intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Mối liên hệ giữa thông tin báo cáo tài chính và giá cổ phiếu: Vận dụng linh hoạt lý thuyết hiện đại vào trường hợp Việt Nam

Chia sẻ: Cothumenhmong Cothumenhmong | Ngày: | Loại File: PDF | Số trang:14

36
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài viết trình bày cơ sở lý luận và kiểm chứng của mối liên hệ giữa thông tin báo cáo tài chính và giá cổ phiếu. Để nắm chi tiết nội dung nghiên cứu mời các bạn cùng tham khảo bài viết.

Chủ đề:
Lưu

Nội dung Text: Mối liên hệ giữa thông tin báo cáo tài chính và giá cổ phiếu: Vận dụng linh hoạt lý thuyết hiện đại vào trường hợp Việt Nam

TAI CHINH-TIEN TE<br /> <br /> <br /> <br /> Moi lien he giCra thong tin bao cao tai chinh va<br /> gia CO phieu: van dung iinh hoqt ly thuyet hien<br /> dqi vao trudng hop Viet Nam<br /> NGUYEN VIET DUNG<br /> <br /> T ^ Ua tren mo hinh Ohlson (1995) kit hdp vdi nghien cttu cua Aboody, Hughes & Liu<br /> I J (2002) cho phep ndi long gid thii't thi trUdng hiiu qud, bdi viet kiem chttng mdi lien he<br /> gitta thong tin bdo cdo tdi chinh vd gid cd phieu tren TTCK Viet Nam. Ke't qud cho thdy tuy<br /> cbn yeu hdn hdu hit cdc thi trUdng phdt trien vd mdi ndi khdc, mdi liin he ndy hodn todn cd y<br /> nghia, it nhdt Id vi mat thd'ng ke. Ngodi ra, cd ddu hieu gid cd phieu phdn ttng chdm vdi hoac<br /> dudi mttc vdi cong bd thdng tin bdo cdo tdi chinh vd khi thi trUdng chttng khodn Viet Nam<br /> thang hoa thi vai trb cua ldi nhuan trong viec gidi thich gid cd phieu tang lin so vdi nhttng<br /> thdi diem khdc. Ddy la nhttng thdng tin httu ich ddi vdi cdc cd quan qudn ly, cdc thdnh phdn<br /> tham gia thi trUdng vd dac biet cho chie'n lUtJc cua cdc nhd ddu ttt tren TTCK Viet Nam.<br /> <br /> <br /> ^ L I ai trd ciia thdng tin ddi vdi sii van ludng md'i hen he giQa TT BCTC va gia cd<br /> Ur hanh hieu qua cua thj trUdng da phieu. Tuy nhien, dac diem chung ciia tat<br /> dUdc biet den tii lau. Akerlof, ngUdi da doat ca cac nghien ciiu nay la thieu mpt cd sd ly<br /> giai Nobel kinh te nam 2001 cd nhiing ddng luan vufng chic vi chUa t r a ldi dUde 2 cau<br /> gdp tien phong trong linh vUc nay, da cho hdi: nhiing TT BCTC nao cd md'i lien he<br /> t h i y trong cdng trinh nghien ciiu ndi tie'ng triic tie'p vdi gia cd phieu va dau la md hinh<br /> dupc cdng bd' nam 1970^ r i n g bat can xiing ly thuyet cua mdi lien he nay? Chi khi dUa<br /> thdng tin cd the lam thi trUdng d i n bien ra dupc cau tra ldi mdi ed the lUdng hda<br /> mit. Dd'i vdi thi trudng chiing khoan ndi dupe tac ddng cua TT BCTC tdi gia cd phieu<br /> rieng, cac van de ve thdng tin la mpt trong mdt each chinh xac.<br /> nhiing nguyen nhan chii ye'u lam cho cae tai<br /> san tai chinh bi dinh gia sai, anh hudng den Trong mpt bai bao khoa hpc cdng bd nam<br /> qua trinh phan bd ngudn lUc ciia thi trUdng 1995, giao sU Dai hpc New York James<br /> vdi vai trd la kenh dan vd'n cho nen kinh te. Ohlson da tra ldi dUdc hai cau hdi ndi tren<br /> vdi mpt nen tang ly thuyet viing chic va<br /> Trong cac thdng tin cd kha nang anh dieu nay da anh hudng manh me den ddng<br /> hudng de'n gia chiing khoan, thdng tin bao nghien ciiu ve mdi lien he giiia TT BCTC va<br /> cao tai chinh (TT BCTC) cd mdt vi tri quan<br /> gia CO phieu txi dd tdi nay. Giao sU Russell<br /> trpng.<br /> Lundholm cua Dai hpc Michigan khi binh<br /> 1. Cd sd ly luan cua moi lien he giiifa luan ve nghien ciiu cua Ohlson (1995) da<br /> thong tin bao cao tai c h i n h va gia viet: "Cdng trinh cua Ohlson (1995) bdy gid<br /> CO phieu<br /> Ke tii cdng trinh nghien ciiu dau tien<br /> Nguyen Viet Diing, TS., Trudng Dai hpc Ngoai thuong.<br /> ciia BaU & Brown dUdc cdng bd nam 1968<br /> 1. Akerlof G. (1970), "The market for 'Lemons':<br /> cho den trUde 1995, da cd r i t nhieu cac co' Quality Uncertainty and the Market Mechanism",<br /> gang, ehii yeu la thiic nghiem, nham do Quarterly Journal of Economics, 84, p. 488-500.<br /> <br /> <br /> <br /> 18<br /> Moi nen he glOfa thdng tin<br /> <br /> <br /> dd trd thdnh cd sd cho cdc nghien cOu ve bdo dupe Sli dung phd bidn dd phan tfch gia tri<br /> cdo tdi chinh trong md'i lien he vdi thi trUdng ma cdng ty tao ra cho cd ddng. Neu ty s u i t<br /> cd phieu"^. sinh ldi tren vdn chu sd hiiu (ROE) cua mpt<br /> 1.1. Mo hinh Ohlson (1995) cdng ty ldn hdn lpi s u i t yeu clu khi d i u tU<br /> vao cd phieu cua cdng ty dd (tiic la lpi nhuan<br /> De phan tich md hinh Ohlson (Ohlson thang du dUdng) thi gia tri cua cd phieu se<br /> Model - OM), ed the tach nd lam 2 bp phan: ldn hdn gia tri sd sach cua nd va cdng ty<br /> thii n h i t la md hinh dinh gia cd phieu diia dupc coi la tao ra gia tri cho cd ddng<br /> tren ddng lpi nhuAn thang dU (Residual (shareholder value creation). NgUdc lai, ne'u<br /> income model - RIM) va thU hai la chudi ldi nhuan thang dU am thi gia tri cua cd<br /> thdng tin (Information dynamics) do Ohlson phieu se nho hdn gia tri sd saeh ciia nd va<br /> (1995) de xuat. Thanh p h i n thii nhat - RIM cdng ty bi coi la "pha buy" gia tri cua cd<br /> - thiic ra da dUpc thie't Iftp va sii dung tii g i n ddng {shareholder value destruction). Md<br /> 60 nam trUdc khi OM ra ddi. Nd x u i t hien hinh ldi nhuan thang dU cung dUde sii dung<br /> l l n dau trong nghien ciiu cua Preinreich rat phd bie'n trong dinh gia cd phieu tai cac<br /> cdng bd' nam 1938^. Xuat phat tii md hinh nUdc cd thi trUdng chiing khoan phat trien^.