TAI CHINH-TIEN TE<br />
<br />
<br />
<br />
Moi lien he giCra thong tin bao cao tai chinh va<br />
gia CO phieu: van dung iinh hoqt ly thuyet hien<br />
dqi vao trudng hop Viet Nam<br />
NGUYEN VIET DUNG<br />
<br />
T ^ Ua tren mo hinh Ohlson (1995) kit hdp vdi nghien cttu cua Aboody, Hughes & Liu<br />
I J (2002) cho phep ndi long gid thii't thi trUdng hiiu qud, bdi viet kiem chttng mdi lien he<br />
gitta thong tin bdo cdo tdi chinh vd gid cd phieu tren TTCK Viet Nam. Ke't qud cho thdy tuy<br />
cbn yeu hdn hdu hit cdc thi trUdng phdt trien vd mdi ndi khdc, mdi liin he ndy hodn todn cd y<br />
nghia, it nhdt Id vi mat thd'ng ke. Ngodi ra, cd ddu hieu gid cd phieu phdn ttng chdm vdi hoac<br />
dudi mttc vdi cong bd thdng tin bdo cdo tdi chinh vd khi thi trUdng chttng khodn Viet Nam<br />
thang hoa thi vai trb cua ldi nhuan trong viec gidi thich gid cd phieu tang lin so vdi nhttng<br />
thdi diem khdc. Ddy la nhttng thdng tin httu ich ddi vdi cdc cd quan qudn ly, cdc thdnh phdn<br />
tham gia thi trUdng vd dac biet cho chie'n lUtJc cua cdc nhd ddu ttt tren TTCK Viet Nam.<br />
<br />
<br />
^ L I ai trd ciia thdng tin ddi vdi sii van ludng md'i hen he giQa TT BCTC va gia cd<br />
Ur hanh hieu qua cua thj trUdng da phieu. Tuy nhien, dac diem chung ciia tat<br />
dUdc biet den tii lau. Akerlof, ngUdi da doat ca cac nghien ciiu nay la thieu mpt cd sd ly<br />
giai Nobel kinh te nam 2001 cd nhiing ddng luan vufng chic vi chUa t r a ldi dUde 2 cau<br />
gdp tien phong trong linh vUc nay, da cho hdi: nhiing TT BCTC nao cd md'i lien he<br />
t h i y trong cdng trinh nghien ciiu ndi tie'ng triic tie'p vdi gia cd phieu va dau la md hinh<br />
dupc cdng bd' nam 1970^ r i n g bat can xiing ly thuyet cua mdi lien he nay? Chi khi dUa<br />
thdng tin cd the lam thi trUdng d i n bien ra dupc cau tra ldi mdi ed the lUdng hda<br />
mit. Dd'i vdi thi trudng chiing khoan ndi dupe tac ddng cua TT BCTC tdi gia cd phieu<br />
rieng, cac van de ve thdng tin la mpt trong mdt each chinh xac.<br />
nhiing nguyen nhan chii ye'u lam cho cae tai<br />
san tai chinh bi dinh gia sai, anh hudng den Trong mpt bai bao khoa hpc cdng bd nam<br />
qua trinh phan bd ngudn lUc ciia thi trUdng 1995, giao sU Dai hpc New York James<br />
vdi vai trd la kenh dan vd'n cho nen kinh te. Ohlson da tra ldi dUdc hai cau hdi ndi tren<br />
vdi mpt nen tang ly thuyet viing chic va<br />
Trong cac thdng tin cd kha nang anh dieu nay da anh hudng manh me den ddng<br />
hudng de'n gia chiing khoan, thdng tin bao nghien ciiu ve mdi lien he giiia TT BCTC va<br />
cao tai chinh (TT BCTC) cd mdt vi tri quan<br />
gia CO phieu txi dd tdi nay. Giao sU Russell<br />
trpng.<br />
Lundholm cua Dai hpc Michigan khi binh<br />
1. Cd sd ly luan cua moi lien he giiifa luan ve nghien ciiu cua Ohlson (1995) da<br />
thong tin bao cao tai c h i n h va gia viet: "Cdng trinh cua Ohlson (1995) bdy gid<br />
CO phieu<br />
Ke tii cdng trinh nghien ciiu dau tien<br />
Nguyen Viet Diing, TS., Trudng Dai hpc Ngoai thuong.<br />
ciia BaU & Brown dUdc cdng bd nam 1968<br />
1. Akerlof G. (1970), "The market for 'Lemons':<br />
cho den trUde 1995, da cd r i t nhieu cac co' Quality Uncertainty and the Market Mechanism",<br />
gang, ehii yeu la thiic nghiem, nham do Quarterly Journal of Economics, 84, p. 488-500.<br />
<br />
<br />
<br />
18<br />
Moi nen he glOfa thdng tin<br />
<br />
<br />
dd trd thdnh cd sd cho cdc nghien cOu ve bdo dupe Sli dung phd bidn dd phan tfch gia tri<br />
cdo tdi chinh trong md'i lien he vdi thi trUdng ma cdng ty tao ra cho cd ddng. Neu ty s u i t<br />
cd phieu"^. sinh ldi tren vdn chu sd hiiu (ROE) cua mpt<br />
1.1. Mo hinh Ohlson (1995) cdng ty ldn hdn lpi s u i t yeu clu khi d i u tU<br />
vao cd phieu cua cdng ty dd (tiic la lpi nhuan<br />
De phan tich md hinh Ohlson (Ohlson thang du dUdng) thi gia tri cua cd phieu se<br />
Model - OM), ed the tach nd lam 2 bp phan: ldn hdn gia tri sd sach cua nd va cdng ty<br />
thii n h i t la md hinh dinh gia cd phieu diia dupc coi la tao ra gia tri cho cd ddng<br />
tren ddng lpi nhuAn thang dU (Residual (shareholder value creation). NgUdc lai, ne'u<br />
income model - RIM) va thU hai la chudi ldi nhuan thang dU am thi gia tri cua cd<br />
thdng tin (Information dynamics) do Ohlson phieu se nho hdn gia tri sd saeh ciia nd va<br />
(1995) de xuat. Thanh p h i n thii nhat - RIM cdng ty bi coi la "pha buy" gia tri cua cd<br />
- thiic ra da dUpc thie't Iftp va sii dung tii g i n ddng {shareholder value destruction). Md<br />
60 nam trUdc khi OM ra ddi. Nd x u i t hien hinh ldi nhuan thang dU cung dUde sii dung<br />
l l n dau trong nghien ciiu cua Preinreich rat phd bie'n trong dinh gia cd phieu tai cac<br />
cdng bd' nam 1938^. Xuat phat tii md hinh nUdc cd thi trUdng chiing khoan phat trien^.<br />
chiet kha'u cd tiic ciing nhU dUa tren mdi De di d§'n mo hinh cua minh tii RIM,<br />
lien h$ giiia cd tiic, ldi nhu&n va gia tri sd Ohlson (1995) da diia tren mpt gia thiet<br />
sach (clean surplus relation), RIM cd dang quan trpng lien quan den chudi thdi gian<br />
nhu sau: ciia ddng lpi nhuftn thang dU. Gia thidt nay<br />
dupc Ohlson (1995) dUa ra can cii vao tinh<br />
tdn lUu cua lpi nhu&n (earnings persistence)<br />
da dupe ghi nhftn trong cac nghien ciiu thiie<br />
nghiem trUdc dd ciing nhu diia tren thiic<br />
Trong dd: < , = x,^^ - ^, x b,^^_,<br />
tidn TT BCTC chi la mpt bp phan cua tap<br />
P : gia tri ndi tai ciia cd phieu tai thdi hpp cac thdng tin cd the anh hudng de'n ky<br />
vpng ciia thi trudng ve lpi nhuan tUPng lai<br />
diem t cua doanh nghiep:<br />
X(+j: ldi nhuan tren cd phieu (tinh theo<br />
nam) vao thdi diem t -t x X,+l = COX, +V,+ £,^i (2)<br />
<br />
x"_^_j.: lpi nhuan thang dU tren cd phieu a la he sd' tdn lUu lpi nhuan thang dU<br />
(tinh theo nam) vao thdi diem t -I- T (persistence coefficient), 0 < a>< 1<br />
£• la sai sd'cd ky vpng bang 0<br />
bj: gia tri sd sach tren cd phieu vao thdi<br />
V, la tac ddng cua thdng tin vao thdi<br />
diem t<br />
