ bào tử. Vùng kết thúc đầu C (CTD: C-terminal domain ) gồm 134 acid amin là yếu tố cần thiết để hình thành cấu trúc xoắn ba lần (triple) của protein BclA. CTD có thể tạo thành dạng xoắn gồm 3 phần CTD một cách tự nhiên. Domain này nằm hướng ra phía ngoài lớp vỏ bào tử và là phần lộ ra ngoài chủ yếu của BclA. [17,19,20] 12
  13. Luận văn thạc sỹ Nguyễn Thành Đạt-K18 Sinh học Hình 7: Cấu trúc 3D của phân tử BclA [ 12,16,17 ] BclA tái tổ hợp kháng được một số protease nhưng rất dễ bị tác động bởi collagenase, trong khi đó BclA liên kết đường (glycosylated BclA) tự nhiên có thể kháng lại cả 2 enzyme này. Xử lý BclA tái tổ hợp bằng enzyme collagenase làm phân hủy các acid amin ở hai đầu của vùng giống collagen nhưng vùng CTD không bị phân hủy. BclA được dự đoán là có cấu trúc dạng kẹo que (lollipop), phần CTD tạo thành đầu xoắn của quả cầu protein. Domain CTD có dạng hình cầu và có độ tương đồng cao với protein bổ thể C1q và yếu tố hoại tử khối u. Cả BclA và bổ thể C1q đã được chứng minh là có khả năng tương tác với thành phần SP-C (một thành phần chính trên bề mặt phế nang phổi) Cấu trúc và vai trò của BclA trong bệnh học của B. anthracis đã được làm sáng tỏ. Khi điện di, BclA di chuyển giống protein có kích thước >70kDa, lớn hơn nhiều so với kích thước 34 kDa khi giải trình tự acid amin. Điều này có thể là do thành phần prolines khá nhiều, khiến sự di động của các protein giống collagen sẽ bị thay đổi. Các protein giống collagen này rất hiếm thấy ở sinh vật nhân sơ. Các gốc threonine lặp lại có thể là vị trí để đường hóa thông qua liên kết với nhóm OH của threonine. Các protein này có thể tạo cấu trúc xoắn gồm 3 phân tử mà không cần hydroxyproline như các protein ở sinh vật nhân chuẩn. Hai oligosaccharide được liên kết tại nhóm OH, một tetrasacchareide 715 kDa và một disaccharide 324 kDa được giải phóng khỏi bào tử và 13
  14. Luận văn thạc sỹ Nguyễn Thành Đạt-K18 Sinh học BclA bám vỏ bào tử sau khi xử lý phân giải với hydrazine (hydrazinolysis). Mỗi oligosaccharide có thể đính vào BclA thông qua liên kết đường. Tetrasaccharide được tìm thấy trong vùng giống collagen của BclA, disaccharide nằm ngoài khu vực này. Disaccharide bao gồm 1 phần rhamnose và một phần 3-O-rhamnose-methyl. Tetrasacchareide là 2-O-methyl-4-(3-hydroxy-3-methyl-butamido)-4,6-dideoxy-β-D- glucopyranosyl-(1 3)-α-L-rhamnopyransol-(1 3)-α-L-rhamnopyranosyl-(1 2)- L-rhamnopyranose (Hình 8). Hai phía của đường là 2-O-methyl-4-(3-hydroxy-3- methylbutamido)-4,6-dideoxy-D-glucose có tên là anthrose. Đường anthrose của BclA không tìm thấy trong các thành phần khác ngoài họ B. cereus mặc dù tất cả chúng đều có chứa protein BclA. Người ta sử dụng đường như là đích để sản xuất các bộ Kit phục vụ trong chẩn đoán. [20] Hình 8: Cấu trúc của Tetrasaccharide [20 ] Sự lặp lại của GPT được ổn định bởi sự glycosyl hoá. BclA tái tổ hợp được biểu hiện trong E.coli không bị glycosyl hoá. BclA hiếm khi không bị glycosyl hoá vì nó gián tiếp liên kết với sản phẩm của quá trình glycosyl hoá này. Khi các protein có 14