<br /> chiet kha'u cd tiic ciing nhU dUa tren mdi De di d§'n mo hinh cua minh tii RIM,<br /> lien h$ giiia cd tiic, ldi nhu&n va gia tri sd Ohlson (1995) da diia tren mpt gia thiet<br /> sach (clean surplus relation), RIM cd dang quan trpng lien quan den chudi thdi gian<br /> nhu sau: ciia ddng lpi nhuftn thang dU. Gia thidt nay<br /> dupc Ohlson (1995) dUa ra can cii vao tinh<br /> tdn lUu cua lpi nhu&n (earnings persistence)<br /> da dupe ghi nhftn trong cac nghien ciiu thiie<br /> nghiem trUdc dd ciing nhu diia tren thiic<br /> Trong dd: < , = x,^^ - ^, x b,^^_,<br /> tidn TT BCTC chi la mpt bp phan cua tap<br /> P : gia tri ndi tai ciia cd phieu tai thdi hpp cac thdng tin cd the anh hudng de'n ky<br /> vpng ciia thi trudng ve lpi nhuan tUPng lai<br /> diem t cua doanh nghiep:<br /> X(+j: ldi nhuan tren cd phieu (tinh theo<br /> nam) vao thdi diem t -t x X,+l = COX, +V,+ £,^i (2)<br /> <br /> x"_^_j.: lpi nhuan thang dU tren cd phieu a la he sd' tdn lUu lpi nhuan thang dU<br /> (tinh theo nam) vao thdi diem t -I- T (persistence coefficient), 0 < a>< 1<br /> £• la sai sd'cd ky vpng bang 0<br /> bj: gia tri sd sach tren cd phieu vao thdi<br /> V, la tac ddng cua thdng tin vao thdi<br /> diem t<br /> k : ldi s u i t yeu c l u diem t de'n ky vpng cua thi trUdng ve ldi<br /> •e nhuan thang dU tUdng lai nhUng chUa (boac<br /> E : ky vpng toan hpc diia tren thdng tin khdng) dupc phan anh trong bao cao tai<br /> chinh. Gia thie't nay cua Ohlson (1995) cd the<br /> dai chiing vao thdi diem t<br /> Nhu vay, theo md hinh ldi nhuan thang 2. Lundholm R.J. (1995), "A Tutorial on the Ohlson<br /> du, gia tri ndi tai cua mpt cd phieu gdm hai and Feltham/Ohlson Models: Answers to some Frequently<br /> p h i n . P h i n thii n h i t la gia tri sd sach cua Asked Questions", Contemporary Accounting Research,<br /> cd phieu dd va p h i n thii hai dUdc tao thanh Vol 11, p. 749-761.<br /> bcii tdng gia tri hien tai cua cac ddng ldi 3. Preinreich G. (1938), "Annual Survey of Economic<br /> nhuan thang dU tUdng lai ciia cong ty. Tu( Theory; The Theory of Depreciation", Econometrica, Vol.<br /> md hinh nay riit ra mdt quy t i e quan trpng 6, p. 219-241.<br /> <br /> <br /> Nghiin ciru Kinh tgs6375 - Thing 8/2009 19<br /> Moi iien he giiifa thong tin<br /> <br /> <br /> dupe diin giai mdt each khac la ky vpng cua ^t^\=r^t+n,^x (3)<br /> nhit diu tu ve kha nang sinh ldi tUdng lai cua<br /> edng ty phu thupc mdt phan vao TT BCTC •y la he so' tdn lUu anh hu^ng cua thdng<br /> hien tai (kha nang sinh ldi hien tai) va vao tin, 0 < x < l<br /> cac thdng tin khac chUa (hoac khdng) dUdc T] la sai sd' cd ky vpng bang 0<br /> phan anh trong bao cao tai chinh. He sd co<br /> dupc gia thie't n i m trong khoang (0,1) phan Hai phUdng trinh (2) va (3) tao thanh<br /> anh ket qua ciia h i u bet cac nghien ciiu thiic chudi thdng tin Ohlson va dUdc ke't hdp vdi<br /> nghiem ve chudi thdi gian ciia lpi nhuan. md hinh ldi n h u ^ n t h a n g dU de di de'n mo<br /> Cac anh hudng ciia thdng tin ciing dUdc hinh Ohlson cho phep dien giai gia cd<br /> gia thiet cd mdi lien he chudi thdi gian: phieu trong md'i hen he vdi TT BCTC:<br /> <br /> Pf=b,+ a^x", -b ajYt (4)<br /> (0 \ + k„<br /> Trong dd: a^ =<br /> \ + k,-0)' ' {\ + k,-(0\\ + K-r)<br /> <br /> Nhu vay, viec ket hdp mo hinh ldi nhuan khac nhu Anh, Diic, Na Uy [King & Langh<br /> thang du vdi chudi thong tin do Ohlson (1998)], Phap [Dumontier & Labelle (1998)]...<br /> (1995) de x u i t da cho phep Ohlson riit ra Ket qua thu dUdc thUdng nghieng vd met<br /> dupc md hinh the hien mdi lien he giUa gia mdi lien he kha chat che giQa gia cd phieu<br /> cd phieu va hai TT BCTC triic tiep la ldi va TT BCTC. Collins, Maydew & Weiss<br /> nhuan va gia tri sd sach tren mdt thi trUdng (1997) cho thay cac TT BCTC theo md hinh<br /> hieu qua khi gia cd phieu phan anh chinh Ohlson (1995) giai thfch dUdc 54% bie'n ddng<br /> xac gia tri thiic cua nd. Ngoai ra, gia cd gia cd phieu tren thi trUdng chiing khoan<br /> phieu cdn phu thupc vao eac thdng tin khac My. Nghien ciiu ciing chi ra rang vai trd cua<br /> chUa (hoac khdng) dUdc phan anh trong bao ldi nhuan giam nhe theo thdi gian. Theo<br /> cao tai chinh vao thdi diem dd. Mdi lien he King & Langli (1998), siic giai thich gia cd<br /> giiia gia cd phieu va ldi nhuan eiing nhU gia phieu cua TT BCTC tren cac thi trUdng<br /> tri sd sach hien tai la ty le thustn, dieu nay Anh, Na Uy va Diic l l n lUdt la 70%, 60% va<br /> phil hpp vdi ke't qua cac nghien ciiu thiie 40%. Mdi day, mpt so nghien ciiu ve chii de<br /> nghiem trUdc dd. PhUdng trinh (4) cd the d i nay da dUdc tien h a n h tren cac thi trUdng<br /> dang kiem chiing diia tren cd sd ly luan mdi ndi nhU Ddng Nam ^ [Graham & King<br /> viing chic de dUa ra ke't luan ve mdi lien he (2000)], Trung Qud'c [Chen, Chen & Su<br /> giiia gia cd phieu va TT BCTC. Dac diem (2001)]... Ket qua cho t h i y tuy ve tdng the<br /> nay cua md hinh Ohlson (1995) dUdc gidi khdng cd khoang each ldn so vdi cac nUde<br /> nghien ciiu thiie nghiem (empiricists) dac phat trien nhUng md'i lien he nay tren eac<br /> biet danh gia cao. thi trUdng mdi ndi la r i t khac nhau, tiiy<br /> thudc vao dac diem cua tiing thi trUdng.<br /> Tren cd sd md hinh Ohlson (1995), nhieu<br /> nghien cUu thiic nghiem da dUdc tien hanh O nUdc ta, mpt so' nghien ciiu da phan<br /> de kiem chUng mdi lien he giiia TT BCTC va tich vai trd ciia cdng bd' thdng tin dd'i vdi sii<br /> gia cd phieu tren cac thi trUdng chiing<br /> khoan khac nhau. Nhiing nghien cilu d i u 4. Xem Lee C. (1999), "Accounting-based valuation:<br /> impact on business practices and research". Accounting<br /> tien dupc tien hanh tren thi trUdng My Horizons, 13(4), p. 413-425 va Lee C, Myers J. vi<br /> [Collins, Maydew & Weiss (1997)], rdi d i n Swaminathan B. (1999), "What is the intrinsic value of<br /> dupc md rang ra cac thi trUdng phat trien the Dow?", Journal of Finance, 54(5), p. 1693-1741.<br /> <br /> 20 Nghiin cilu Kinh tgs6 375-Thing 8/2009<br /> Moi lien he giiifa thfing tin ...<br /> <br /> <br /> phat trien cua thi trUdng ehiing khoan ciing thttc nghiem vttng chdc de khdng dinh nhtt<br /> nhu de x u i t cac giai phap nang cao minh gid thie't thi trUdng hieu qud..."^.<br /> bach thdng tin [Trin Qudc Tuan (2001), Trong khoa hpc, nhieu khang dinh nhU<br /> T r i n Die Sinh (2002), Nguyen Dinh Hiing vay da bao trUdc mpt sii dao chieu va gia<br /> (2005), Dd Thanh PhUdng (2006), Nguyin thiet thi trUdng hieu qua cung n i m trong<br /> The Thp (2006), Mai Hoang Minh (2007)]. trUdng hpp dd. Trong khoang mdt p h i n tU<br /> Tuy nhien, cac nghien ciiu nay mdi chi danh the ky trd lai day, r i t nhiiu ke't qua nghien<br /> gia mpt each dinh tinh tac dpng ciia thdng cQu cd xu hudng phu nhan gia thie't nay.