Môi Trường - Khí Thải Động Cơ Đốt Trong phần 9
lượt xem 32
download
Ở các nước có hệ thống ga thành phố, trạm dịch vụ NGV có ba chức năng: . Nối vào mạng phân phối khí thiên nhiên của thành phố . Nén khí đến áp suất hơn 200bar và dự trữ một số bình khí để cung cấp nhanh trong những giờ cao điểm.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Môi Trường - Khí Thải Động Cơ Đốt Trong phần 9
- Chương 8: Động cơ sử dụng nhiên liệu khí: một giải pháp làm giảm ô nhiễm môi trường Ở các nước có hệ thống ga thành phố, trạm dịch vụ NGV có ba chức năng: . Nối vào mạng phân phối khí thiên nhiên của thành phố . Nén khí đến áp suất hơn 200bar và dự trữ một số bình khí để cung cấp nhanh trong những giờ cao điểm. . Phân phối khí NGV cho ô tô bằng ống mềm Thời gian nạp NGV càng nhỏ càng tốt, thường khoảng từ 2 đến 10 phút cho mỗi xe. Điều này đòi hỏi phải chứa ga trong bình dự trữ ở trạm có áp suất cao hơn nhiều so với áp suất bình chứa khí trên ô tô. Thông thường áp suất máy nén khoảng 250 bar. Đối với một trạm dịch vụ nạp khí cho 1000 ô tô/ngày cần phải có máy nén có công suất khoảng 100kW. Bình ga NGV Giảm chấn Thanh gia cố Tiết lưu Xả khí Cửa thông gió động cơ Thành kín Bộ giãn nở Van điện từ Van một chiều Van điện từ Đường nạp NGV Đường dẫn khí Hộp nạp khí Động cơ Hình 8.21: Sơ đồ bố trí tổng thể hệ thống cung cấp NGV trên ô tô bus Cuối cùng cần nói thêm rằng, khi cung cấp NGV, máy định lượng thường được chia không phải theo m3 khí cung cấp mà theo lít xăng tương đương để cho người sử dụng có thể so sánh với nhiên liệu lỏng truyền thống. Ngoài ra, ở các nước phát triển có hệ thống cung cấp khí thiên nhiên trong thành phố, người ta còn sử dụng máy nén cá nhân để cung cấp NGV cho ô tô ngay tại nhà người sử dụng. Hệ thống này đảm bảo nạp ga chậm, khoảng 4lít/giờ với áp suất 200bar. 8.7.2. Tổ chức quá trình cháy 153
- Chương 8: Động cơ sử dụng nhiên liệu khí: một giải pháp làm giảm ô nhiễm môi trường Hai dạng ô tô có thể dùng NGV đó là ô tô chuyên dụng và ô tô bus. Tùy theo dạng sử dụng, giải pháp kĩ thuật về tổ chức quá trình cháy có thể khác nhau. Ô tô chuyên dụng thường dùng động cơ xăng nên khi cải tạo nó sang dùng NGV cần chú ý đến việc tăng tỉ số nén. Tỉ số nén của động cơ chạy NGV có thể chọn cao hơn nhiều so với động cơ xăng do chỉ số octane của méthane lớn. Thường tỉ số nén của động cơ NGV là 12 hoặc 13. Cũng như động cơ xăng, để nâng cao hiệu quả của việc xử lí ô nhiễm bằng bộ xúc tác ba chức năng, bộ tạo hỗn hợp phải điều chỉnh thành phần hỗn hợp f quanh giá trị cháy hoàn toàn lí thuyết. Việc cải tạo xe bus nguyên thủy dùng động cơ Diesel sang dùng nhiên liệu khí NGV phức tạp hơn vì phải thêm hệ thống đánh lửa cưỡng bức và tổ chức quá trình cháy như động cơ xăng. Trong điều kiện đó để giảm ô nhiễm và tăng tính kinh tế của động cơ, người ta có thể áp dụng hai giải pháp kĩ thuật sau đây và hai giải pháp này đang là đối tượng nghiên cứu để tiếp tục phát triển: . Giải pháp thứ nhất là cho động cơ luôn luôn làm việc với thành phần hỗn hợp cháy hoàn toàn lí thuyết kết hợp với việc xử lí khí thải bằng bộ xúc tác ba chức năng. Ưu điểm của nó là làm giảm mức độ phát ô nhiễm nhưng nhược điểm là hiệu suất giảm so với động cơ Diesel. . Giải pháp thứ hai, ít có tham vọng làm giảm ô nhiễm môi trường hơn nhưng có khả năng làm giảm suất tiêu hao nhiên liệu. Giải pháp này cho phép điều chỉnh thành phần hỗn hợp theo điều kiện vận hành và ưu tiên sử dụng hỗn hợp nghèo. 