  15. Luận văn thạc sỹ Nguyễn Thành Đạt-K18 Sinh học nguồn gốc ở bào tử được xử lý với acid trifluoromethanesulfonic (TFMS) nhằm loại bỏ sự glycosyl hoá, protein vẫn giữ lại một phần đường. Bản chất quá trình glycosyl hoá tự nhiên của BclA đóng một vài trò quan trọng trong việc liên kết bào tử với các phân tử carbohydrate của màng các tế bào trình diện kháng nguyên ở động vật. Điều này cũng có thể bảo vệ vỏ bào tử khỏi sự glycosyl hoá , tách enzyme ra khỏi bào tử để giúp loại trừ một số phân tử tiếp cận với bào tử. Bào tử bị đột biến BclA cũng không thay đổi đáng kể độc tính với mô hình gây bệnh ở chuột, tuy nhiên thời gian mang bệnh sẽ biến đổi. Trong đa số các tài liệu đã được công bố thì BclA luôn là đích quan tâm của các nhà khoa học, vì kháng nguyên bề mặt này hay được sử dụng để phát hiện sự có mặt của vi khuẩn than [20]. 1.2. Đại cương về kháng thể 1.2.1. Kháng thể Kháng thể là các phân tử immunoglobulin (có bản chất glycoprotein) có hình dạng hơi giống chữ Y, do các tế bào lympho B cũng như các tương bào (plasma cell - biệt hóa từ lympho B) tiết ra để hệ miễn dịch nhận biết và vô hiệu hóa các tác nhân lạ, chẳng hạn các vi khuẩn hoặc virus. Mỗi kháng thể chỉ có thể nhận diện một epitope kháng nguyên duy nhất. Hình 9: Cấu trúc của một phân tử kháng thể. 15
  16. Luận văn thạc sỹ Nguyễn Thành Đạt-K18 Sinh học Phân tử kháng thể cấu tạo từ 4 chuỗi polypeptid, gồm hai chuỗi nặng (H, heavy) giống nhau và hai chuỗi nhẹ (L, light) cũng giống nhau. Có hai loại chuỗi nhẹ  (kappa) và  (lambda), do đó hai chuỗi nhẹ của mỗi phân tử immunoglobulin chỉ có thể cùng là  hoặc cùng là . Các chuỗi của immunoglobulin liên kết với nhau bởi các cầu nối disulfide và có độ đàn hồi nhất định. Một phần cấu trúc của các chuỗi cố định nhưng phần đầu của hai "cánh tay" chữ Y thì rất biến thiên giữa các kháng thể khác nhau, để tạo nên các vị trí kết hợp có khả năng phản ứng đặc hiệu với các kháng nguyên tương ứng, điều này tương tự như một enzyme tiếp xúc với cơ chất của nó. Có thể tạm so sánh sự đặc hiệu của phản ứng kháng thể-kháng nguyên như ổ khóa và chìa khóa [4]. 1.2.2. Các domain hằng định Hình 10: Sơ đồ các chuỗi của một kháng thể. Các domain hằng định (C, constant domain) đặc trưng bởi các chuỗi amino acid rất ít biến đổi ở các kháng thể. Domain hằng định của chuỗi nhẹ ký hiệu là CL. Các chuỗi nặng chứa 3 hoặc 4 domain hằng định, tùy theo lớp kháng thể CH1, CH2, CH3 và CH4. Các domain hằng định không có vai trò nhận diện kháng nguyên, chúng làm nhiệm vụ cầu nối với các tế bào miễn dịch cũng như các bổ thể. Do đó, phần "chân" của chữ Y còn được gọi là Fc (tức là phần hoạt động sinh học của kháng thể F: fragment, c: cristallisable) thường được liên kết với các thụ thể tế bào miễn dịch. 16