<br /> tin ndi chung chii ehUa di sau phan tich TT Cac nghien cQu thUdng tap trung vao mpt so'<br /> BCTC Cling nhU lUdng hoa md'i lien he cua di thUdng (anomaly) trong tap tinh cua gia<br /> chung vdi gia cd phieu. ed phieu ma thuyet thi trUdng hieu qua<br /> 1.2. Mdi liin hi gida thong tin bdo cdo khong dii kha nang giai thich nhU: phan<br /> tdi chinh vd gid co phieu khi ndi long Qng dudi mQe (under-reaction), phan Qng<br /> gid thii't thi trudng hiiu qud qua mQe (over-reaction), bie'n dpng qua mQe<br /> Ban than md hinh Ohlson (1995) va h i u (excessive volatility), hieu Qng thdi vu<br /> het eac nghien ciiu thiie nghiem ve mdi lien (seasonal effects), kha nang giai thich ldi<br /> he giiia TT BCTC va gia ed phieu deu diia sua't eua mpt sd yeu to' phi CAPM'... Ball<br /> tren gia thiet "an" ve thi trUdng hieu qua. (1994) cho r i n g sd di cd nhQng dang di<br /> Chi khi gia cd phieu tren thi trUdng phan thUdng Sd vdi gia thie't thi trUdng hieu qua<br /> anh gia tri npi tai cua nd thi mdi cd the sii la dd ly thuyet nay khdng xet tdi mpt so' v i n<br /> dung md hinh Ohlson (1995) lam cd sd ly de thiic tiin eiia thi trUdng nhU: chi phi giao<br /> luan eho mdi lien he nay. Tuy nhien, gia dich va thdng tin, tinh khdng t h u i n nha't<br /> thiet thi trUdng hi$u qua la mpt gia thiet trong ky vpng cua ngUdi d i u tU va mdt so'<br /> manh va trong so' mdt khdi lUpng ldn cac v i n de khac lien quan de'n ed clu td chQe<br /> nghien ciiu ve chu de nay tii trUdc tdi nay, cua thi trQdng tai chinh. Tuy nhien, tac gia<br /> ngay cang ed nhieu ke't qua trai ngUpe vdi nd. cung khdng loai trQ kha nang k§'t qua eho<br /> phep ket luan ve sii tdn tai cac di thUdng la<br /> Hdn 40 nam da qua ke tU khi Fama<br /> do ldi phUdng phap trong cac nghien cQu.<br /> (1965) lan d i u tien dUa ra khai niem ve thi Lee (2001) cho r i n g viec lay gia thie't thi<br /> trUdng hieu qua nhUng cho den nay v i n cdn trUdng hieu qua lam diem xua't phat la mpt<br /> la de tai gay nhieu tranh luan. NhQng Sli dPn gian hda phi thiic tien va khdng du<br /> nghien cQu thiie nghiem d i u tien deu khang kha nang phan anh dpng thai cua thi<br /> dinh gia thiet nay. Hai nghien cQu tien trUdng. Theo Lee (2001), ed sd de tin r i n g<br /> phong cua Ball & Brown (1968) va cua mdt thi trUPng ludn hieu qua chinh la sii<br /> Fama, Fisher, Jensen & RoU (1969) cho van hanh td't cua cd che kinh doanh chenh<br /> tha'y gia cd phieu phan anh thdng tin mdi lech gia (arbitrage). Ne'u mdt thdng tin mdi<br /> vdi tdc dp nhanh, lam cho kha nang tan chUa dupe phan anh vao gia cbQng khoan,<br /> dung thdng tin de "thing" dUdc thi trUdng la ngay lap tQc se cd cac dpng cd kinh te khai<br /> khd. Sau hai cdng trinh nay, mdt so' lUdng<br /> ldn cac nghien cQu khac da hoan thien<br /> phUdng phap thiic nghiem eiia hp va cung 5. Xem Fama (1970, 1991) ii biet chi Xiil \i phuong<br /> phap cung nhu kei qua cu thd cua nhiing nghien cthi<br /> cho thiy thi trUdng phan Qng g i n nhU tUc nay.<br /> thi ddi vdi thdng tin mdil Thanh cdng vao 6. "...there is no other proposition in economics<br /> thdi diem dd cua gia thie't thi trUdng hi$u which has more solid empirical evidence supporting it<br /> qua cd the dUpc tdm t i t b i n g danh gia eua than the Efficient Markets Hypothesis..." [Jensen<br /> (1978), p. 95].<br /> Jensen "...khdng mgt di xudt ly thuyet ndo<br /> 7. Xem Ball (1994), Shleifer (2000), Kothari (2001),<br /> trong kinh te hgc Iqi cd nhieu bdng chttng Lee (2001) va Schwert (2001) ii hiii chi tiei.<br /> <br /> <br /> Nghiin ciru Kinh tgs6375 - Thing 8/2009 21<br /> Moi iien he giiifa thong tin<br /> 1<br /> thac nd n h i m "thing" dUdc thi trUdng. Do Chung ta dang d trong tinh trqng khuyet<br /> vay, gia chQng khoan se tii dieu ehinh de'n thieu ly ludn khi nhieu gid thiet rdt mdi<br /> khi phan anh d i y du mpi thdng tin. Cac ca dttdc neu ra md khong cd chttng minh...".<br /> nhan trong mdt thi trUdng cd the hanh dpng Viec di sau hdn vUpt qua khudn khd ciia<br /> mpt each bat hdp ly nhUng ngUdi ta hy vpng nghien cQu nay. NhQng phan tich tren chi<br /> rang vd tdng the, cd che nay se ludn lam cho vdi muc dich n h a n manh r i n g tinh hieu qua<br /> gia chQng khoan sat vdi gia tri npi tai eua la mdt gia thie't khdng de thda man, n h i t la<br /> ehung. The' nhUng trong thiic tien, ban than ddi vdi cac thi trUdng tai chinh r i t mdi vdi<br /> nghiep vu kinh doanh chenh lech gia cung mQe dp phat trien chUa cao nhU d Viet Nam.<br /> chiu nhQng iQc can lam cho nd khdng the Trong trUdng hdp nay, khdng the sQ dung<br /> van hanh nhu mong mud'n. Shleifer & triic tie'p md hinh Ohlson (1995) lam cP sd<br /> Vishny (1997) neu ra 3 can trd ehinh cua cho md'i lien he giQa TT BCTC va gia cd<br /> nghiep vu nay. ThQ n h i t la rui ro han che phieu vi gia thi trQdng khdng phai luc nao<br /> ban khd'ng (short sale) tren cac thi trUdng. cung phan anh trung thiic gia tri ndi tai ciia<br /> ThQ hai, sU tdn tai cua cac noise traders cd phieu. Nghien cQu ciia Aboody, Hughes &<br /> cung la mdt ngudn rui ro vi ddng thai giao Liu (2002) cho phep khac phue dieu nay.<br /> dich cua hp la r i t khd dii bao dd'i vdi nhQng<br /> Aboody, Hughes & Liu (2002) xet thi<br /> ngUdi kinh doanh chenh lech gia. ThQ ba,<br /> trUdng trong dd gia cd phieu phan anh gia<br /> eae loai chi phi nhu thu t h i p , xii ly thdng tin<br /> tri npi tai cua nd vdi sai sd. Trong dieu kien<br /> va phi giao dich eung lam cho nghiep vu nay<br /> nhu vay, dang trung binh cua gia thiet thi<br /> trd nen td'n kem, ban che tham chi triet tieu<br /> trUdng hieu qua se khong dUdc thoa man<br /> lpi nhuan. Lee (2001) dung hinh anh so<br /> ne'u CO Sli tUdng quan giQa TT BCTC va sai<br /> sanh viec chuyen tQ cd che kinh doanh<br /> so' ndi tren. Sii tQdng quan nay lam cho hdi<br /> chenh lech gia sang gia thiet thi trUdng hieu<br /> quy cua gia cd phieu theo TT BCTC c6 he sd<br /> qua gid'ng nhU tin r i n g dai dUdng la phang<br /> thien lech (biased coefficients) do hien tUdng<br /> lang diia tren cd sd quan sat tac ddng eua<br /> bie'n tUdng quan tiem an (omitted-correlated<br /> trpng liic ddi vdi nUdc trong cd'c. Khdng the<br /> •variables) hay cdn gpi la hien tUdng bien<br /> tranh cai tac ddng ciia trpng liic nhUng se la<br /> dpc lap quan trpng bi bd sdt. De xQ ly chi<br /> m.pt Sli ddn gian hda qua mQe khi tQ quan sat<br /> tie't nay, nghien cQu cua Aboody, Hughes &<br /> nay suy ra r i n g dai dUPng gid'ng nhU mat hd<br /> Liu (2002) eho tha'y thong tin ve sai sd cd<br /> trong dem he binh lang. Cach suy luan nhU<br /> the dupc rut ra tQ bien dpng gia cd phieu<br /> vay khdng cho phep giai thich sii tdn tai ciia<br /> trong tUdng lai neu thi trUdng tii dieu chinh<br /> sdng hay mdt so' hien tUdng co the dii bao<br /> ve trang thai hieu qua theo thdi gian. Vdi<br /> nhu hai lUu va thuy trieu. Trong thiic tiin,<br /> gia thiet nay, cd the rut ra sai so' b i n g each<br /> dai dUdng ludn trong trang thai khuay ddng<br /> phan tach bien dong gia cd phidu trong<br /> va khdng ngQng tim den sii phang lang.