k : ldi s u i t yeu c l u diem t de'n ky vpng cua thi trUdng ve ldi<br />
•e nhuan thang dU tUdng lai nhUng chUa (boac<br />
E : ky vpng toan hpc diia tren thdng tin khdng) dupc phan anh trong bao cao tai<br />
chinh. Gia thie't nay cua Ohlson (1995) cd the<br />
dai chiing vao thdi diem t<br />
Nhu vay, theo md hinh ldi nhuan thang 2. Lundholm R.J. (1995), "A Tutorial on the Ohlson<br />
du, gia tri ndi tai cua mpt cd phieu gdm hai and Feltham/Ohlson Models: Answers to some Frequently<br />
p h i n . P h i n thii n h i t la gia tri sd sach cua Asked Questions", Contemporary Accounting Research,<br />
cd phieu dd va p h i n thii hai dUdc tao thanh Vol 11, p. 749-761.<br />
bcii tdng gia tri hien tai cua cac ddng ldi 3. Preinreich G. (1938), "Annual Survey of Economic<br />
nhuan thang dU tUdng lai ciia cong ty. Tu( Theory; The Theory of Depreciation", Econometrica, Vol.<br />
md hinh nay riit ra mdt quy t i e quan trpng 6, p. 219-241.<br />
<br />
<br />
Nghiin ciru Kinh tgs6375 - Thing 8/2009 19<br />
Moi iien he giiifa thong tin<br />
<br />
<br />
dupe diin giai mdt each khac la ky vpng cua ^t^\=r^t+n,^x (3)<br />
nhit diu tu ve kha nang sinh ldi tUdng lai cua<br />
edng ty phu thupc mdt phan vao TT BCTC •y la he so' tdn lUu anh hu^ng cua thdng<br />
hien tai (kha nang sinh ldi hien tai) va vao tin, 0 < x < l<br />
cac thdng tin khac chUa (hoac khdng) dUdc T] la sai sd' cd ky vpng bang 0<br />
phan anh trong bao cao tai chinh. He sd co<br />
dupc gia thie't n i m trong khoang (0,1) phan Hai phUdng trinh (2) va (3) tao thanh<br />
anh ket qua ciia h i u bet cac nghien ciiu thiic chudi thdng tin Ohlson va dUdc ke't hdp vdi<br />
nghiem ve chudi thdi gian ciia lpi nhuan. md hinh ldi n h u ^ n t h a n g dU de di de'n mo<br />
Cac anh hudng ciia thdng tin ciing dUdc hinh Ohlson cho phep dien giai gia cd<br />
gia thiet cd mdi lien he chudi thdi gian: phieu trong md'i hen he vdi TT BCTC:<br />
<br />
Pf=b,+ a^x", -b ajYt (4)<br />
(0 \ + k„<br />
Trong dd: a^ =<br />
\ + k,-0)' ' {\ + k,-(0\\ + K-r)<br />
<br />
Nhu vay, viec ket hdp mo hinh ldi nhuan khac nhu Anh, Diic, Na Uy [King & Langh<br />
thang du vdi chudi thong tin do Ohlson (1998)], Phap [Dumontier & Labelle (1998)]...<br />
(1995) de x u i t da cho phep Ohlson riit ra Ket qua thu dUdc thUdng nghieng vd met<br />
dupc md hinh the hien mdi lien he giUa gia mdi lien he kha chat che giQa gia cd phieu<br />
cd phieu va hai TT BCTC triic tiep la ldi va TT BCTC. Collins, Maydew & Weiss<br />
nhuan va gia tri sd sach tren mdt thi trUdng (1997) cho thay cac TT BCTC theo md hinh<br />
hieu qua khi gia cd phieu phan anh chinh Ohlson (1995) giai thfch dUdc 54% bie'n ddng<br />
xac gia tri thiic cua nd. Ngoai ra, gia cd gia cd phieu tren thi trUdng chiing khoan<br />
phieu cdn phu thupc vao eac thdng tin khac My. Nghien ciiu ciing chi ra rang vai trd cua<br />
chUa (hoac khdng) dUdc phan anh trong bao ldi nhuan giam nhe theo thdi gian. Theo<br />
cao tai chinh vao thdi diem dd. Mdi lien he King & Langli (1998), siic giai thich gia cd<br />
giiia gia cd phieu va ldi nhuan eiing nhU gia phieu cua TT BCTC tren cac thi trUdng<br />
tri sd sach hien tai la ty le thustn, dieu nay Anh, Na Uy va Diic l l n lUdt la 70%, 60% va<br />
phil hpp vdi ke't qua cac nghien ciiu thiie 40%. Mdi day, mpt so nghien ciiu ve chii de<br />
nghiem trUdc dd. PhUdng trinh (4) cd the d i nay da dUdc tien h a n h tren cac thi trUdng<br />
dang kiem chiing diia tren cd sd ly luan mdi ndi nhU Ddng Nam ^ [Graham & King<br />
viing chic de dUa ra ke't luan ve mdi lien he (2000)], Trung Qud'c [Chen, Chen & Su<br />
giiia gia cd phieu va TT BCTC. Dac diem (2001)]... Ket qua cho t h i y tuy ve tdng the<br />
nay cua md hinh Ohlson (1995) dUdc gidi khdng cd khoang each ldn so vdi cac nUde<br />
nghien ciiu thiie nghiem (empiricists) dac phat trien nhUng md'i lien he nay tren eac<br />
biet danh gia cao. thi trUdng mdi ndi la r i t khac nhau, tiiy<br />
thudc vao dac diem cua tiing thi trUdng.<br />
Tren cd sd md hinh Ohlson (1995), nhieu<br />
nghien cUu thiic nghiem da dUdc tien hanh O nUdc ta, mpt so' nghien ciiu da phan<br />
de kiem chUng mdi lien he giiia TT BCTC va tich vai trd ciia cdng bd' thdng tin dd'i vdi sii<br />
gia cd phieu tren cac thi trUdng chiing<br />
khoan khac nhau. Nhiing nghien cilu d i u 4. Xem Lee C. (1999), "Accounting-based valuation:<br />
impact on business practices and research". Accounting<br />
tien dupc tien hanh tren thi trUdng My Horizons, 13(4), p. 413-425 va Lee C, Myers J. vi<br />
[Collins, Maydew & Weiss (1997)], rdi d i n Swaminathan B. (1999), "What is the intrinsic value of<br />
dupc md rang ra cac thi trUdng phat trien the Dow?", Journal of Finance, 54(5), p. 1693-1741.<br />
<br />
20 Nghiin cilu Kinh tgs6 375-Thing 8/2009<br />
Moi lien he giiifa thfing tin ...<br />
<br />
<br />
phat trien cua thi trUdng ehiing khoan ciing thttc nghiem vttng chdc de khdng dinh nhtt<br />
nhu de x u i t cac giai phap nang cao minh gid thie't thi trUdng hieu qud..."^.<br />
bach thdng tin [Trin Qudc Tuan (2001), Trong khoa hpc, nhieu khang dinh nhU<br />
T r i n Die Sinh (2002), Nguyen Dinh Hiing vay da bao trUdc mpt sii dao chieu va gia<br />
(2005), Dd Thanh PhUdng (2006), Nguyin thiet thi trUdng hieu qua cung n i m trong<br />
The Thp (2006), Mai Hoang Minh (2007)]. trUdng hpp dd. Trong khoang mdt p h i n tU<br />
Tuy nhien, cac nghien ciiu nay mdi chi danh the ky trd lai day, r i t nhiiu ke't qua nghien<br />
gia mpt each dinh tinh tac dpng ciia thdng cQu cd xu hudng phu nhan gia thie't nay.<br />
tin ndi chung chii ehUa di sau phan tich TT Cac nghien cQu thUdng tap trung vao mpt so'<br />
BCTC Cling nhU lUdng hoa md'i lien he cua di thUdng (anomaly) trong tap tinh cua gia<br />
chung vdi gia cd phieu. ed phieu ma thuyet thi trUdng hieu qua<br />
1.2. Mdi liin hi gida thong tin bdo cdo khong dii kha nang giai thich nhU: phan<br />
tdi chinh vd gid co phieu khi ndi long Qng dudi mQe (under-reaction), phan Qng<br />
gid thii't thi trudng hiiu qud qua mQe (over-reaction), bie'n dpng qua mQe<br />