  17. Luận văn thạc sỹ Nguyễn Thành Đạt-K18 Sinh học 1.2.3. Các domain biến thiên Mỗi immunoglobulin có 4 domain biến thiên (V, variable domain) ở đầu tận hai "cánh tay" của chữ Y. Sự kết hợp giữa 1 domain biến thiên trên chuỗi nặng (VH) và 1 domain biến thiên trên các chuỗi nhẹ kappa và lambda (VL) tạo nên vị trí nhận diện và liên kết với epitope của kháng nguyên ( phần kháng thể liên kết với kháng nguyên còn gọi là paratopee). Như vậy, mỗi immunoglobulin có hai vị trí gắn kháng nguyên. Hai vị trí này giống nhau như đúc, qua đó một kháng thể có thể gắn được với 2 kháng nguyên giống nhau. Hai "cánh tay" của chữ Y còn gọi là Fab (tức là phần liên kết kháng nguyên, F: fragment, ab: antigen binding). Domain của kháng nguyên gắn vào kháng thể gọi là epitope Các domain sở dĩ gọi là biến thiên vì chúng khác nhau rất nhiều và biểu hiện đa dạng giữa các kháng thể. Chính sự biến thiên đa dạng này giúp cho hệ thống các kháng thể nhận biết được nhiều loại tác nhân kháng nguyên gây bệnh khác nhau [4]. 1.2.4. Các lớp kháng thể Các kháng thể được phân thành 5 lớp hay isotype. Tùy theo cấu tạo của các domain hằng định của các chuỗi nặng: các chuỗi nặng , , ,  và  lần lượt tương ứng với các immunoglobulin (Ig) thuộc các lớp IgG, IgA, IgM, IgE và IgD.Tất cả các kháng thể đều chứa các chuỗi nhẹ là kappa và lambda Ngoài ra, các khác biệt đặc trưng hơn cũng tồn tại bên trong một số lớp immunoglobulin. Ở người, có 4 loại dưới lớp (subclass) IgG (IgG1, IgG2, IgG3 và IgG4) và 2 loại dưới lớp IgA (IgA1 và IgA2). Thông thường một tế bào B sản xuất đồng thời nhiều lớp kháng thể: chúng khác nhau ở phần C các chuỗi nặng nhưng giống hệt nhau ở tính đặc hiệu với một kháng nguyên. Mỗi lympho B chỉ có thể sản xuất 1 loại kháng thể đặc hiệu đối với 1 epitope kháng nguyên nhất định, do đó cần phải có hàng nhiều triệu lympho B khác nhau. Số lượng này vượt quá số lượng gen của con người. 17
  18. Luận văn thạc sỹ Nguyễn Thành Đạt-K18 Sinh học Trong đó, IgG là loại immunoglobulin monomer, là kháng thể phổ biến nhất trong máu và các dịch mô. Đây là isotype duy nhất có thể xuyên qua màng nhau thai, qua đó bảo vệ trẻ sơ sinh trong những tuần lễ đầu đời sau khi sinh khi hệ miễn dịch của trẻ chưa phát triển. Vai trò chính của IgG là hoạt hóa bổ thể và opsonine hóa. Có 4 thứ lớp: IgG1 (66%), IgG2 (23%), IgG3 (7%) và IgG4 (4%) trong đó IgG4 không có chức năng hoạt hóa bổ thể. 1.2.5. Phân loại kháng thể a. Kháng thể đơn dòng Các kháng thể đơn dòng chỉ nhận biết một epitopee trên một kháng nguyên cho sẵn (hình 11). Theo định nghĩa, tất cả các kháng thể đơn dòng cùng một dòng thì giống hệt nhau và được sản xuất bởi cùng một dòng tương bào. Kháng thể đơn dòng được sử dụng rộng rãi trong sinh học và y học, chúng vừa là phương tiện chẩn đoán, vừa là công cụ điều trị. Thí dụ, chúng được ứng dụng trong một phương pháp phát hiện có thai được sử dụng phổ biến hiện nay. Hình 11: Kháng thể đơn dòng, liên kết với một epitope đặc hiệu. b. Kháng thể đa dòng Các kháng thể đa dòng là một tập hợp các kháng thể đặc hiệu với các epitope khác nhau trên một kháng nguyên cho trước (hình 12). Trong đáp ứng miễn dịch, cơ 18