<br /> tUdng lai thanh hai thanh p h i n : thanh phin<br /> Tupng tii nhu vay, thi trUdng tai chinh lien<br /> bien ddng thQ nha't do rui ro co he thdng* va<br /> tuc trong trang thai tii dieu chinh de tim<br /> thanh p h i n thQ hai do sii tii dieu chinh cua<br /> de'n Sli hieu qua.<br /> thi trUdng ve trang thai hieu qua.<br /> Cac tranh luan kinh vien ve thuyet thi Pit.x+D,,,<br /> trUdng hieu qua v i n tiep diin. Rainelli E(V,\X,)=E X, = 5 ; x , (5)<br /> (2003) md ta: "... Ni'u cd mgt thdi md cdc nhd !+ < •<br /> ly ludn tUdng dd'i nhdt tri trong viec khdng<br /> dinh gid thie't thi trUdng hieu qud thi dttdng<br /> nhtt dd troi qua. Tuy nhien, thdi diem md hg<br /> 8. Riii ro phi he thp'ng khPng dupc tfnh tdi do dupc<br /> cdng phu nhdn nd cd le cilng chUa tdi. gia thift Ik nhieu tring [white noise)<br /> <br /> 22 Nghiin ciru Kinh tg sdi 375 - Thing 8/2009<br /> Moi iien he giiifa thong tin<br /> <br /> <br /> v.,: gia tri ndi tai cua cd phieu i vao thdi cQu cua Aboody, Hughes & Liu (2002) eho<br /> diem t phep cd dupe mpt cd sd ly thuyet phu hdp de<br /> X.,: TT BCTC cua cdng ty i vao thdi diem t do ludng mdi hen he giQa TT BCTC va gia<br /> cd phieu tren thi trQdng chQng khoan Viet<br /> /J,^,: gia cd phieu cua cdng ty i vao thdi Nam. Muc tieu ciia phan II la kiem dinh mdi<br /> diem t -t- 1 lien he nay.<br /> i?,,.,^,: lpi s u i t tinh theo gia tri ndi tai tQ t 2. Moi lien h e giufa t h o n g t i n b a o cao<br /> de'n t -(- 1 t a i c h i n h v a gia co p h i e u t r e n t h i<br /> £>„.,.,: cd tQc cua thdi ky t + 1 trxfc/ng c h i i n g k h o a n Viet N a m<br /> 2.1. Mo hinh kinh ti'lUdng<br /> B,: vector he so' hdi quy<br /> Md hinh Ohlson (1995) cho tha'y gia tri cd<br /> PhUdng trinh (5) la giai phap ddn gian phieu dupc quye't dinh bdi hai Inai TT BCTC<br /> cho phep do lUdng mdi lien he giQa TT (gia tri sd sach va ldi nhuan thuan) va cae<br /> BCTC va gia cd phieu trong dieu kien dang thdng tin khac khdng cd trong bao cap tai<br /> trung binh cua gia thiet thi trUdng hieu qua chinh. De kiem chQng mdi lien he giQa gia<br /> khdng dupc thda man. Thay vi sQ dung gia cd phieu va TT BCTC, cac md hinh hdi quy<br /> cd phieu hien tai, ham hdi quy lly gia tri tuyen tinh vdi bie'n phu thudc la gia cd phieu<br /> hien tai cua gia cd phieu tUdng lai lam bien va hai bie'n dpc lap la gia tri sd sach tren co<br /> phu thupc, trong dd ty sua't hien tai hda la phieu va lpi nhuan t h u i n se dUdc sQ dung.<br /> ldi s u i t ky vpng cd dieu kien khi biet TT Do dQ lieu dQdi dang bang (panel data -<br /> BCTC. Ndi each khac, lupng dieu ehinh bien quan sat cdng ty-nam), ngoai phUdng phap<br /> phu thudc (them hoac bdt vao gia cd phieu binh phUdng tdi thieu thdng thUdng<br /> hien tai) chinh b i n g gia tri hien tai cua (Ordinary Least Squares - OLS), mdi lien he<br /> p h i n bie'n ddng gia cd phieu tUPng lai khdng tren cung se dUdc kiem chQng bang cae mo<br /> chiu anh hudng cua rui ro he thd'ng. hinh anh hudng cd' dinh (Fixed effects model)<br /> Nhu vay, do thi trUdng hieu qua la mpt va anh hudrig ngau nhien (Random effect<br /> gia thiet khdng d i thda man, nha't la doi vdi modeiy.<br /> cac thi trUPng tai chinh r i t mdi vdi mQc dp Trong trUdng hdp phUdng phap binh<br /> phat trien chQa cao nhQ d Viet Nam, viec phUdng tdi thieu thdng thQdng, vdi cdng ty<br /> ket hdp md hinh Ohlson (1995) vdi nghien thQ i, md hinh cd dang:<br /> + X,p + e,<br /> Trong dd Y, ={YI„Y.^,...,YI^) ,e, ={e.„e,2,...,e.^)',j,=(i,i,...,i)'<br /> <br /> deu cd kich thUdc ( r x l ) , T la sd thdi ky hudng (cd' dinh) den gia cd phieu cua cdng<br /> quan sat dd'i vdi ddn vi i. y^ la he sd tU do va ty.<br /> <br /> P = {f}2,Pi,.-,pK) 1^ vector he sdhdi quy cua<br /> cac bie'n ddc lap. Ma tran AT, ciia cac bie'n 9. Cac anh hudng dac thil cd dinh hoac ngiu nhien<br /> ddc lap ed kich thUde (rx(A:-l)) trong dd K trong hai loai m6 hinh nay c6 kha nang phan anh "cic<br /> la sd' lupng bie'n ddc lap. thdng tin khac kh6ng cd trong bio cao tai chinh" theo<br /> md hinh Ohlson (1995), diiu mi phuong phip binh<br /> Md hinh anh hQi^lng cd' dinh cd dang:<br /> phuong tdi thiiu thdng thudng khdng thuc hien duoc.<br /> Y,=(A+A)jr+X,P + e, Dac die'm nky cung cd thi lam cho viec udc luong theo<br /> phuong phip binh phuong tdi thiiu thdng thudng bi<br /> Trong dd Pi dai dien cho cae ye'u to' dac thien lech (biased estimation) do hien tupng bie'n tuong<br /> trUdng cua cdng ty i (ngoai TT BCTC) cd anh quan tiim dn.<br /> <br /> Nghiin ciru Kinh te s6 375 - Thing 8/2009 23<br /> Moi iien he giiifa thong tin ...<br /> <br /> <br /> Md hinh anh hudng n g l u nhien cd dang: panel), phUdng phap binh phUdng to'i thieu<br /> cd bie'n gia hai chieu (Least Squares Dummy<br /> Y, =X,.p + //,Jr+e/<br /> Variable (LSDV) - group and time effects)<br /> Trong dd X, la ma tran bien phu thupc dupe sQ dung de Udc lUdng mo hinh anh<br /> (gdm ca vector tUdng Qng vdi he so' tii do) cd hudng cd' dinh va phUdng phap binh phUdng<br /> kfch thQdc (TXK) va p = {p^,Pj,...,P^) .p^\a tdi thieu tdng quat kha thi (Feasible<br /> mdt bien ngau nhien thda man cac dieu kien Generalized Least Squares - FGLS) de Udc<br /> lUdng md hinh anh hudng ngau nhien'". Ddi<br /> sau: ECU,.) = 0 ; E(pf)=al; E ( / / , . / / J = 0 vdi mpi<br /> vdi cac phUdng phap binh phUdng tdi thieu<br /> i*J ; E(//,e,,) = Ova E(//,.e,.,) = 0 . thdng thUdng va cd bie'n gia, kiem dinh<br /> Breuseh-Pagan/Cook-Weisberg dUde thiie<br /> Cac kiem dinh thd'ng ke dQdc thiic hien<br /> hien de n h a n dang hien tUdng phUdng sai<br /> de Ilia chpn md hinh phu hpp n h i t . Md hinh<br /> anh hudng cd' dinh dUdc so sanh vdi phUdng khdng ddng n h i t (heteroscedasticity). Khi cd<br /> phap binh phUdng toi thieu thdng thUdng da'u hieu cua hien tUdng nay, Udc lUpng dUdc<br /> bang kiem dinh Fischer. Kiem dinh nay cho dieu chinh b i n g phUdng phap White (1980).