Ban than md hinh Ohlson (1995) va h i u (excessive volatility), hieu Qng thdi vu<br />
het eac nghien ciiu thiie nghiem ve mdi lien (seasonal effects), kha nang giai thich ldi<br />
he giiia TT BCTC va gia ed phieu deu diia sua't eua mpt sd yeu to' phi CAPM'... Ball<br />
tren gia thiet "an" ve thi trUdng hieu qua. (1994) cho r i n g sd di cd nhQng dang di<br />
Chi khi gia cd phieu tren thi trUdng phan thUdng Sd vdi gia thie't thi trUdng hieu qua<br />
anh gia tri npi tai cua nd thi mdi cd the sii la dd ly thuyet nay khdng xet tdi mpt so' v i n<br />
dung md hinh Ohlson (1995) lam cd sd ly de thiic tiin eiia thi trUdng nhU: chi phi giao<br />
luan eho mdi lien he nay. Tuy nhien, gia dich va thdng tin, tinh khdng t h u i n nha't<br />
thiet thi trUdng hi$u qua la mpt gia thiet trong ky vpng cua ngUdi d i u tU va mdt so'<br />
manh va trong so' mdt khdi lUpng ldn cac v i n de khac lien quan de'n ed clu td chQe<br />
nghien ciiu ve chu de nay tii trUdc tdi nay, cua thi trQdng tai chinh. Tuy nhien, tac gia<br />
ngay cang ed nhieu ke't qua trai ngUpe vdi nd. cung khdng loai trQ kha nang k§'t qua eho<br />
phep ket luan ve sii tdn tai cac di thUdng la<br />
Hdn 40 nam da qua ke tU khi Fama<br />
do ldi phUdng phap trong cac nghien cQu.<br />
(1965) lan d i u tien dUa ra khai niem ve thi Lee (2001) cho r i n g viec lay gia thie't thi<br />
trUdng hieu qua nhUng cho den nay v i n cdn trUdng hieu qua lam diem xua't phat la mpt<br />
la de tai gay nhieu tranh luan. NhQng Sli dPn gian hda phi thiic tien va khdng du<br />
nghien cQu thiie nghiem d i u tien deu khang kha nang phan anh dpng thai cua thi<br />
dinh gia thiet nay. Hai nghien cQu tien trUdng. Theo Lee (2001), ed sd de tin r i n g<br />
phong cua Ball & Brown (1968) va cua mdt thi trUPng ludn hieu qua chinh la sii<br />
Fama, Fisher, Jensen & RoU (1969) cho van hanh td't cua cd che kinh doanh chenh<br />
tha'y gia cd phieu phan anh thdng tin mdi lech gia (arbitrage). Ne'u mdt thdng tin mdi<br />
vdi tdc dp nhanh, lam cho kha nang tan chUa dupe phan anh vao gia cbQng khoan,<br />
dung thdng tin de "thing" dUdc thi trUdng la ngay lap tQc se cd cac dpng cd kinh te khai<br />
khd. Sau hai cdng trinh nay, mdt so' lUdng<br />
ldn cac nghien cQu khac da hoan thien<br />
phUdng phap thiic nghiem eiia hp va cung 5. Xem Fama (1970, 1991) ii biet chi Xiil \i phuong<br />
phap cung nhu kei qua cu thd cua nhiing nghien cthi<br />
cho thiy thi trUdng phan Qng g i n nhU tUc nay.<br />
thi ddi vdi thdng tin mdil Thanh cdng vao 6. "...there is no other proposition in economics<br />
thdi diem dd cua gia thie't thi trUdng hi$u which has more solid empirical evidence supporting it<br />
qua cd the dUpc tdm t i t b i n g danh gia eua than the Efficient Markets Hypothesis..." [Jensen<br />
(1978), p. 95].<br />
Jensen "...khdng mgt di xudt ly thuyet ndo<br />
7. Xem Ball (1994), Shleifer (2000), Kothari (2001),<br />
trong kinh te hgc Iqi cd nhieu bdng chttng Lee (2001) va Schwert (2001) ii hiii chi tiei.<br />
<br />
<br />
Nghiin ciru Kinh tgs6375 - Thing 8/2009 21<br />
Moi iien he giiifa thong tin<br />
1<br />
thac nd n h i m "thing" dUdc thi trUdng. Do Chung ta dang d trong tinh trqng khuyet<br />
vay, gia chQng khoan se tii dieu ehinh de'n thieu ly ludn khi nhieu gid thiet rdt mdi<br />
khi phan anh d i y du mpi thdng tin. Cac ca dttdc neu ra md khong cd chttng minh...".<br />
nhan trong mdt thi trUdng cd the hanh dpng Viec di sau hdn vUpt qua khudn khd ciia<br />
mpt each bat hdp ly nhUng ngUdi ta hy vpng nghien cQu nay. NhQng phan tich tren chi<br />
rang vd tdng the, cd che nay se ludn lam cho vdi muc dich n h a n manh r i n g tinh hieu qua<br />
gia chQng khoan sat vdi gia tri npi tai eua la mdt gia thie't khdng de thda man, n h i t la<br />
ehung. The' nhUng trong thiic tien, ban than ddi vdi cac thi trUdng tai chinh r i t mdi vdi<br />
nghiep vu kinh doanh chenh lech gia cung mQe dp phat trien chUa cao nhU d Viet Nam.<br />
chiu nhQng iQc can lam cho nd khdng the Trong trUdng hdp nay, khdng the sQ dung<br />
van hanh nhu mong mud'n. Shleifer & triic tie'p md hinh Ohlson (1995) lam cP sd<br />
Vishny (1997) neu ra 3 can trd ehinh cua cho md'i lien he giQa TT BCTC va gia cd<br />
nghiep vu nay. ThQ n h i t la rui ro han che phieu vi gia thi trQdng khdng phai luc nao<br />
ban khd'ng (short sale) tren cac thi trUdng. cung phan anh trung thiic gia tri ndi tai ciia<br />
ThQ hai, sU tdn tai cua cac noise traders cd phieu. Nghien cQu ciia Aboody, Hughes &<br />
cung la mdt ngudn rui ro vi ddng thai giao Liu (2002) cho phep khac phue dieu nay.<br />
dich cua hp la r i t khd dii bao dd'i vdi nhQng<br />
Aboody, Hughes & Liu (2002) xet thi<br />
ngUdi kinh doanh chenh lech gia. ThQ ba,<br />
trUdng trong dd gia cd phieu phan anh gia<br />
eae loai chi phi nhu thu t h i p , xii ly thdng tin<br />
tri npi tai cua nd vdi sai sd. Trong dieu kien<br />
va phi giao dich eung lam cho nghiep vu nay<br />
nhu vay, dang trung binh cua gia thiet thi<br />
trd nen td'n kem, ban che tham chi triet tieu<br />
trUdng hieu qua se khong dUdc thoa man<br />
lpi nhuan. Lee (2001) dung hinh anh so<br />
ne'u CO Sli tUdng quan giQa TT BCTC va sai<br />
sanh viec chuyen tQ cd che kinh doanh<br />
so' ndi tren. Sii tQdng quan nay lam cho hdi<br />
chenh lech gia sang gia thiet thi trUdng hieu<br />
quy cua gia cd phieu theo TT BCTC c6 he sd<br />
qua gid'ng nhU tin r i n g dai dUdng la phang<br />
thien lech (biased coefficients) do hien tUdng<br />
lang diia tren cd sd quan sat tac ddng eua<br />
bie'n tUdng quan tiem an (omitted-correlated<br />
trpng liic ddi vdi nUdc trong cd'c. Khdng the<br />
•variables) hay cdn gpi la hien tUdng bien<br />
tranh cai tac ddng ciia trpng liic nhUng se la<br />
dpc lap quan trpng bi bd sdt. De xQ ly chi<br />
m.pt Sli ddn gian hda qua mQe khi tQ quan sat<br />
tie't nay, nghien cQu cua Aboody, Hughes &<br />
nay suy ra r i n g dai dUPng gid'ng nhU mat hd<br />
Liu (2002) eho tha'y thong tin ve sai sd cd<br />
trong dem he binh lang. Cach suy luan nhU<br />