8.7.3. Kĩ thuật tạo hỗn hợp Việc định lượng chính xác nhiên liệu cung cấp ở mỗi chế độ làm việc của động cơ NGV đôi khi khó thực hiện. Mặt khác, khi động cơ hoạt động, thành phần hỗn hợp giữa các cylindre cần phải đồng đều và tổn thất trên đường nạp cần phải giảm đến mức thấp nhất... Vì vậy hệ thống nạp của động cơ NGV đòi hỏi những kĩ thuật phức tạp. 8.7.3.1. Bộ chế hòa khí Có nhiều kĩ thuật chế hòa khí nhưng hiện nay kĩ thuật phổ biến nhất vẫn là kĩ thuật ống Venturi. Trong hệ thống này, khí NGV không những chỉ định lượng bởi độ chân không trong ống Venturi mà còn bởi sự thay đổi độ tiết lưu trên đường nạp. Sự điều chỉnh mức độ tiết lưu này được thực hiện nhờ một động cơ bước qua trung gian một bộ vi xử lí chuyên dụng nhận tín hiệu từ các cảm biến. Phương án dùng bộ chế hòa khí có nhược điểm là hệ số nạp của động cơ bị giảm ở chế độ quá độ. Để khắc phục nhược điểm này, người ta nghiên cứu áp dụng phương án phun nhiên liệu trực tiếp hay gián tiếp. 154
- ĐCng cơ 8: Động cơ sử dụng nhiên liệu khí: một giải pháp làm giảm ô nhiễm môi trường ộ hương Xả - Nhiệt độ khí Máy tính - Áp suất khí điều khiển Bộ hỗn hợp Van định lượng - Chênh lệch áp suất thời gian phun Nạp Bộ giảm áp Lưu lượng khí mong Nhiên liệu khí muốn - Áp suất khí nạp Máy tính - Nhiệt độ khí nạp điều khiển - Tín hiệu cảm biến Oxy động cơ - Vị trí bướm ga Hình 8.22: Sơ đồ hệ thống nạp nhiên liệu NGV trên động cơ phun tập trung Bộ xúc tác Thải 3 chức năng Cảm biến Oxy Nạp Tốc độ động cơ Áp suất nạp Động cơ Vị trí bướm ga Máy tính Bộ chấp hành Van định lượng Nhiên liệu khí Bộ Giảm áp Hình 8.23: Sơ đồ hệ thống nạp nhiên liệu NGV trên động cơ phun riêng rẽ 8.7.3.2. Phun gián tiếp Hệ thống phun gián tiếp cho phép cải thiện được tính năng của động cơ và mức độ phát ô nhiễm. Khác với bộ chế hòa khí, hệ thống này phun nhiên liệu dưới áp suất. Điều này cho phép cung cấp một lượng nhiên liệu chính xác theo chế độ làm việc của động cơ. Mặt khác, do không có họng Venturi, hệ số được nạp vào động cơ được cải thiện đáng kể. Cũng như động cơ xăng, phun nhiên liệu có thể được thực hiện theo phương án tập trung (một điểm) tại cổ góp đường nạp (hình 8.22) hay riêng rẽ (phun vào trước soupape nạp của mỗi cylindre) (hình 8.23). Hệ thống phun riêng rẽ có nhiều ưu điểm so với hệ thống phun tập trung vì nó làm giảm khả năng hồi lưu ngọn lửa vào đường nạp, cải thiện được 155