<br /> phep kiem chQng sQ tdn tai ciia anh hQdng De tinh tdi anh hudng ciia gia thiet thi<br /> dac thu khdng ddng n h i t giQa cac ddn vi. trQdng hieu qua den md'i lien he giQa TT<br /> Gia thiet khdng (null hypothesis) dQdc the BCTC va gia co phieu theo nghien cQu eua<br /> hien nhQ sau: Aboody, Hughes & Liu (2002), bien phu<br /> thupc (gia ed phieu) trong cac md hinh se<br /> tio'M\^M2= - = MN=^ dupe xac dinh trong mpt so' trQdng hpp khac<br /> Md hinh anh hudng n g l u nhien dUde so nhau. TrUdng hdp thQ n h i t gia thiet thi<br /> sanh vdi phUdng phap binh phUdng td'i thieu trUdng hieu qua, gia cd phieu dUdc lay vao<br /> thdng thUdng b i n g kiem dinh Breusch- thdi diem ket thuc nien dp ke toan ma bao<br /> Pagan (chi-binh phUdng) n h i m kiem chQng cao tai chfnh phan a n h " . Nhdm cac trUdng<br /> Sli tdn tai cua cac anh hudng ngau nhien. hpp edn lai gia thiet dang trung binh cua thi<br /> Gia thidt khdng la phUdng sai cua cac anh trUdng hieu qua khong dUdc thda man va thi<br /> hudng bang khdng: trQdng tii dieu chinh ve trang thai hieu qua<br /> Khi cac md hinh anh hudng cd dinh va sau mpt khoang thdi gian nha't dinh. Do khdng<br /> anh hudng n g l u nhien vUdt qua dUdc cac<br /> kiem dinh sii tdn tai ciia anh hudng dac thu. 10. Xem Greene (2003) di biit chi tiei<br /> 11. Bao cao tai chinh nam thucmg dupc cdng bd mdt<br /> HO-.CT'^ 0<br /> khoang thdi gian sau khi nien dd ki toin kei thuc. Viec<br /> la'y gii c6 phie'u vao thdi diim cdng bd bio cio tai chi'nh<br /> chung dUdc so sanh vdi nhau b i n g kiem<br /> vdi mdt dd tri thdi gian nhit dinh so vdi thdi diim kit<br /> dinh Hausman n h i m kiem chQng tinh dpc thtic niin dd cd im diim la gii c6 phiiu phan inh diy dti<br /> lap cua anh hudng ngau nhien ddi vdi eae hon thdng tin tir bio cio tai chinh. Tuy nhien, gii c6<br /> bien giai thich. Trong trQdng hpp ddc lap, phie'u dd cung cd thi da phan inh ca nhiJng thdng tin<br /> md hinh anh hQdng ngau nhien manh hdn cita niin dd mdi. Trong nghien ciJu nay, vdi trudng hpp<br /> thir nhit cd gia thiei thi trudng hieu qua, gia c6 phie'u<br /> md hinh anh hUdng cd' dinh va dUdc liia<br /> dupc lay vao thdi diim kit thuc nien dd ke' toin. Trong<br /> chpn. Trong trUdng hpp ngUde lai khi anh thirc tien, vao thdi diim kit thuc nien dd, cic TT BCTC<br /> hudng n g l u nhien tUdng quan vdi bie'n giai chii yiu ciia nien dd dd thudng da dupc dii doan trudc 6<br /> thich, Udc lupng md hinh anh hUcing n g l u mdt mtic dd kha ldn. Hon niia, viec la'y gii c6 phie'u nhu<br /> nhien hi thien leeh va do dd mo hinh anh viy lam tang sd quan sit trong cac tnrdng hop xit tdi<br /> ti'nh phi hieu qua ciia thi trudng vi vdi cic gia thiit khic<br /> hudng cd dinh dUde liia chpn.<br /> nhau vi khoang thdi gian thi tnrdng se tu diiu chinh vi<br /> Do dQ lieu bang dUdc sQ dung trong trang thai hiiu qua (gii c6 phie'u trong nghien ciru nay<br /> nghien cQu nay khdng can (unbalanced chi dupc lay de'n 31-07-2008).<br /> <br /> <br /> 24 Nghiin cifu Kinh tg si? 375 - Thing 8/2009<br /> Moi lien he giiifa thong tin<br /> <br /> <br /> ed cd sd ly thuye't nao de liia chpn khoang phieu va chi so' VN Index vao eac thdi diem<br /> thdi gian nay, cac md'c thdi gian dupe sQ sau: ket thuc nien dp tQdng Qng, 3, 6, 9 va<br /> dung trong nghien cQu nay la 3, 6, 9 va 12 12 thang sau khi ke't thue nien dp.<br /> thang sau khi ke't thuc nien dp ke't t o a n ' l Mdt diem dang lUu y la gia cd phieu trong<br /> Trong cac trQdng hdp nay, gia cd phie'u dQdc cd sd dQ lieu EzSearch (eung nhQ h i u het<br /> dieu ehinh theo sai sd dUde rut' ra tQ bie'n cae ngudn cung d p dQ lieu gia cd phie'u d<br /> ddng gia cd phi§'u tUdng lai nhu sau (bie'n Vipt Nam hien nay) chQa dQdc dieu chinh<br /> the ciia cdng thQc (5) theo nghien cQu cua chudi ddi vdi cae sii kien lam thay ddi gia cd<br /> Aboody, Hughes & Liu (2002)): phieu nhQng khdng lam thay ddi gia tri vdn<br /> P chu sd hQu vdi mpt ty le tQdng Qng (chia cd<br /> phie'u thQdng, tra eo tQc b i n g cd phie'u, phat<br /> hanh them cd phieu...). Neu khdng dUdc<br /> Trong dd: dieu chinh chudi, cac thay ddi gia cd phieu<br /> P,!^: gia cd phie'u dUdc dieu chinh cho cd the khdng phan anh chinh xae thay ddi<br /> gia tri vd'n chu sd hQu va lam cho ket qua<br /> thdi diem t (thdi diem ke't thue nien dp ke<br /> kiem chQng mdi lien he giQa TT BCTC va<br /> toan) theo sai so' dUde rut ra tQ bien dpng<br /> gia ed phidu hi sai leeh. Do vay gia ed phie'u<br /> gia cd phie'u T thang trong tUPng lai. sQ dung trong nghien cQu nay dQdc tie'n<br /> /J^,: gia cd phieu vao thdi diem < -i- T. hanh dieu ehinh chudi'^. Thdng tin chi tiet<br /> ve cac Sli kien d i n de'n viec dieu chinh gia ed<br /> R'l^: lpi s u i t thi trUdng (xac dinh diia<br /> phieu dupe thu thap tQ web site ciia Sd Giao<br /> tren ehi so' chQng khoan) cho khoang thdi dich chQng khoan thanh phd Hd Chi Minh<br /> gian tQ t de'n t+i. cung nhQ cua eac cdng ty niem yet.<br /> T = 3, 6, 9 va 12 thang.<br /> Sau qua trinh thu thap va xQ ly sd lieu,<br /> 2.2. Mau nghiin cdu va mo td du lieu mau cudi cung gdm 306 quan sat cdng ty-<br /> Pham vi nghien cQu la eac cdng ty phi tai nam cua 135 cdng ty (chidm g i n 90 % so'<br /> chinh niem yet tren Sd Giao dich chQng cdng ty niem yet tren Sd Giao dich chQng<br /> khoan thanh phd Hd Chi Minh. DQ lieu khoan thanh phd' Hd Chi Minh tinh den het<br /> phuc vu cho viec Udc lUdng cac md hinh bao nam 2007). So' iQpng quan sat theo nam<br /> gdm lpi nhuan thuan tren ed phie'u (EPS), dQdc trinh bay trong bieu dd dUdi day. Do<br /> gia tri sd saeh tren cd phie'u (BPS), gia cd cudi nam 2006 cd sii tang trQdng manh ve so'<br /> phieu va chi so' VN Index dUdc lay tQ ed sd iQdng eac cdng ty niem yet nen sd iQpng eac<br /> dQ lieu EzSearch cua Cdng ty cd p h i n chQng quan sat ehu ye'u tap trung vao thdi ky<br /> khoan FPT (www.fpts.eom.vn). Do EzSearch 2006-2007.