  19. Luận văn thạc sỹ Nguyễn Thành Đạt-K18 Sinh học thể tổng hợp nhiều kháng thể tương ứng với các epitope của cùng một kháng nguyên: đáp ứng như vậy gọi là đa dòng [4]. Hình 12: Các kháng thể đa dòng, mỗi kháng thể liên kết với một epitope khác nhau. 1.2.6. Phương pháp tạo kháng thể đơn dòng và kháng thể đa dòng 1.2.6.1. Chuẩn bị kháng nguyên Việc chuẩn bị kháng thể đa dòng đòi hỏi phải có kháng nguyên sạch. Còn kháng thể đơn dòng được sản xuất từ kháng nguyên chưa sạch. Các protein hòa tan lộ ra sự đáp ứng mạnh có thể biến hóa thành những kháng nguyên đặc thù bởi sự liên kết chúng với cơ chất rắn. Acid nucleic bình thường không gây ra miễn dịch nhưng khi liên kế với protein mang nó thì sẽ gây ra miễn dịch. Carbohydrate loại đơn giản thì thường có tính miễn dịch yếu và cần thiết liên kết với một protein mang nó. Carbohydrate càng lớn thì có thể gợi ra sự đáp ứng bình thường nhưng không gây ra đáp ứng thứ cấp. Kháng nguyên có thể được chuẩn bị bằng nhiều cách như: (i) nghiền phá hủy các mô (ii) tách chiết bằng các phân tử khi tủa muối hay chất tẩy rửa. Phương pháp được chọn phụ thuộc vào kháng nguyên hòa tan hay không hòa tan và thành phần của kháng nguyên là protein, carbohtydrate hay acid nucleic. Các kháng nguyên đó có thể được tách chiế và làm sạch theo trọng lượng của chúng hoặc theo kích thước thông qua quá trình điện di trên gel. 19
  20. Luận văn thạc sỹ Nguyễn Thành Đạt-K18 Sinh học 1.2.6.2. Sản xuất kháng thể đa dòng: Các kháng thể đa dòng được tạo nên bằng cách tiêm chất gây miễn dịch (kháng nguyê) vào sinh vật và sau một thời gian thích hợp thì sẽ tách huyết thanh tương ứng. Sự đáp ứng miễn dịch sẽ phụ thuộc vào lượng và bản chất kháng nguyên cũng như khả năng đáp ứng miễn dịch của vật được tiêm với kháng nguyên đó. Thông thường, trong lần tiêm đầu tiên thì kháng thể sinh ra chứa IgM với nồng độ rất thấp, lần tiêm thứ hai thì nồng độ kháng thể IgG đạt ở mức trung bình. Tuy nhiên, trong những lần kế tiếp sẽ làm tăng nồng độ của kháng thể IgG đáng kể. a. Chuẩn bị hỗn hợp tá dược kháng nguyên Kháng nguyên được trộn với tá dược trước khi tiêm với mục đích là làm cho kháng nguyên giải phóng từ từ để kích thích hệ thống sinh miễn dịch của sinh vật. Để chuẩn bị tá dược kháng nguyên thì thường trộn dung dịch kháng nguyên với tá dược Freund tương đương với nhau. Ngoài tá dược Freund thì cũng có thể dùng một số khác như Titermax với liều 50-500ml/động vật. Tuy nhiên, với những tế bào sống thì không cần thiết phải bổ sung tá dược. b. Con đường gây miên dịch Phương pháp chung thường là gây miễn dịch cho thỏ hoặc chuột là tiêm dưới da bởi một lượng lớn có thể tiêm vào động vật và kháng thể đặc hiệu có thể được dẫn qua bởi phương pháp này. Tiêm tĩnh mạch đã được thử trên thỏ, sự đáp ứng nhanh và mạnh bởi vì kháng nguyên đi vào máu và nhanh chóng tới các cơ quan sinh miễn dịch như gan, lách và phổi. Tuy nhiên, tiêm tĩnh mạch không thích hợp lắm cho lần tiêm đầu tiên vì kháng nguyên đặc hiệu dễ bị loại trừ bởi những chất hóa học thô như azide sodium đi qua đường phổi. 1.2.6.3. Sản xuất kháng thể đơn dòng Huyết thanh chứa một dãy các kháng thể và chúng đặc hiệu với các kháng nguyên khác nhau. Khi động vật được gây miễn dịch thì khoảng 1/10 kháng thể tuần hoàn đặc hiệu với kháng nguyên. Các kháng thể được sản xuất bởi tương bào từ tế bào B được biệt hóa. Mỗi tế bào B bố mẹ có khả năng sản xuất các kháng thể đặc hiệu. Các 20
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
7=>1