- Chương 8: Động cơ sử dụng nhiên liệu khí: một giải pháp làm giảm ô nhiễm môi trường sự đồng đều nhiên liệu cung cấp cho các cylindre của động cơ. Việc khống chế lưu lượng NGV nạp vào xi lanh được thực hiện nhờ một bộ vi xử lí chuyên dụng. 8.7.3.3. Phun trực tiếp Kĩ thuật này rất có rất nhiều ưu điểm vì nó cho phép đồng thời làm giảm mức độ gây ô nhiễm và làm tăng tính kinh tế của động cơ. Phun trực tiếp NGV vào buồng cháy cho phép kết hợp các ưu điểm của khí thiên nhiên và quá trình cháy của hỗn hợp nghèo phân lớp. Mặt khác, hệ thống phun NGV còn thừa hưởng ưu thế của nhiên liệu nén ban đầu nên không cần bơm nhiên liệu áp suất cao. Động cơ có thể hoạt động không có tổn thất hệ số nạp và ở điều kiện hỗn hợp nghèo. Kĩ thuật này đòi hỏi chế tạo và điều chỉnh chính xác hệ thống phun vì vậy đắt tiền nên hiện nay nó chưa được phổ biến rộng rãi. Bảng 8.8: So sánh các hệ thống cung cấp nhiên liệu NGV khác nhau trên động cơ Chế hòa khí Phun ở cổ góp Phun Phun trước trực tiếp soupape nạp Cơ khí Điện tử Phun Phun gián liên tục đoạn Giá thành ++ + + - - -- Hoạt động -- - - + + -- quá độ Phân bố giữa -- -- -- -- ++ ++ các xilanh Tổn thất -- -- - - + ++ Nguy cơ -- -- -- -- + ++ quay ngược màng lửa 8.7.3.4. So sánh các hệ thống khác nhau Bảng 8.8 cho thấy ưu nhược điểm của các kĩ thuật tạo hỗn hợp khác nhau đối với động cơ NGV. Qua bảng này chúng ta thấy rằng kiểu chế hòa khí có rất ít ưu điểm. Do đó, việc phát triển hệ thống phun tập trung hay riêng rẽ là cần thiết để tăng tính năng kinh tế kĩ thuật của động cơ NGV. 8.8. Cân bằng năng lượng và ảnh hưởng đến môi trường của hệ ô tô NGV Sau đây chúng ta sẽ khảo sát sự cân bằng năng lượng liên quan đến quá trình cung cấp nhiên liệu khí thiên nhiên (vận chuyển, nén và phân phối) và tính năng của động cơ sử dụng NGV, đặc biệt là tính năng liên quan đến vấn đề ô nhiễm. 156
- Chương 8: Động cơ sử dụng nhiên liệu khí: một giải pháp làm giảm ô nhiễm môi trường 8.8.1. Tiêu tốn năng lượng liên quan đến việc vận hành hệ thống NGV Việc đánh giá tính kinh tế của hệ ô tô NGV cần phải xem xét đến sự cân bằng năng lượng trên toàn bộ các công đoạn từ khi khai thác khí ở mỏ đến khi sử dụng trên ô tô. Bảng 8.9 giới thiệu những số liệu so sánh về cân bằng năng lượng của GNV và nhiên liệu lỏng truyền thống. Tiêu tốn năng lượng được phân bố trong 5 công đoạn: sản xuất, vận chuyển, lọc, phân phối và nén (khí) trước khi sử dụng. Đối với khí NGV, năng lượng tiêu thụ của các công đoạn trước khi nạp vào động cơ chiếm khoảng 16%. Mức độ tiêu tốn này tương đối tốt so với xăng. Về phương diện này, dầu Diesel kinh tế nhất, ngay cả trường hợp dầu Diesel chứa tỉ lệ lưu huỳnh thấp (0,05%). 8.8.2. Tính năng của ô tô 8.8.2.1. Đối với ô tô thông dụng Như chúng ta đã trình bày việc chuyển đổi ô tô thông dụng sử dụng nhiên liệu lỏng sang sử dụng khí thiên nhiên NGV đòi hỏi một sự cải tạo đáng kể đối với động cơ: nâng cao tỉ số nén, nâng cao công suất hệ thống đánh lửa, đặc biệt là phải cải tạo hệ thống cung cấp nhiên liệu và bình chứa. Trong phần này chúng ta sẽ đánh giá tính năng của động cơ và vấn đề ô nhiễm. A. Tính năng: Về hiệu suất, động cơ dùng NGV có thể dễ dàng đạt được hiệu suất cao hơn động cơ xăng khoảng10% nhờ tỉ số nén cao. Khi