<br /> chi thd'ng ke bao cao tai chinh tQ nien dp<br /> 2003 trd lai day va gia cd phieu tQ ngay giao<br /> 12. Co sd di la'y cic mde thdi gian each nhau 3<br /> dich d i u tien ciia nam 2004 de'n nay nen thing ki tir thdi diim kit thuc nien dd la viec TT BCTC<br /> md'i lien he giQa TT BCTC va gia ed phie'u se cung duoc cdng bd hang quy cd thi tang cudng qua<br /> dUde xem xet cho cac nien dp 2003, 2004, trinh cip nhat, diiu chlnh ky vong cua nha diu tu dira<br /> 2005, 2006 va 2007". NhU vay se cd mdt so' n-in TT BCTC vio cic thdi diim nay. Sd dl mde thdi<br /> gian chi duoc la'y din 12 thing do quy md miu khi han<br /> lupng nhat dinh quan sat cdng ty-nam (firm-<br /> chi vi thdi gian (xem phin miu va sd lieu nghien ciJu<br /> year observations) ddi vdi mdi cdng ty. Mdi dudi day).<br /> quan sat cdng ty-nam se bi loai bd khdi mau 13. Sd lupng cdng ty niem yit de'n cudi 2002 li khi<br /> cudi cung neu khdng cd d i y du dQ lieu ve gia It nen khdng anh hudng nhiiu din quy md miu.<br /> tri sd saeh tren cd phie'u, ldi nhuan t h u i n 14. Xem Tdn Tich Qu^ (2005) vi Nguyin Viet Dung<br /> tren cd phieu cua nien dp tUdng Qng, gia ed (2007b) di biit nguydn tic diiu chinh gii c6 phie'u.<br /> <br /> <br /> Nghiin ciru Kinh tgs6375 - Thing 8/2009<br /> 25<br /> Moi iien he giiifa thong tin<br /> <br /> <br /> BIEU DO 1: So quan s a t t h e o n a m cua Bang 1 trinh bay cac thd'ng ke md ta<br /> mau n g h i e n cufu mau. Ldi n h u a n t h u i n tren cd phie'u cua cac<br /> cdng ty niem yet tren Sd GDCK TP.HCM<br /> 133<br /> 140-1 trong thdi ky 2003-2007 la khoang 3.500<br /> 120-<br /> 103 ^ ddng. Gia tri td'i thieu cho thay cd cac cdng<br /> 100- ty thua Id nhUng chie'm mpt ty le r i t nhd<br /> So quan sit 80- trong so'cac quan sat (chi cd 1,6 %). Gia tri<br /> c6ng ty-<br /> 60- sd sach tren mpt cd phieu trung binh la hdn<br /> ndm 23 30<br /> 40- 18.000 ddng. So' quan sat cua cac bie'n P,/g<br /> 17<br /> 20- va P,ii2 la 173 so vdi 306 cua cac bien khac<br /> la do gia cd phieu chi dUdc lay de'n thdi diem<br /> 0-12003 2004 2005 2006 2007 nghien cQu (den 31/07/2008). Do vay, khdng<br /> NSm xac dinh dQdc gia vao cud! nien dp 2007 dieu<br /> chinh cho bien dpng gia sau 9 va 12 thang.<br /> BANG 1: Thong k e mo ta mSu<br /> Bie'n Trung binh Trung vi Sd lech chuin Tdi thieu Tdi da Sd quan sat<br /> EPS 3,44 2,75 2,64 3,64 20,61 306<br /> BPS 18,37 16,11 8,07 4,99 52,20 306<br /> P, 62,71 47,10 5,58 8,10 460,00 306<br /> P« 61,47 44,38 53,68 7,26 379,63 306<br /> P,/6 63,33 41,43 79,47 6,91 1049,68 306<br /> Pi;9 58,76 35,19 90,45 6,82 1031,55 173<br /> Pl/12 62,17 37,87 99,07 5,24 1132,58 173<br /> <br /> Bang 2 trinh bay ma tran tQdng quan giQa cac bien gdm cac he so' tQdng quan Pearscn va<br /> tUdng quan hang Spearman.<br /> BANG 2: Ma t r a n tiftfng q u a n<br /> Bien EPS BPS P, P,/3 P,/6 P,/, Pl/12<br /> EPS - Pearson<br /> - Spearman —<br /> BPS - Pearson 0,53**<br /> - Spearman 0,60** —<br /> P, - Pearson 0,60** 0,50**<br /> - Spearman 0,55** 0,56**<br /> —<br /> Pii3 -Pearson 0,63** 0,53** 0,87**<br /> - Spearman 0,56** 0,59** 0,92**<br /> —<br /> P,if -Pearson 0,52** 0,39** 0,54** 0,82**<br /> - Spearman 0,56** 0,57** 0,86** 0,95**<br /> —<br /> P,i, -Pearson 0,60** 0,49** 0,47** 0,81** 0,99**<br /> - Spearman 0,57** 0,62** 0,89** 0,94** 0,98**<br /> —<br /> Pun -Pearson 0,58** 0,46** 0,46** 0,79** 0,99** 0,99**<br /> - Spearman 0,45** 0,51** 0,85** 0,91** 0,92** 0,95**<br /> —<br /> • CO y nghia thong ke dmiic 1%<br /> Ke't qua cho tha'y cac bie'n gia ed phieu saeh cd tUdng quan manh nha't vdi gia co<br /> tUdng quan tUdng ddi manh vdi nhau nhUng phieu dieu chinh cho bien dpng gia trong<br /> giam d i n khi dUpc dieu chinh cho bien ddng khoang thdi gian tUdng lai 3 thang. Cd the<br /> trong khoang thdi gian tUdng lai xa hdn. Cac nhan dinh day la ket qua ban d i u eho tha'y<br /> TT BCTC la lpi nhuan t h u i n va gia tri sd tren thi trUdng chQng khoan Viet Nam, TT<br /> <br /> 26 Nghiin ciru Kinh tg s6375- Thing 8/2009<br /> Moi lien he giiifa thong tin<br /> <br /> <br /> BCTC dupc phan anh vao gia cd phieu vdi PhQdng phap thQa sd tang phUdng sai<br /> mpt dp t r i n h i t dinh. Dac diem nay se dUde (Variance Inflation Factor - VIF) dUdc sQ<br /> xem x6t ky hdn khi kiem dinh cae md hinh dung de dd tim d i u hieu cpng tuyen nhUng<br /> kinh te lUpng. He so' tUdng quan giQa hai k^t qua cho tha'y khdng cd hien tUdng nay.<br /> bie'n ddc lap tQdng doi ldn va cd y nghia ap dung ky thuat Stepwise Regression cung<br /> thd'ng ke d mQc cao nhat (cung nhU cac he so' cho tha'y viec de hai bien dpc lap nay trong<br /> tUdng quan giQa cae bie'n khae). Dieu nay mpt md hinh la hoan toan hpp ly.<br /> ddi hdi phai tien hanh nhan dang hien<br /> 2.3. Ki't qud kiem dinh mo hinh kinh<br /> tupng cpng tuyen (Collinearity) ed the lam<br /> te lugng<br /> anh hudng de'n y nghia thdng ke cua cac<br /> tham so' dUpc Udc iQdng trong cac md hinh. Ke't qua dQdc trinh bay trong bang 3.