the dupc rut ra tQ bien dpng gia cd phieu<br />
vay khdng cho phep giai thich sii tdn tai ciia<br />
trong tUdng lai neu thi trUdng tii dieu chinh<br />
sdng hay mdt so' hien tUdng co the dii bao<br />
ve trang thai hieu qua theo thdi gian. Vdi<br />
nhu hai lUu va thuy trieu. Trong thiic tiin,<br />
gia thiet nay, cd the rut ra sai so' b i n g each<br />
dai dUdng ludn trong trang thai khuay ddng<br />
phan tach bien dong gia cd phidu trong<br />
va khdng ngQng tim den sii phang lang.<br />
tUdng lai thanh hai thanh p h i n : thanh phin<br />
Tupng tii nhu vay, thi trUdng tai chinh lien<br />
bien ddng thQ nha't do rui ro co he thdng* va<br />
tuc trong trang thai tii dieu chinh de tim<br />
thanh p h i n thQ hai do sii tii dieu chinh cua<br />
de'n Sli hieu qua.<br />
thi trUdng ve trang thai hieu qua.<br />
Cac tranh luan kinh vien ve thuyet thi Pit.x+D,,,<br />
trUdng hieu qua v i n tiep diin. Rainelli E(V,\X,)=E X, = 5 ; x , (5)<br />
(2003) md ta: "... Ni'u cd mgt thdi md cdc nhd !+ < •<br />
ly ludn tUdng dd'i nhdt tri trong viec khdng<br />
dinh gid thie't thi trUdng hieu qud thi dttdng<br />
nhtt dd troi qua. Tuy nhien, thdi diem md hg<br />
8. Riii ro phi he thp'ng khPng dupc tfnh tdi do dupc<br />
cdng phu nhdn nd cd le cilng chUa tdi. gia thift Ik nhieu tring [white noise)<br />
<br />
22 Nghiin ciru Kinh tg sdi 375 - Thing 8/2009<br />
Moi iien he giiifa thong tin<br />
<br />
<br />
v.,: gia tri ndi tai cua cd phieu i vao thdi cQu cua Aboody, Hughes & Liu (2002) eho<br />
diem t phep cd dupe mpt cd sd ly thuyet phu hdp de<br />
X.,: TT BCTC cua cdng ty i vao thdi diem t do ludng mdi hen he giQa TT BCTC va gia<br />
cd phieu tren thi trQdng chQng khoan Viet<br />
/J,^,: gia cd phieu cua cdng ty i vao thdi Nam. Muc tieu ciia phan II la kiem dinh mdi<br />
diem t -t- 1 lien he nay.<br />
i?,,.,^,: lpi s u i t tinh theo gia tri ndi tai tQ t 2. Moi lien h e giufa t h o n g t i n b a o cao<br />
de'n t -(- 1 t a i c h i n h v a gia co p h i e u t r e n t h i<br />
£>„.,.,: cd tQc cua thdi ky t + 1 trxfc/ng c h i i n g k h o a n Viet N a m<br />
2.1. Mo hinh kinh ti'lUdng<br />
B,: vector he so' hdi quy<br />
Md hinh Ohlson (1995) cho tha'y gia tri cd<br />
PhUdng trinh (5) la giai phap ddn gian phieu dupc quye't dinh bdi hai Inai TT BCTC<br />
cho phep do lUdng mdi lien he giQa TT (gia tri sd sach va ldi nhuan thuan) va cae<br />
BCTC va gia cd phieu trong dieu kien dang thdng tin khac khdng cd trong bao cap tai<br />
trung binh cua gia thiet thi trUdng hieu qua chinh. De kiem chQng mdi lien he giQa gia<br />
khdng dupc thda man. Thay vi sQ dung gia cd phieu va TT BCTC, cac md hinh hdi quy<br />
cd phieu hien tai, ham hdi quy lly gia tri tuyen tinh vdi bie'n phu thudc la gia cd phieu<br />
hien tai cua gia cd phieu tUdng lai lam bien va hai bie'n dpc lap la gia tri sd sach tren co<br />
phu thupc, trong dd ty sua't hien tai hda la phieu va lpi nhuan t h u i n se dUdc sQ dung.<br />
ldi s u i t ky vpng cd dieu kien khi biet TT Do dQ lieu dQdi dang bang (panel data -<br />
BCTC. Ndi each khac, lupng dieu ehinh bien quan sat cdng ty-nam), ngoai phUdng phap<br />
phu thudc (them hoac bdt vao gia cd phieu binh phUdng tdi thieu thdng thUdng<br />
hien tai) chinh b i n g gia tri hien tai cua (Ordinary Least Squares - OLS), mdi lien he<br />
p h i n bie'n ddng gia cd phieu tUPng lai khdng tren cung se dUdc kiem chQng bang cae mo<br />
chiu anh hudng cua rui ro he thd'ng. hinh anh hudng cd' dinh (Fixed effects model)<br />
Nhu vay, do thi trUdng hieu qua la mpt va anh hudrig ngau nhien (Random effect<br />
gia thiet khdng d i thda man, nha't la doi vdi modeiy.<br />
cac thi trUPng tai chinh r i t mdi vdi mQc dp Trong trUdng hdp phUdng phap binh<br />
phat trien chQa cao nhQ d Viet Nam, viec phUdng tdi thieu thdng thQdng, vdi cdng ty<br />
ket hdp md hinh Ohlson (1995) vdi nghien thQ i, md hinh cd dang:<br />
+ X,p + e,<br />
Trong dd Y, ={YI„Y.^,...,YI^) ,e, ={e.„e,2,...,e.^)',j,=(i,i,...,i)'<br />
<br />
deu cd kich thUdc ( r x l ) , T la sd thdi ky hudng (cd' dinh) den gia cd phieu cua cdng<br />
quan sat dd'i vdi ddn vi i. y^ la he sd tU do va ty.<br />
<br />
P = {f}2,Pi,.-,pK) 1^ vector he sdhdi quy cua<br />
cac bie'n ddc lap. Ma tran AT, ciia cac bie'n 9. Cac anh hudng dac thil cd dinh hoac ngiu nhien<br />
ddc lap ed kich thUde (rx(A:-l)) trong dd K trong hai loai m6 hinh nay c6 kha nang phan anh "cic<br />
la sd' lupng bie'n ddc lap. thdng tin khac kh6ng cd trong bio cao tai chinh" theo<br />
md hinh Ohlson (1995), diiu mi phuong phip binh<br />
Md hinh anh hQi^lng cd' dinh cd dang:<br />
phuong tdi thiiu thdng thudng khdng thuc hien duoc.<br />
Y,=(A+A)jr+X,P + e, Dac die'm nky cung cd thi lam cho viec udc luong theo<br />
phuong phip binh phuong tdi thiiu thdng thudng bi<br />
Trong dd Pi dai dien cho cae ye'u to' dac thien lech (biased estimation) do hien tupng bie'n tuong<br />
trUdng cua cdng ty i (ngoai TT BCTC) cd anh quan tiim dn.<br />
<br />
Nghiin ciru Kinh te s6 375 - Thing 8/2009 23<br />
Moi iien he giiifa thong tin ...<br />
<br />
<br />
Md hinh anh hudng n g l u nhien cd dang: panel), phUdng phap binh phUdng to'i thieu<br />
cd bie'n gia hai chieu (Least Squares Dummy<br />
Y, =X,.p + //,Jr+e/<br />
Variable (LSDV) - group and time effects)<br />
Trong dd X, la ma tran bien phu thupc dupe sQ dung de Udc lUdng mo hinh anh<br />
(gdm ca vector tUdng Qng vdi he so' tii do) cd hudng cd' dinh va phUdng phap binh phUdng<br />
kfch thQdc (TXK) va p = {p^,Pj,...,P^) .p^\a tdi thieu tdng quat kha thi (Feasible<br />
mdt bien ngau nhien thda man cac dieu kien Generalized Least Squares - FGLS) de Udc<br />
lUdng md hinh anh hudng ngau nhien'". Ddi<br />
sau: ECU,.) = 0 ; E(pf)=al; E ( / / , . / / J = 0 vdi mpi<br />
vdi cac phUdng phap binh phUdng tdi thieu<br />
i*J ; E(//,e,,) = Ova E(//,.e,.,) = 0 . thdng thUdng va cd bie'n gia, kiem dinh<br />
Breuseh-Pagan/Cook-Weisberg dUde thiie<br />
Cac kiem dinh thd'ng ke dQdc thiic hien<br />
hien de n h a n dang hien tUdng phUdng sai<br />
de Ilia chpn md hinh phu hpp n h i t . Md hinh<br />