nạp trực tiếp nhiên liệu thể khí vào đường nạp, hệ số nạp của động cơ bị giảm dẫn đến công suất động cơ giảm (khoảng 10%). Tuy nhiên sự tụt giảm công suất có thể bù trừ nhờ sự gia tăng hiệu suất động cơ. Động cơ sử dụng NGV có các tính năng về động học (gia tốc, quá độ, tốc độ cực đại...) tương đương động cơ xăng. Mặt khác, nhiên liệu NGV do ở dạng khí nên ít bị ảnh hưởng bởi quán tính trong giai đoạn quá độ nên động cơ làm việc mềm mại hơn. Cuối cùng, động cơ sử dụng NGV không có những nhược điểm liên quan đến nhiệt độ môi trường như động cơ dùng nhiên liệu lỏng. Bảng 8.9: Phân bố năng lượng tiêu thụ trước khi đến nơi sử dụng của các loại nhiên liệu khác nhau Các công đoạn Xăng Dầu Diesel GPL-C Khí thiên nhiên Đuốc đốt khí trong quá 3,0 3,0 3,0 1,8 trình khai thác Tiêu thụ trên hiện trường 1,0 1,0 1,0 - Vận tải 1,9 1,9 1,9 8,0 Lọc 12,5 6,5 3,5 - Tổn thất lọc 0,3 0,1 0,1 - 157
- Chương 8: Động cơ sử dụng nhiên liệu khí: một giải pháp làm giảm ô nhiễm môi trường Phân phối 0,5 0,5 1,0 0,5 Nén - - - - Tổng cộng 19,2 13,0 10,5 16,3 B. Ô nhiễm: Cũng như đối với những loại nhiên liệu khác, đặc điểm phát sinh ô nhiễm của động cơ dùng NGV liên quan đến thành phần hydrocarbure của nhiên liệu, (thường nhiên liệu NGV chứa ít nhất 90% méthane). Bảng 8.10 so sánh thành phần hydrocarbure trong khí xả trước khi vào bộ xúc tác 3 chức năng khi động cơ sử dụng nhiên liệu NGV và xăng. Khác với động cơ xăng, trong khí xả động cơ NGV hầu như không có hydrocarbure nào có hơn 4 nguyên tử carbon, đặc biệt hơn nữa là không có sự hiện diện của thành phần hydrocarbure thơm. Liên quan đến vấn đề tạo ozone ở hạ tầng khí quyển, khí thải của động cơ NGV có hoạt tính thấp hơn động cơ xăng đến 2 lần. Tính chất này chủ yếu là do nhiên liệu NGV chứa phần lớn méthane, thành phần các chất hoạt tính (butènes, buta-1,3-diène, xylènes) rất thấp hoặc có thể bỏ qua. Mặt khác, nhiên liệu NGV không bao giờ gây trở ngại đối với bộ xúc tác ba chức năng do thành phần lưu huỳnh như trong trường hợp nhiên liệu lỏng. Tuy nhiên, sự ôxy hóa méthane còn lại trong khí xả rất khó khăn. Muốn loại trừ triệt để chất khí này cần sử dụng một bộ xúc tác đặc biệt. C. Số liệu so sánh trong vài trường hợp điển hình: Sau đây là số liệu so sánh của vài trường hợp động cơ xăng và động cơ NGV. Trường hợp thứ nhất (bảng 8.11), nếu xét hai động cơ có cùng tỉ số nén, cùng kết cấu đường nạp, cùng hệ thống đánh lửa và hệ thống phân phối khí thì ô tô NGV có mức độ phát sinh ô nhiễm thấp hơn động cơ xăng khoảng 50%.Trường hợp thứ hai, nếu xét một động cơ đã được thiết kế chuyển đổi để chuyên dùng nhiên liệu NGV thì động cơ dùng NGV có mức độ phát ô nhiễm rất thấp so với động cơ xăng có cùng công suất và momen (bảng 8.12). 8.8.2.2. Xe bus và xe vận tải Đánh giá mức độ phát ô nhiễm cũng như tính năng của ô tô phụ thuộc nhiều vào kĩ thuật tạo hỗn hợp: hỗn hợp nghèo hay hỗn hợp có thành phần cháy hoàn toàn lí thuyết với bộ xúc tác 3 chức năng. A. Tính năng: Động cơ Diesel tăng áp khi chuyển sang sử dụng NGV với bộ xúc tác 3 chức năng và hỗn hợp có thành phần cháy hoàn toàn lí thuyết thì tổn thất hiệu suất sẽ rất lớn, có thể tới 20%. 158