<br /> BANG 3: Ket qua kiem dinh mo hinh<br /> Bie'n phu thudc: P, Biin phu thupc: P,,,<br /> OLS LSDV FGLS OLS LSDV FGLS<br /> -2,50 20,41* 3,61 -5,39 13,03 -3,52<br /> He sd tit do (-0,58)<br /> (-0,35) (2,43) (0,55) (-0,69) (1,51)<br /> 9,86** 10,38** 8,25** 9 79** 10,18** 8,08**<br /> EPS (7,98)<br /> (4,08) (4,45) (7,42) (4^49) (4,84)<br /> I 7^** 1,03** 1,81** 1,24** 2,24**<br /> BPS (3,33) (7,63)<br /> (4^81) (2,72) (5',76) (4,83)<br /> R' 0,40 0,48 0,40 0,44 0,51 0,44<br /> Sd quan sdt 306 306 306 306 306 306<br /> Kiem dinh Breusch-Pagan ICook-Weisberg x'(i) f(l) f(l) z'(i)<br /> (Phucmg sai khdng dSng nhd't) 378,01** 365,44** 301,36** 295,28**<br /> Kiem dinh Fischer F F<br /> (dnh huang cddinh) 24,38** 22,87**<br /> Kiem dinh Breusch-Pagan x'(i) x'(i)<br /> (dnh hudng ngdu nhien) 23,33* 34,40**<br /> Kiem dinh Hausman f(2) f(2)<br /> (So sanh dnh hudng) 24,14** 12,57**<br /> ** va * : coy nghia thong ke ldn luat a cdc mice l%vd 5%<br /> Cac md hinh dQdc trinh bay d tren dQdc Khi bie'n phu thudc la gia cd phieu vao thdi<br /> kiem dinh vdi cac bien phu thudc khac nhau diem ke't thuc nien dp ke toan (P,), cac kiem<br /> la P, , P„s, P,i6 , P,i9 va Ptm de xem xet kha dinh Fischer va Breusch-Pagan cho thay<br /> nang tdn tai dp t r i trong viec gia cd phieu khdng the bae bd gia thiet tdn tai eae anh<br /> phan anh TT BCTC. Hai bien dpc lap trong hQdng dac thu. Tuy nhien, theo kiem dinh<br /> eae md hinh la ldi nhuan t h u i n tren cd phig'u Hausman, cac anh hudng ngau nhien tUdng<br /> va gia tri sd sach tren cd phieu. Kiem dinh quan vdi cac bie'n ddc lap, lam cho cae he sd<br /> Breusch-Pagan/Cook-Weisberg cho cac hdi quy bi thien lech va do dd phUdng phap<br /> phUdng phap binh phUdng tdi thieu thdng LSDV dupc Ilia chpn. Ket qua Udc lUdng theo<br /> thUdng (OLS) va cd bien gia (LSDV) ydi t i t phUdng phap nay cho tha'y gia cd phieu cd mdi<br /> ca cac bie'n phu thupc khae nhau deu cho . lien he ty le thuan vdi ldi nhuan t h u i n tren cd<br /> tha'y ed d i u hieu eua hien tUpng phUdng sai phieu (EPS) va gia tri sd sach tren cd phie'u<br /> khdng ddng nha't (heteroscedasticity). Do dd, (BPS) va cae he so' ddu cd y nghia thd'ng ke d<br /> phUdng phap White (1980) dUpc ap dung de mQc cao nha't (1 %). Hai loai TT BCTC nay<br /> dieu chinh sai sd' chuin eua cac he sd hdi cung vdi cac anh hQdng cd' dinh giai thich dUdc<br /> quy. Thd'ng ke t dUdc trinh bay trong ket qua 48 % bien dpng gia cd phieu (40 % rieng cho<br /> cung da dUdc dieu chinh tUdng Qng. EPS va BPS theo phUdng phap OLS).<br /> <br /> Nghiin cilu Kinh tgs6 375 - Thing 8/2009 27<br /> Moi lien he giiifa thong tin<br /> <br /> <br /> BANG 3: Ket q u a k i e m d i n h m o h i n h (tiep)<br /> Bie'n phu thudc: P,/6 Bien phu thudc: P,/,<br /> OLS LSDV FGLS OLS LSDV FGLS<br /> -10,56 -0,32 -9,38** -32,50 3,03 -20,50<br /> He so tudo (-0,72) (-0,02) (-0,91) (-1,28) (0,13) (-1,52)<br /> 13,03* 13,17** 11,28** 18,52* 19,94* 5,99**<br /> EPS<br /> (2,53) (2,66) (6,38) (2,37) (2,57) (3,38)<br /> 1,59** J ^9** 2,02** 1,86* 0,42 4,35**<br /> BPS (3,60) (3,78) (2,14) (0,55) (6,18)<br /> (2,82)<br /> R' 0,29 0,32 0,28 0,37 0,42 0,32<br /> Sdquan sdt 306 306 306 173 173 173<br /> Kiem dinh Breusch-PaganlCook-Weisberg x'(i) x'(i) x'(i)<br /> {Phuang sai khong dong nhdt) 1071,58** 1050,17** 767,41**<br /> Kiem dinh Fischer F F<br /> (dnh huang cddinh) 14,72** 11,69**<br /> Kiem dinh Breusch-Pagan f(l) x'(i)<br /> (dnh hudng ngdu nhien) 8,92** 3,81<br /> Kiem dinh Hausman X\2)<br /> —<br /> (So sanh dnh hudng) 5,64<br /> ** vd * : coy nghTa thdng keldn lu0 d cdc mice 1% vd 5%<br /> Khi gia cd phieu vao thdi diSm ket thuc thdng ke khi bien p h u thupc la Ptia va P,/,2.<br /> nien dp dUpc dieu chinh cho bie'n dpng gia Nhu vay, trai vdi mpt sd n h a n dinh cho r i n g<br /> trong 3 thang tUdng lai (P,/3), cac kiem dinh TT BCTC khong hQu ich trong viec xac dinh<br /> v i n d i n tdi viec liia chpn LSDV la phQdng gia cd phieu t r e n thi trUdng chQng khoan<br /> phap phu hdp n h i t . Cac TT BCTC v i n cd he Viet Nam, viec kiem dinh cac mo hinh cho<br /> sd dUdng vdi mQc y nghia thd'ng ke cao nha't. tha'y mdi lien he nay hoan toan cd y nghia ve<br /> Ngoai ra, sQc giai thich P,/^ ciia cac TT mat thd'ng ke. Ke't qua cung cho t h i y ed d i u<br /> BCTC cao hdn so vdi P,. Khi eac bien phu hieu gia ed phie'u phan anh TT BCTC vdi<br /> thupc la Pi/s, Pi/g va P,i,2 , sQc giai thi'ch cua mpt dp trd nha't dinh (TT BCTC gia thich tdt<br /> TT BCTC cd xu hudng giam. He sd cua gia n h i t gia cd phieu dUdc dieu chinh cho bien<br /> tri sd sach tren cd phie'u khdng cdn y nghia ddng gia trong 3 t h a n g tUdng lai).<br /> BANG 3: Ket qua kiem dinh m o hinh (tiep)<br /> Bien Dhu thuoc: P,,^, OLS LSDV FGLS<br /> -30,24 13,36 -9,90<br /> Hesd'ntdo<br /> (-1,06) (0,49) (-0,68)<br /> 20,10* 21,77' 3,79'<br /> EPS<br /> (2,26) (2,48) (2,06)<br /> 1,61 -0,12 4,54"<br /> BPS<br /> (1,48) (-0,12) (6,24)<br /> «^ 0,34 0,40 0,27<br /> Sdquan sdt 173 173 173<br /> Kiem dinh Breusch-Pagan ICook-Weisberg x'(i) x'(i)<br /> (Phuang sai khdng ddng nhdt) 794,85" 767,51"<br /> Kiem dinh Fischer F<br /> (dnh hudng cddinh) 14,34"<br /> Kiem dinh Breusch-Pagan x'(i)<br /> (dnh hudng ngdu nhien)<br /> 3,76 J<br /> Kiem dinh Hausman (So sdnh dnh hudng)<br /> 1<br /> • vd* : coy nghia Ihdng ke ldn luat a cdc miic 1% vd 5%<br /> <br /> <br /> 28 Nghiin ciru Kinh tg sd 375 - Thing 8/2009<br /> Mtfi iien he giiifa thdng tin<br /> <br /> <br /> Do diu nam 2007 ehiing kien sQ di len r i t cac nam khac de xac dmh heu cd sii thay ddi nao<br /> manh me cua thi tnidng chiing khoan, mdi hen trong moi lien he nay khi thi tnidng thang hoa.<br /> he cua gia cd phieu diu nam 2007 vdi TT BCTC De kiem chiing sii khac biet nay, md hinh sau<br /> nien dp 2006 dUde so sanh vdi mdi hen he cua dUde kiem dinh vdi 3 phUdng phap nhQ d trin:<br /> P,n=oi + p,EPS,+p,BPS„+p,iYDxEPS,) + P,(YDxBPSJ + psYD + e„<br /> Trong dd: khi dd, khdng the bac bd gia thie't he so' cua<br /> /J„3: gia cd phigii cua ed phie'u i tai thdi bien tUdng tac thQ hai YDXBPS bang 0 d mQc 5<br /> diem ket thue nien dp t dQdc dieu chinh cho % (tham ehi 10 %). Do bien gia YD nhan gia tri<br /> bie'n dpng gia trong thdi gian 3 thang tUdng lai. 1 neu nam quan sat la 2006 va gia tri 0 cho cac<br /> EPSj,: ldi nhuan t h u i n tren cd phieu nien dp nam edn lai ket qua nay chi ra rang mdi hen he<br /> t cua cong ty i. giQa gia cd phieu diu nam 2007 vdi TT BCTC<br /> BPS I,: gia tri sd sach tren cd phie'u nien dp t nien dp 2006 manh hdn mdi hen he nay eua eac<br /> cua eong ty i. nam cdn lai va sii gia tang nay chi den tQ vai<br /> YD (Year Dummy): bie'n gia nhan gia tri 1 trd cua lpi nhuan edn gia tri sd sach khdng cd<br /> ndu nam quan sat la 2006 va gia tri 0 cho eae ddng gdp gi dang ke. Cac he so' hdi quy eho<br /> nam cdn lai. tha'y trung binh mdi 1 % thay ddi lpi nhuan<br /> Ket qua dUdc trinh bay trong bang 4. Cac nien dp 2006 lam gia cd phieu diu nam 2007<br /> kilm dinh Fischer, Breusch-Pagan va Hausman bie'n ddi eiing chieu gin 17 % trong khi ehi la<br /> eho tha'y phUdng phap LSDV dUdc liia chpn va khoang 7 % cho nhQng thdi ky khac. NhU vay,<br /> theo ket qua Udc lupng bang phUdng phap nay, khi thi trudng chiing khoan Viet Nam thang<br /> ngoai cac bie'n EPS va BPS cd he sd' dUPng, hoa thi vai trd eua ldi nhuan trong viec giai<br /> bie'n tUdng tac thQ n h i t YDXEPS ciing cd he so' thich gia cd phieu tang len rat nhieu so vdi<br /> ldn hdn 0 d mQc y nghia thd'ng ke 1 %. Trong nhQng thdi diem khac.