anh hudng cd' dinh dUdc so sanh vdi phUdng khdng ddng n h i t (heteroscedasticity). Khi cd<br />
phap binh phUdng toi thieu thdng thUdng da'u hieu cua hien tUdng nay, Udc lUpng dUdc<br />
bang kiem dinh Fischer. Kiem dinh nay cho dieu chinh b i n g phUdng phap White (1980).<br />
phep kiem chQng sQ tdn tai ciia anh hQdng De tinh tdi anh hudng ciia gia thiet thi<br />
dac thu khdng ddng n h i t giQa cac ddn vi. trQdng hieu qua den md'i lien he giQa TT<br />
Gia thiet khdng (null hypothesis) dQdc the BCTC va gia co phieu theo nghien cQu eua<br />
hien nhQ sau: Aboody, Hughes & Liu (2002), bien phu<br />
thupc (gia ed phieu) trong cac md hinh se<br />
tio'M\^M2= - = MN=^ dupe xac dinh trong mpt so' trQdng hpp khac<br />
Md hinh anh hudng n g l u nhien dUde so nhau. TrUdng hdp thQ n h i t gia thiet thi<br />
sanh vdi phUdng phap binh phUdng td'i thieu trUdng hieu qua, gia cd phieu dUdc lay vao<br />
thdng thUdng b i n g kiem dinh Breusch- thdi diem ket thuc nien dp ke toan ma bao<br />
Pagan (chi-binh phUdng) n h i m kiem chQng cao tai chfnh phan a n h " . Nhdm cac trUdng<br />
Sli tdn tai cua cac anh hudng ngau nhien. hpp edn lai gia thiet dang trung binh cua thi<br />
Gia thidt khdng la phUdng sai cua cac anh trUdng hieu qua khong dUdc thda man va thi<br />
hudng bang khdng: trQdng tii dieu chinh ve trang thai hieu qua<br />
Khi cac md hinh anh hudng cd dinh va sau mpt khoang thdi gian nha't dinh. Do khdng<br />
anh hudng n g l u nhien vUdt qua dUdc cac<br />
kiem dinh sii tdn tai ciia anh hudng dac thu. 10. Xem Greene (2003) di biit chi tiei<br />
11. Bao cao tai chinh nam thucmg dupc cdng bd mdt<br />
HO-.CT'^ 0<br />
khoang thdi gian sau khi nien dd ki toin kei thuc. Viec<br />
la'y gii c6 phie'u vao thdi diim cdng bd bio cio tai chi'nh<br />
chung dUdc so sanh vdi nhau b i n g kiem<br />
vdi mdt dd tri thdi gian nhit dinh so vdi thdi diim kit<br />
dinh Hausman n h i m kiem chQng tinh dpc thtic niin dd cd im diim la gii c6 phiiu phan inh diy dti<br />
lap cua anh hudng ngau nhien ddi vdi eae hon thdng tin tir bio cio tai chinh. Tuy nhien, gii c6<br />
bien giai thich. Trong trQdng hpp ddc lap, phie'u dd cung cd thi da phan inh ca nhiJng thdng tin<br />
md hinh anh hQdng ngau nhien manh hdn cita niin dd mdi. Trong nghien ciJu nay, vdi trudng hpp<br />
thir nhit cd gia thiei thi trudng hieu qua, gia c6 phie'u<br />
md hinh anh hUdng cd' dinh va dUdc liia<br />
dupc lay vao thdi diim kit thuc nien dd ke' toin. Trong<br />
chpn. Trong trUdng hpp ngUde lai khi anh thirc tien, vao thdi diim kit thuc nien dd, cic TT BCTC<br />
hudng n g l u nhien tUdng quan vdi bie'n giai chii yiu ciia nien dd dd thudng da dupc dii doan trudc 6<br />
thich, Udc lupng md hinh anh hUcing n g l u mdt mtic dd kha ldn. Hon niia, viec la'y gii c6 phie'u nhu<br />
nhien hi thien leeh va do dd mo hinh anh viy lam tang sd quan sit trong cac tnrdng hop xit tdi<br />
ti'nh phi hieu qua ciia thi trudng vi vdi cic gia thiit khic<br />
hudng cd dinh dUde liia chpn.<br />
nhau vi khoang thdi gian thi tnrdng se tu diiu chinh vi<br />
Do dQ lieu bang dUdc sQ dung trong trang thai hiiu qua (gii c6 phie'u trong nghien ciru nay<br />
nghien cQu nay khdng can (unbalanced chi dupc lay de'n 31-07-2008).<br />
<br />
<br />
24 Nghiin cifu Kinh tg si? 375 - Thing 8/2009<br />
Moi lien he giiifa thong tin<br />
<br />
<br />
ed cd sd ly thuye't nao de liia chpn khoang phieu va chi so' VN Index vao eac thdi diem<br />
thdi gian nay, cac md'c thdi gian dupe sQ sau: ket thuc nien dp tQdng Qng, 3, 6, 9 va<br />
dung trong nghien cQu nay la 3, 6, 9 va 12 12 thang sau khi ke't thue nien dp.<br />
thang sau khi ke't thuc nien dp ke't t o a n ' l Mdt diem dang lUu y la gia cd phieu trong<br />
Trong cac trQdng hdp nay, gia cd phie'u dQdc cd sd dQ lieu EzSearch (eung nhQ h i u het<br />
dieu ehinh theo sai sd dUde rut' ra tQ bie'n cae ngudn cung d p dQ lieu gia cd phie'u d<br />
ddng gia cd phi§'u tUdng lai nhu sau (bie'n Vipt Nam hien nay) chQa dQdc dieu chinh<br />
the ciia cdng thQc (5) theo nghien cQu cua chudi ddi vdi cae sii kien lam thay ddi gia cd<br />
Aboody, Hughes & Liu (2002)): phieu nhQng khdng lam thay ddi gia tri vdn<br />
P chu sd hQu vdi mpt ty le tQdng Qng (chia cd<br />
phie'u thQdng, tra eo tQc b i n g cd phie'u, phat<br />
hanh them cd phieu...). Neu khdng dUdc<br />
Trong dd: dieu chinh chudi, cac thay ddi gia cd phieu<br />
P,!^: gia cd phie'u dUdc dieu chinh cho cd the khdng phan anh chinh xae thay ddi<br />
gia tri vd'n chu sd hQu va lam cho ket qua<br />
thdi diem t (thdi diem ke't thue nien dp ke<br />
kiem chQng mdi lien he giQa TT BCTC va<br />
toan) theo sai so' dUde rut ra tQ bien dpng<br />
gia ed phidu hi sai leeh. Do vay gia ed phie'u<br />
gia cd phie'u T thang trong tUPng lai. sQ dung trong nghien cQu nay dQdc tie'n<br />
/J^,: gia cd phieu vao thdi diem < -i- T. hanh dieu ehinh chudi'^. Thdng tin chi tiet<br />
ve cac Sli kien d i n de'n viec dieu chinh gia ed<br />
R'l^: lpi s u i t thi trUdng (xac dinh diia<br />
phieu dupe thu thap tQ web site ciia Sd Giao<br />
tren ehi so' chQng khoan) cho khoang thdi dich chQng khoan thanh phd Hd Chi Minh<br />
gian tQ t de'n t+i. cung nhQ cua eac cdng ty niem yet.<br />
T = 3, 6, 9 va 12 thang.<br />
Sau qua trinh thu thap va xQ ly sd lieu,<br />
2.2. Mau nghiin cdu va mo td du lieu mau cudi cung gdm 306 quan sat cdng ty-<br />
Pham vi nghien cQu la eac cdng ty phi tai nam cua 135 cdng ty (chidm g i n 90 % so'<br />
chinh niem yet tren Sd Giao dich chQng cdng ty niem yet tren Sd Giao dich chQng<br />
khoan thanh phd Hd Chi Minh. DQ lieu khoan thanh phd' Hd Chi Minh tinh den het<br />
phuc vu cho viec Udc lUdng cac md hinh bao nam 2007). So' iQpng quan sat theo nam<br />
gdm lpi nhuan thuan tren ed phie'u (EPS), dQdc trinh bay trong bieu dd dUdi day. Do<br />
gia tri sd saeh tren cd phie'u (BPS), gia cd cudi nam 2006 cd sii tang trQdng manh ve so'<br />
phieu va chi so' VN Index dUdc lay tQ ed sd iQdng eac cdng ty niem yet nen sd iQpng eac<br />