- Chương 8: Động cơ sử dụng nhiên liệu khí: một giải pháp làm giảm ô nhiễm môi trường Bảng 8.10: So sánh thành phần hydrocarbure trong khí thải của động cơ dùng xăng và dùng NGV. Mẫu được lấy phía trước bộ xúc tác, thử theo chu trình ECE+EUDC Xăng NGV Xăng NGV Méthane 64 360 Ethane 28,3 50 Ethylene 117,4 40 Propane 100 45,6 Propylene 72,8 10,2 Acétylène 57,9 20,0 Butanes 12,9 10,3 (E) But-2-ène 6,1 0 But-1-ène 7,8 0 Isobutène 40 0 (Z)-But-2-ène 4,6 0 Isopentane 39,9 0 n-Pentane 15 0 Propyne 15 0 Buta-1,3-diène 18 0 Pent-1-ène 8,7 0 Benzène 65 0 Iso-octane 46,1 0 Toluène 130,1 0 Ethylbenzène 15,9 0 (m+p)-Xylène 84,6 0 (o)-Xylène 19 0 (Khối lượng khí phát thải tính theo mg) Bảng 8.11: Giảm ô nhiễm nhờ bộ xúc tác đối với động cơ NGV (tỉ lệ hỗn hợp f=1) CO(%) HC(%) NOx(%) HC+NOx(%) CO2(%) Không có bộ 44 52 34 42 20,5 xúc tác Có bộ xúc tác 63,5 63 57 60 19 Ngược lại nếu dùng kĩ thuật hỗn hợp nghèo, khi động cơ NGV làm việc với bộ tăng áp thì hiệu suất cao hơn (xấp xỉ động cơ Diesel nguyên thủy) và momen cực đại chấp nhận được. Bảng 8.12 cho chúng ta thấy sự so sánh giữa động cơ NGV và động cơ Diesel nguyên thủy. Bảng 8.12: So sánh momen cực đại và hiệu suất của động cơ Diesel và động cơ NGV So sánh tính năng động Nhiên liệu cơ dùng gasole và khí thiên nhiên Diesel Khí thiên nhiên PCI (kJ/kg) 42800 49100 Chế độ 1400 1260 Momen 1180 1000 Công suất 173 185 Độ đậm đặc 0,56 0,61 159
- Chương 8: Động cơ sử dụng nhiên liệu khí: một giải pháp làm giảm ô nhiễm môi trường Suất tiêu hao nhiên liệu 204 186 (g/kWh) Hiệu suất toàn bộ 41,2 39,4 Bảng 8.13: Mức độ phát ô nhiễm của động cơ dùng NGV Chất ô nhiễm Mức độ CO (g/mile) 0,655 HC tổng 0,230 HC không mèthane 0,016 NOx (g/mile) 0,112 CO2 (g/mile) 226,6 Tiêu thụ nhiên liệu 28,5 Hoạt động độc lập 175 B. Ô nhiễm: Bảng 8.13 cho chúng ta một vài ví dụ liên quan đến mức độ phát ô nhiễm của ô tô vận tải sử dụng NGV. Chúng ta nhận thấy trong mọi trường hợp, mức độ CO và bồ hóng rất thấp, mức độ HC đôi lúc gần với giá trị cho phép bởi luật môi trường, nhưng chỉ chứa phần lớn méthane (khoảng 90%), còn lại các thành phần khác rất thấp. Còn về mức độ phát sinh NOx, khí xả động cơ NGV có nồng độ NOx rất thấp nếu động cơ làm việc với f=1 và có lắp bộ xúc tác 3 chức năng. Nồng độ này cao hơn một chút nhưng vẫn nằm trong giới hạn cho phép nếu dùng hỗn hợp nghèo. Những phiền phức đặc biệt của động cơ Diesel (ồn, hôi, khói đen...) sẽ được giảm đi rất nhiều đối với động cơ NGV. Mức độ ồn giảm được khoảng 3 db khi động cơ hoạt động không tải đối với ô tô bus thành phố. Về mùi hôi, chất phụ gia chứa lưu huỳnh (THT: Télrahydrothiophène) để phát hiện sự rò rỉ được thêm vào khí thiên nhiên với thành phần rất thấp (20 hay 25mg/m3) nên bị đốt cháy hoàn toàn. Vì vậy nên khí xả động cơ NGV rất ít hôi so với khí xả động cơ Diesel. 8.8.3. Ảnh hưởng đối với hiệu ứng nhà kính Méthane cũng như CO2 và N2O là khí gây hiệu ứng nhà kính một cách trực tiếp vì vậy người ta rất quan tâm đến việc nghiên cứu ảnh hưởng của việc phát triển động cơ NGV đến việc nóng lên của bầu khí quyển. Bảng 8.14: Phát ô nhiễm của động cơ công nghiệp dùng NGV Cháy hoàn toàn lí Cháy hỗn hợp nghèo Tiêu chuẩn thuyết với bộ xúc tác với bộ xúc tác oxy hóa Euro 1996 160