<br /> BANG 4: Ket q u a k i e m d i n h m o h i n h<br /> Bie'n phu thudc: P,,j OLS LSDV FGLS<br /> -3,37 22,41* -0,18<br /> He sd tudo<br /> (-0,41) (2,47) (-0,03)<br /> 6,38** 6,88** 5,58**<br /> EPS<br /> (2,76) (3,19) (5,05)<br /> 2,14** 1,36** 2,39**<br /> BPS<br /> (4,97) (3,12) (8,10)<br /> 10,44** 9 94** 6,59**<br /> YDxEPS (3,08) (3,02) (3,62)<br /> -1,53 -0,75 -0,05<br /> YDxBPS (-1,94) (-0,94) (-0,07)<br /> 0,71 -25,10 -14,31<br /> YD (0,05) (-1,70) (-1,35)<br /> 0,49 0,55 0,48<br /> Fsdquan sdt 306 306 306<br /> Kiem dinh Breusch-Pagan ICook-Weisberg x'(i) x'(i)<br /> (Phuang sai khdng ddng nhdt) 167,84** 190,86**<br /> Kiem dinh Fischer F<br /> (dnh hucing cddinh) 29,41**<br /> Kiem dinh Breusch-Pagan x'(i)<br /> (dnh hudng ngdu nhien) 25,75**<br /> m- Kiem dinh Hausman X'(2)<br /> (So sdnh dnh hudng) 24,11**<br /> ** ud * .• CO y nghia thd'ng ke ldn luqt a cdc miic 1% vd 5%.<br /> <br /> Nghiin ciru Kinh tgs6375 - Thing 8/2009 29<br /> Moi lien he giiifa thong tin ...<br /> <br /> <br /> Bang 5 so sanh sQc giai thich gia cd phieu Nhu vay, mdi hen he giQa TT BCTC va<br /> cua TT BCTC tren thi trUdng chQng khoan gia cd phie'u tren TTCK Viet Nam v i n cdn<br /> Viet Nam vdi trQdng hdp cua eac nUdc khac. t h i p so vdi khdng chi cac qud'c gia phat trien<br /> Cac he sd xac dinh bpi va xac dinh bdi hieu ma ea vdi cac thi trUdng mdi ndi khac trong<br /> chinh cua ham hdi quy the hien mdi lien he khu vUc. Dieu nay cd the de dang nhan tha'y<br /> giQa gia cd phie'u va TT BCTC trong trUdng thdng qua viec phan tich cac tdn tai trong<br /> hpp cac nUdc dUde so sanh vdi nhau'^. Ket moi trUdng phap ly ve cdng bd' thdng tin ndi<br /> qua cho thay mdi lien he nay tren thi trUdng chung va TT BCTC ndi rieng, che dp ke<br /> chQng khoan Viet Nam ndi chung ye'u hdn toan, boat dpng kiem toan, thiic trang edng<br /> tren cac thi trUdng chQng khoan phUdng bd' TT BCTC cua cae cdng ty phat hanh,<br /> Tay (dieu nay da dUde dii doan trUdc). Tuy niem yet va viec sQ dung TT BCTC cua nha<br /> nhien, ldi nhuan va gia tri sd sach giai thich d i u tu d nUdc ta'^. Tuy nhien, dieu dd khdng<br /> bien ddng gia cd phieu tren TTCK Viet Nam cd nghia la TT BCTC khdng dUdc phan anh<br /> tdt hPn tren TTCK Trung Qudc trong thap vao gia cd phieu tai Viet Nam. Doi vdi cac<br /> nien 90 (Chen, Chen & Su (2001) nghien nha dau tU chuyen nghiep khdng cd thdng<br /> cQu thdi ky 1991-1998), cung la thdi ky ngay tin ndi gian va cac ldi the khac thi TT BCTC<br /> sau khi TTCK Trung Quo'c ra ddi gid'ng nhU nhu nd dUdc cdng bd v i n la mpt can cQ quan<br /> trUdng hdp Viet Nam trong nghien cQu nay. trpng de ra quye't dinh d i u tU. Hdn nQa, khi<br /> Ddi vdi cac nUdc Ddng Nam A, do nghien van tdn tai mpt bp phan khdng nho cae nha<br /> d i u tu khdng cd kie'n thQc d i u tQ theo cac<br /> cQu cua Graham & King (2000) sQ dung ldi<br /> nha dau tU chuyen nghiep ndi tren (vi du<br /> nhuan thang dU thay cho lpi nhuan t h u i n<br /> cac nha d i u tU chuyen nghiep nUde ngoai)<br /> trong ham hdi quy nen khdng the so sanh<br /> nhu v i n thUdng thay tren TTCK Viet Nam<br /> triic tiep bang he so' xac dinh bdi. Tuy nhien,<br /> thi TT BCTC v i n dQdc phan anh vao gia cd<br /> cac tac gia phan tich he sd tQdng quan giQa<br /> phieu.<br /> ldi nhuan thuan tren cd phie'u va gia ed<br /> phie'u va ne'u diia vao thdng so' nay thi trong 3. Ket l u a n<br /> sd' 6 qud'c gia va vung lanh thd la Dai Loan,<br /> Do thi trUdng hieu qua la mpt gia thiet<br /> Han Qude, Inddnexia, Malaixia, Phihppin<br /> khdng d l thda man, n h a t la doi vdi cac thi<br /> va Thai Lan (thdi ky nghien cQu: 1987-<br /> trUdng tai chinh rat mdi vdi mQc dp phat<br /> 1996), Viet Nam chi xep tren Dai Loan.<br /> trien chUa cao nhQ d Viet Nam, viec ke't hdp<br /> B A N G 5: So sanh vdi cac quoc gia khac md hinh Ohlson (1995) vdi nghien cQu cua<br /> Aboody, Hughes & Liu (2002) cho phep cd<br /> Thfrikj- R'<br /> Quoc dUde mdt cd sd ly thuye't phu hpp de do<br /> nghien Tac gia R' hieu<br /> gla<br /> curu chinh ludng mdi lien he giQa TT BCTC va gia cd<br /> 1982- King& 66 phieu tren thi trUdng chQng khoan Viet<br /> Anh<br /> 1996 LangU (1998) % Nam. Trai vdi nhieu nghi ngd r i n g TT<br /> 1982- King& 65 BCTC khong cd tac dpng gi den gia cd phieu<br /> NaUy<br /> 1996 Langli (1998) % tai nUdc ta, ket qua kiem dinh mo hinh kinh<br /> Collins,<br /> 1953- 54<br /> My Maydew &<br /> 1993 %<br /> Weiss (1997)<br /> 1982- King& 40 15. D^ cd sir so sinh ddng b6, cac he stf xic dinh b6i<br /> Dire<br /> 1996 LangU (1998) % va xac dinh bpi hieu chinh trong trucmg hgp Viet Nam li<br /> Viet 2003- Nguyin Viet 40 ciia hkm hdi quy dupc udc lupng bang phucmg phSp<br /> Nam 2007 DDng (2009) % 39% OLS vdi hiit\ phu thupc Ik P,.<br /> Trung 1991 - Chen, Chen & 16. Xem Nguyin Viet Dung va nhdm ii tiii (2008)<br /> Qu6'c 1998 Su (2001) 25%<br /> ii bitft chi tiei<br /> <br /> 30 Nghiin ciru Kinh tgs6375 - Thing 8/2009<br /> Moi lien he giiifa thong tin<br /> <br /> <br /> te lupng cho t h i y mdi lien he nay hoan toan TAI LifiU THAM KHAO<br /> cd y nghia, it n h i t la ve mat thd'ng ke. Ke't Aboody D., Hughes J. & Liu J. (2002), "Measuring<br /> Value Relevance in a (Possibly) Inefficient Market",<br /> qua edn cho tha'y TT BCTC giai thich tdt Journal of Accounting Research, 40, p. 965-986.<br /> nha't gia cd phie'u dUdc dieu chinh eho bien Akerlof G. (1970), "The market for 'Lemons': QuaUty<br /> ddng gia trong 3 thang tUdng lai. Day la d i u Uncertainty and the Market Mechanism", Quarterly<br /> hieu gia ed phie'u phan Qng ch
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2