dQ lieu EzSearch cua Cdng ty cd p h i n chQng quan sat ehu ye'u tap trung vao thdi ky<br />
khoan FPT (www.fpts.eom.vn). Do EzSearch 2006-2007.<br />
chi thd'ng ke bao cao tai chinh tQ nien dp<br />
2003 trd lai day va gia cd phieu tQ ngay giao<br />
12. Co sd di la'y cic mde thdi gian each nhau 3<br />
dich d i u tien ciia nam 2004 de'n nay nen thing ki tir thdi diim kit thuc nien dd la viec TT BCTC<br />
md'i lien he giQa TT BCTC va gia ed phie'u se cung duoc cdng bd hang quy cd thi tang cudng qua<br />
dUde xem xet cho cac nien dp 2003, 2004, trinh cip nhat, diiu chlnh ky vong cua nha diu tu dira<br />
2005, 2006 va 2007". NhU vay se cd mdt so' n-in TT BCTC vio cic thdi diim nay. Sd dl mde thdi<br />
gian chi duoc la'y din 12 thing do quy md miu khi han<br />
lupng nhat dinh quan sat cdng ty-nam (firm-<br />
chi vi thdi gian (xem phin miu va sd lieu nghien ciJu<br />
year observations) ddi vdi mdi cdng ty. Mdi dudi day).<br />
quan sat cdng ty-nam se bi loai bd khdi mau 13. Sd lupng cdng ty niem yit de'n cudi 2002 li khi<br />
cudi cung neu khdng cd d i y du dQ lieu ve gia It nen khdng anh hudng nhiiu din quy md miu.<br />
tri sd saeh tren cd phie'u, ldi nhuan t h u i n 14. Xem Tdn Tich Qu^ (2005) vi Nguyin Viet Dung<br />
tren cd phieu cua nien dp tUdng Qng, gia ed (2007b) di biit nguydn tic diiu chinh gii c6 phie'u.<br />
<br />
<br />
Nghiin ciru Kinh tgs6375 - Thing 8/2009<br />
25<br />
Moi iien he giiifa thong tin<br />
<br />
<br />
BIEU DO 1: So quan s a t t h e o n a m cua Bang 1 trinh bay cac thd'ng ke md ta<br />
mau n g h i e n cufu mau. Ldi n h u a n t h u i n tren cd phie'u cua cac<br />
cdng ty niem yet tren Sd GDCK TP.HCM<br />
133<br />
140-1 trong thdi ky 2003-2007 la khoang 3.500<br />
120-<br />
103 ^ ddng. Gia tri td'i thieu cho thay cd cac cdng<br />
100- ty thua Id nhUng chie'm mpt ty le r i t nhd<br />
So quan sit 80- trong so'cac quan sat (chi cd 1,6 %). Gia tri<br />
c6ng ty-<br />
60- sd sach tren mpt cd phieu trung binh la hdn<br />
ndm 23 30<br />
40- 18.000 ddng. So' quan sat cua cac bie'n P,/g<br />
17<br />
20- va P,ii2 la 173 so vdi 306 cua cac bien khac<br />
la do gia cd phieu chi dUdc lay de'n thdi diem<br />
0-12003 2004 2005 2006 2007 nghien cQu (den 31/07/2008). Do vay, khdng<br />
NSm xac dinh dQdc gia vao cud! nien dp 2007 dieu<br />
chinh cho bien dpng gia sau 9 va 12 thang.<br />
BANG 1: Thong k e mo ta mSu<br />
Bie'n Trung binh Trung vi Sd lech chuin Tdi thieu Tdi da Sd quan sat<br />
EPS 3,44 2,75 2,64 3,64 20,61 306<br />
BPS 18,37 16,11 8,07 4,99 52,20 306<br />
P, 62,71 47,10 5,58 8,10 460,00 306<br />
P« 61,47 44,38 53,68 7,26 379,63 306<br />
P,/6 63,33 41,43 79,47 6,91 1049,68 306<br />
Pi;9 58,76 35,19 90,45 6,82 1031,55 173<br />
Pl/12 62,17 37,87 99,07 5,24 1132,58 173<br />
<br />
Bang 2 trinh bay ma tran tQdng quan giQa cac bien gdm cac he so' tQdng quan Pearscn va<br />
tUdng quan hang Spearman.<br />
BANG 2: Ma t r a n tiftfng q u a n<br />
Bien EPS BPS P, P,/3 P,/6 P,/, Pl/12<br />
EPS - Pearson<br />
- Spearman —<br />
BPS - Pearson 0,53**<br />
- Spearman 0,60** —<br />
P, - Pearson 0,60** 0,50**<br />
- Spearman 0,55** 0,56**<br />
—<br />
Pii3 -Pearson 0,63** 0,53** 0,87**<br />
- Spearman 0,56** 0,59** 0,92**<br />
—<br />
P,if -Pearson 0,52** 0,39** 0,54** 0,82**<br />
- Spearman 0,56** 0,57** 0,86** 0,95**<br />
—<br />
P,i, -Pearson 0,60** 0,49** 0,47** 0,81** 0,99**<br />
- Spearman 0,57** 0,62** 0,89** 0,94** 0,98**<br />
—<br />
Pun -Pearson 0,58** 0,46** 0,46** 0,79** 0,99** 0,99**<br />
- Spearman 0,45** 0,51** 0,85** 0,91** 0,92** 0,95**<br />
—<br />
• CO y nghia thong ke dmiic 1%<br />
Ke't qua cho tha'y cac bie'n gia ed phieu saeh cd tUdng quan manh nha't vdi gia co<br />
tUdng quan tUdng ddi manh vdi nhau nhUng phieu dieu chinh cho bien dpng gia trong<br />
giam d i n khi dUpc dieu chinh cho bien ddng khoang thdi gian tUdng lai 3 thang. Cd the<br />
trong khoang thdi gian tUdng lai xa hdn. Cac nhan dinh day la ket qua ban d i u eho tha'y<br />
TT BCTC la lpi nhuan t h u i n va gia tri sd tren thi trUdng chQng khoan Viet Nam, TT<br />
<br />
26 Nghiin ciru Kinh tg s6375- Thing 8/2009<br />
Moi lien he giiifa thong tin<br />
<br />
<br />
BCTC dupc phan anh vao gia cd phieu vdi PhQdng phap thQa sd tang phUdng sai<br />
mpt dp t r i n h i t dinh. Dac diem nay se dUde (Variance Inflation Factor - VIF) dUdc sQ<br />
xem x6t ky hdn khi kiem dinh cae md hinh dung de dd tim d i u hieu cpng tuyen nhUng<br />
kinh te lUpng. He so' tUdng quan giQa hai k^t qua cho tha'y khdng cd hien tUdng nay.<br />
bie'n ddc lap tQdng doi ldn va cd y nghia ap dung ky thuat Stepwise Regression cung<br />
thd'ng ke d mQc cao nhat (cung nhU cac he so' cho tha'y viec de hai bien dpc lap nay trong<br />
tUdng quan giQa cae bie'n khae). Dieu nay mpt md hinh la hoan toan hpp ly.<br />
ddi hdi phai tien hanh nhan dang hien<br />
2.3. Ki't qud kiem dinh mo hinh kinh<br />
tupng cpng tuyen (Collinearity) ed the lam<br />
te lugng<br />
anh hudng de'n y nghia thdng ke cua cac<br />
tham so' dUpc Udc iQdng trong cac md hinh. Ke't qua dQdc trinh bay trong bang 3.<br />
BANG 3: Ket qua kiem dinh mo hinh<br />
Bie'n phu thudc: P, Biin phu thupc: P,,,<br />
OLS LSDV FGLS OLS LSDV FGLS<br />
-2,50 20,41* 3,61 -5,39 13,03 -3,52<br />
He sd tit do (-0,58)<br />
(-0,35) (2,43) (0,55) (-0,69) (1,51)<br />
9,86** 10,38** 8,25** 9 79** 10,18** 8,08**<br />
EPS (7,98)<br />
(4,08) (4,45) (7,42) (4^49) (4,84)<br />
I 7^** 1,03** 1,81** 1,24** 2,24**<br />
BPS (3,33) (7,63)<br />
(4^81) (2,72) (5',76) (4,83)<br />
R' 0,40 0,48 0,40 0,44 0,51 0,44<br />
Sd quan sdt 306 306 306 306 306 306<br />
Kiem dinh Breusch-Pagan ICook-Weisberg x'(i) f(l) f(l) z'(i)<br />
(Phucmg sai khdng dSng nhd't) 378,01** 365,44** 301,36** 295,28**<br />
Kiem dinh Fischer F F<br />
(dnh huang cddinh) 24,38** 22,87**<br />
Kiem dinh Breusch-Pagan x'(i) x'(i)<br />
(dnh hudng ngdu nhien) 23,33* 34,40**<br />
Kiem dinh Hausman f(2) f(2)<br />
(So sanh dnh hudng) 24,14** 12,57**<br />
** va * : coy nghia thong ke ldn luat a cdc mice l%vd 5%<br />
Cac md hinh dQdc trinh bay d tren dQdc Khi bie'n phu thudc la gia cd phieu vao thdi<br />
kiem dinh vdi cac bien phu thudc khac nhau diem ke't thuc nien dp ke toan (P,), cac kiem<br />
la P, , P„s, P,i6 , P,i9 va Ptm de xem xet kha dinh Fischer va Breusch-Pagan cho thay<br />
nang tdn tai dp t r i trong viec gia cd phieu khdng the bae bd gia thiet tdn tai eae anh<br />
phan anh TT BCTC. Hai bien dpc lap trong hQdng dac thu. Tuy nhien, theo kiem dinh<br />
eae md hinh la ldi nhuan t h u i n tren cd phig'u Hausman, cac anh hudng ngau nhien tUdng<br />
va gia tri sd sach tren cd phieu. Kiem dinh quan vdi cac bie'n ddc lap, lam cho cae he sd<br />
Breusch-Pagan/Cook-Weisberg cho cac hdi quy bi thien lech va do dd phUdng phap<br />
phUdng phap binh phUdng tdi thieu thdng LSDV dupc Ilia chpn. Ket qua Udc lUdng theo<br />
thUdng (OLS) va cd bien gia (LSDV) ydi t i t phUdng phap nay cho tha'y gia cd phieu cd mdi<br />
ca cac bie'n phu thupc khae nhau deu cho . lien he ty le thuan vdi ldi nhuan t h u i n tren cd<br />
tha'y ed d i u hieu eua hien tUpng phUdng sai phieu (EPS) va gia tri sd sach tren cd phie'u<br />
khdng ddng nha't (heteroscedasticity). Do dd, (BPS) va cae he so' ddu cd y nghia thd'ng ke d<br />
phUdng phap White (1980) dUpc ap dung de mQc cao nha't (1 %). Hai loai TT BCTC nay<br />
dieu chinh sai sd' chuin eua cac he sd hdi cung vdi cac anh hQdng cd' dinh giai thich dUdc<br />
quy. Thd'ng ke t dUdc trinh bay trong ket qua 48 % bien dpng gia cd phieu (40 % rieng cho<br />
cung da dUdc dieu chinh tUdng Qng. EPS va BPS theo phUdng phap OLS).<br />
<br />
Nghiin cilu Kinh tgs6 375 - Thing 8/2009 27<br />
Moi lien he giiifa thong tin<br />
<br />
<br />
BANG 3: Ket q u a k i e m d i n h m o h i n h (tiep)<br />
Bie'n phu thudc: P,/6 Bien phu thudc: P,/,<br />
OLS LSDV FGLS OLS LSDV FGLS<br />
-10,56 -0,32 -9,38** -32,50 3,03 -20,50<br />
He so tudo (-0,72) (-0,02) (-0,91) (-1,28) (0,13) (-1,52)<br />
13,03* 13,17** 11,28** 18,52* 19,94* 5,99**<br />
EPS<br />
(2,53) (2,66) (6,38) (2,37) (2,57) (3,38)<br />
1,59** J ^9** 2,02** 1,86* 0,42 4,35**<br />
BPS (3,60) (3,78) (2,14) (0,55) (6,18)<br />
(2,82)<br />
R' 0,29 0,32 0,28 0,37 0,42 0,32<br />
Sdquan sdt 306 306 306 173 173 173<br />
Kiem dinh Breusch-PaganlCook-Weisberg x'(i) x'(i) x'(i)<br />
{Phuang sai khong dong nhdt) 1071,58** 1050,17** 767,41**<br />
Kiem dinh Fischer F F<br />
(dnh huang cddinh) 14,72** 11,69**<br />
Kiem dinh Breusch-Pagan f(l) x'(i)<br />
(dnh hudng ngdu nhien) 8,92** 3,81<br />
Kiem dinh Hausman X\2)<br />
—<br />
(So sanh dnh hudng) 5,64<br />
** vd * : coy nghTa thdng keldn lu0 d cdc mice 1% vd 5%<br />
Khi gia cd phieu vao thdi diSm ket thuc thdng ke khi bien p h u thupc la Ptia va P,/,2.<br />
nien dp dUpc dieu chinh cho bie'n dpng gia Nhu vay, trai vdi mpt sd n h a n dinh cho r i n g<br />
trong 3 thang tUdng lai (P,/3), cac kiem dinh TT BCTC khong hQu ich trong viec xac dinh<br />
v i n d i n tdi viec liia chpn LSDV la phQdng gia cd phieu t r e n thi trUdng chQng khoan<br />
phap phu hdp n h i t . Cac TT BCTC v i n cd he Viet Nam, viec kiem dinh cac mo hinh cho<br />
sd dUdng vdi mQc y nghia thd'ng ke cao nha't. tha'y mdi lien he nay hoan toan cd y nghia ve<br />
Ngoai ra, sQc giai thich P,/^ ciia cac TT mat thd'ng ke. Ke't qua cung cho t h i y ed d i u<br />
BCTC cao hdn so vdi P,. Khi eac bien phu hieu gia ed phie'u phan anh TT BCTC vdi<br />
thupc la Pi/s, Pi/g va P,i,2 , sQc giai thi'ch cua mpt dp trd nha't dinh (TT BCTC gia thich tdt<br />
TT BCTC cd xu hudng giam. He sd cua gia n h i t gia cd phieu dUdc dieu chinh cho bien<br />
tri sd sach tren cd phie'u khdng cdn y nghia ddng gia trong 3 t h a n g tUdng lai).<br />
BANG 3: Ket qua kiem dinh m o hinh (tiep)<br />
Bien Dhu thuoc: P,,^, OLS LSDV FGLS<br />
-30,24 13,36 -9,90<br />
Hesd'ntdo<br />
(-1,06) (0,49) (-0,68)<br />
20,10* 21,77' 3,79'<br />
EPS<br />
(2,26) (2,48) (2,06)<br />
1,61 -0,12 4,54"<br />
BPS<br />
(1,48) (-0,12) (6,24)<br />
«^ 0,34 0,40 0,27<br />
Sdquan sdt 173 173 173<br />
Kiem dinh Breusch-Pagan ICook-Weisberg x'(i) x'(i)<br />
(Phuang sai khdng ddng nhdt) 794,85" 767,51"<br />
Kiem dinh Fischer F<br />
(dnh hudng cddinh) 14,34"<br />
Kiem dinh Breusch-Pagan x'(i)<br />
(dnh hudng ngdu nhien)<br />
3,76 J<br />
Kiem dinh Hausman (So sdnh dnh hudng)<br />
1<br />
• vd* : coy nghia Ihdng ke ldn luat a cdc miic 1% vd 5%<br />
<br />
<br />
28 Nghiin ciru Kinh tg sd 375 - Thing 8/2009<br />
Mtfi iien he giiifa thdng tin<br />
<br />
<br />
Do diu nam 2007 ehiing kien sQ di len r i t cac nam khac de xac dmh heu cd sii thay ddi nao<br />
manh me cua thi tnidng chiing khoan, mdi hen trong moi lien he nay khi thi tnidng thang hoa.<br />
he cua gia cd phieu diu nam 2007 vdi TT BCTC De kiem chiing sii khac biet nay, md hinh sau<br />
nien dp 2006 dUde so sanh vdi mdi hen he cua dUde kiem dinh vdi 3 phUdng phap nhQ d trin:<br />
P,n=oi + p,EPS,+p,BPS„+p,iYDxEPS,) + P,(YDxBPSJ + psYD + e„<br />
Trong dd: khi dd, khdng the bac bd gia thie't he so' cua<br />
/J„3: gia cd phigii cua ed phie'u i tai thdi bien tUdng tac thQ hai YDXBPS bang 0 d mQc 5<br />
diem ket thue nien dp t dQdc dieu chinh cho % (tham ehi 10 %). Do bien gia YD nhan gia tri<br />
bie'n dpng gia trong thdi gian 3 thang tUdng lai. 1 neu nam quan sat la 2006 va gia tri 0 cho cac<br />
EPSj,: ldi nhuan t h u i n tren cd phieu nien dp nam edn lai ket qua nay chi ra rang mdi hen he<br />
t cua cong ty i. giQa gia cd phieu diu nam 2007 vdi TT BCTC<br />
BPS I,: gia tri sd sach tren cd phie'u nien dp t nien dp 2006 manh hdn mdi hen he nay eua eac<br />
cua eong ty i. nam cdn lai va sii gia tang nay chi den tQ vai<br />
YD (Year Dummy): bie'n gia nhan gia tri 1 trd cua lpi nhuan edn gia tri sd sach khdng cd<br />
ndu nam quan sat la 2006 va gia tri 0 cho eae ddng gdp gi dang ke. Cac he so' hdi quy eho<br />
nam cdn lai. tha'y trung binh mdi 1 % thay ddi lpi nhuan<br />
Ket qua dUdc trinh bay trong bang 4. Cac nien dp 2006 lam gia cd phieu diu nam 2007<br />
kilm dinh Fischer, Breusch-Pagan va Hausman bie'n ddi eiing chieu gin 17 % trong khi ehi la<br />
eho tha'y phUdng phap LSDV dUdc liia chpn va khoang 7 % cho nhQng thdi ky khac. NhU vay,<br />
theo ket qua Udc lupng bang phUdng phap nay, khi thi trudng chiing khoan Viet Nam thang<br />
ngoai cac bie'n EPS va BPS cd he sd' dUPng, hoa thi vai trd eua ldi nhuan trong viec giai<br />
bie'n tUdng tac thQ n h i t YDXEPS ciing cd he so' thich gia cd phieu tang len rat nhieu so vdi<br />
ldn hdn 0 d mQc y nghia thd'ng ke 1 %. Trong nhQng thdi diem khac.<br />
BANG 4: Ket q u a k i e m d i n h m o h i n h<br />
Bie'n phu thudc: P,,j OLS LSDV FGLS<br />
-3,37 22,41* -0,18<br />
He sd tudo<br />
(-0,41) (2,47) (-0,03)<br />
6,38** 6,88** 5,58**<br />
EPS<br />
(2,76) (3,19) (5,05)<br />
2,14** 1,36** 2,39**<br />
BPS<br />
(4,97) (3,12) (8,10)<br />
10,44** 9 94** 6,59**<br />
YDxEPS (3,08) (3,02) (3,62)<br />
-1,53 -0,75 -0,05<br />
YDxBPS (-1,94) (-0,94) (-0,07)<br />
0,71 -25,10 -14,31<br />
YD (0,05) (-1,70) (-1,35)<br />
0,49 0,55 0,48<br />
Fsdquan sdt 306 306 306<br />
Kiem dinh Breusch-Pagan ICook-Weisberg x'(i) x'(i)<br />
(Phuang sai khdng ddng nhdt) 167,84** 190,86**<br />
Kiem dinh Fischer F<br />
(dnh hucing cddinh) 29,41**<br />
Kiem dinh Breusch-Pagan x'(i)<br />
(dnh hudng ngdu nhien) 25,75**<br />
m- Kiem dinh Hausman X'(2)<br />
(So sdnh dnh hudng) 24,11**<br />
** ud * .• CO y nghia thd'ng ke ldn luqt a cdc miic 1% vd 5%.<br />
<br />
Nghiin ciru Kinh tgs6375 - Thing 8/2009 29<br />
Moi lien he giiifa thong tin ...<br />
<br />
<br />
Bang 5 so sanh sQc giai thich gia cd phieu Nhu vay, mdi hen he giQa TT BCTC va<br />
cua TT BCTC tren thi trUdng chQng khoan gia cd phie'u tren TTCK Viet Nam v i n cdn<br />
Viet Nam vdi trQdng hdp cua eac nUdc khac. t h i p so vdi khdng chi cac qud'c gia phat trien<br />
Cac he sd xac dinh bpi va xac dinh bdi hieu ma ea vdi cac thi trUdng mdi ndi khac trong<br />
chinh cua ham hdi quy the hien mdi lien he khu vUc. Dieu nay cd the de dang nhan tha'y<br />
giQa gia cd phie'u va TT BCTC trong trUdng thdng qua viec phan tich cac tdn tai trong<br />
hpp cac nUdc dUde so sanh vdi nhau'^. Ket moi trUdng phap ly ve cdng bd' thdng tin ndi<br />
qua cho thay mdi lien he nay tren thi trUdng chung va TT BCTC ndi rieng, che dp ke<br />
chQng khoan Viet Nam ndi chung ye'u hdn toan, boat dpng kiem toan, thiic trang edng<br />
tren cac thi trUdng chQng khoan phUdng bd' TT BCTC cua cae cdng ty phat hanh,<br />
Tay (dieu nay da dUde dii doan trUdc). Tuy niem yet va viec sQ dung TT BCTC cua nha<br />
nhien, ldi nhuan va gia tri sd sach giai thich d i u tu d nUdc ta'^. Tuy nhien, dieu dd khdng<br />
bien ddng gia cd phieu tren TTCK Viet Nam cd nghia la TT BCTC khdng dUdc phan anh<br />
tdt hPn tren TTCK Trung Qudc trong thap vao gia cd phieu tai Viet Nam. Doi vdi cac<br />
nien 90 (Chen, Chen & Su (2001) nghien nha dau tU chuyen nghiep khdng cd thdng<br />
cQu thdi ky 1991-1998), cung la thdi ky ngay tin ndi gian va cac ldi the khac thi TT BCTC<br />
sau khi TTCK Trung Quo'c ra ddi gid'ng nhU nhu nd dUdc cdng bd v i n la mpt can cQ quan<br />
trUdng hdp Viet Nam trong nghien cQu nay. trpng de ra quye't dinh d i u tU. Hdn nQa, khi<br />
Ddi vdi cac nUdc Ddng Nam A, do nghien van tdn tai mpt bp phan khdng nho cae nha<br />
d i u tu khdng cd kie'n thQc d i u tQ theo cac<br />
cQu cua Graham & King (2000) sQ dung ldi<br />
nha dau tU chuyen nghiep ndi tren (vi du<br />
nhuan thang dU thay cho lpi nhuan t h u i n<br />
cac nha d i u tU chuyen nghiep nUde ngoai)<br />
trong ham hdi quy nen khdng the so sanh<br />
nhu v i n thUdng thay tren TTCK Viet Nam<br />
triic tiep bang he so' xac dinh bdi. Tuy nhien,<br />
thi TT BCTC v i n dQdc phan anh vao gia cd<br />
cac tac gia phan tich he sd tQdng quan giQa<br />
phieu.<br />
ldi nhuan thuan tren cd phie'u va gia ed<br />
phie'u va ne'u diia vao thdng so' nay thi trong 3. Ket l u a n<br />
sd' 6 qud'c gia va vung lanh thd la Dai Loan,<br />
Do thi trUdng hieu qua la mpt gia thiet<br />
Han Qude, Inddnexia, Malaixia, Phihppin<br />
khdng d l thda man, n h a t la doi vdi cac thi<br />
va Thai Lan (thdi ky nghien cQu: 1987-<br />
trUdng tai chinh rat mdi vdi mQc dp phat<br />
1996), Viet Nam chi xep tren Dai Loan.<br />
trien chUa cao nhQ d Viet Nam, viec ke't hdp<br />
B A N G 5: So sanh vdi cac quoc gia khac md hinh Ohlson (1995) vdi nghien cQu cua<br />
Aboody, Hughes & Liu (2002) cho phep cd<br />
Thfrikj- R'<br />
Quoc dUde mdt cd sd ly thuye't phu hpp de do<br />
nghien Tac gia R' hieu<br />
gla<br />
curu chinh ludng mdi lien he giQa TT BCTC va gia cd<br />
1982- King& 66 phieu tren thi trUdng chQng khoan Viet<br />
Anh<br />
1996 LangU (1998) % Nam. Trai vdi nhieu nghi ngd r i n g TT<br />
1982- King& 65 BCTC khong cd tac dpng gi den gia cd phieu<br />
NaUy<br />
1996 Langli (1998) % tai nUdc ta, ket qua kiem dinh mo hinh kinh<br />
Collins,<br />
1953- 54<br />
My Maydew &<br />
1993 %<br />
Weiss (1997)<br />
1982- King& 40 15. D^ cd sir so sinh ddng b6, cac he stf xic dinh b6i<br />
Dire<br />
1996 LangU (1998) % va xac dinh bpi hieu chinh trong trucmg hgp Viet Nam li<br />
Viet 2003- Nguyin Viet 40 ciia hkm hdi quy dupc udc lupng bang phucmg phSp<br />
Nam 2007 DDng (2009) % 39% OLS vdi hiit\ phu thupc Ik P,.<br />
Trung 1991 - Chen, Chen & 16. Xem Nguyin Viet Dung va nhdm ii tiii (2008)<br />
Qu6'c 1998 Su (2001) 25%<br />
ii bitft chi tiei<br />
<br />
30 Nghiin ciru Kinh tgs6375 - Thing 8/2009<br />
Moi lien he giiifa thong tin<br />
<br />
<br />
te lupng cho t h i y mdi lien he nay hoan toan TAI LifiU THAM KHAO<br />
cd y nghia, it n h i t la ve mat thd'ng ke. Ke't Aboody D., Hughes J. & Liu J. (2002), "Measuring<br />
Value Relevance in a (Possibly) Inefficient Market",<br />
qua edn cho tha'y TT BCTC giai thich tdt Journal of Accounting Research, 40, p. 965-986.<br />
nha't gia cd phie'u dUdc dieu chinh eho bien Akerlof G. (1970), "The market for 'Lemons': QuaUty<br />
ddng gia trong 3 thang tUdng lai. Day la d i u Uncertainty and the Market Mechanism", Quarterly<br />
hieu gia ed phie'u phan Qng ch