- Chương 8: Động cơ sử dụng nhiên liệu khí: một giải pháp làm giảm ô nhiễm môi trường 3 chức năng CO 2,5 0,3 4 HC 0,5 0,2 1,1 NOx 3,5 2,5 7,0 Bồ hóng 0,05 0,05 0,15 (Đơn vị tính: g/kWh) Trong thực tế, động cơ NGV phát sinh nhiều méthane nhưng ít CO2 so với động cơ nhiên liệu lỏng. Vì vậy, lượng chất khí gây hiệu ứng nhà kính trong khí xả động cơ NGV thấp hơn khoảng 25% so với động cơ xăng và 5% so với động cơ Diesel (bảng 8.15). Do đó, việc sử dụng NGV sẽ làm giảm đi đáng kể lượng khí gây hiệu ứng nhà kính trên phạm vi toàn cầu. Bảng 8.15: So sánh mức độ phát sinh khí gây hiệu ứng nhà kính đối với động cơ dùng xăng, Diesel và NGV (gCO2/km), theo chu trình ECE Xăng Diesel NGV Trước bộ xúc tác 356 280 267 Sau bộ xúc tác 310 251 231 8.9. Viễn cảnh của động cơ dùng NGV Nhìn chung, động cơ dùng NGV có rất nhiều hứa hẹn đối với ô tô hoạt động trong thành phố hay vùng ven đô, những khu vực mà tình trạng ô nhiễm môi trường do phương tiện vận tải gây ra ngày càng trở nên trầm trọng. Ở một số khu vực trên thế giới, người ta đã bắt đầu sử dụng NGV cho ô tô chạy trong thành phố. Chẳng hạn ở Buenos-Aires, tất cả taxi đều dùng NGV. Ở những thành phố lớn của Mỹ, chẳng hạn ở NewYork, người ta đã xây dựng nhiều dự án quan trọng cho việc chuyển ô tô nhiên liệu lỏng sang NGV. Nhiều quốc gia khác như Ý, Canada, Hà lan... cách đây khá lâu đã xây dựng những cơ sở hạ tầng phục vụ cho việc phát triển ôtô dùng NGV. Ở các nước này ô tô NGV ngày càng được nhân rộng. Cuối cùng người ta dự kiến sự gia tăng ô tô NGV ở những quốc gia sản xuất khí thiên nhiên như Malaysia, Trung Quốc... Ở những quốc gia này số lượng ô tô ngày một gia tăng nên vấn đề ô nhiễm môi trường khiến người ta phải quan tâm đến NGV. Những dữ kiện trên cho phép chúng ta dự đoán được rằng, trong thời gian trước mắt (trong vòng từ 5 đến 10 năm tới), số lượng ô tô dùng NGV trên thế giới sẽ tăng từ 2 đến 5 lần. Vì vậy đến những năm 2000, trên thế giới sẽ có khoảng 5 triệu ô tô NGV. Dĩ nhiên sự phát triển NGV nhanh hơn cũng có thể diễn ra nhưng với một số điều kiện. Trước hết loại nhiên liệu này cần cho thấy được tính ưu việt chắc chắn so với những nhiên liệu đang cạnh tranh như nhiên liệu khí hóa lỏng LPG. Hiện tại NGV có ưu điểm 161
- Chương 8: Động cơ sử dụng nhiên liệu khí: một giải pháp làm giảm ô nhiễm môi trường không thể phủ nhận nhưng ưu thế này chưa chắc còn được duy trì trong tương lai. Mặt khác, người ta chỉ tiếp tiếp tục nghiên cứu sử dụng nhiên liệu khí nếu như những giải pháp kĩ thuật về xử lí ô nhiễm khí xả động cơ nhiên liệu lỏng không cải thiện được so với yêu cầu của luật môi trường. Cuối cùng, như những nhiên liệu khác, sự thâm nhập của NGV đòi hỏi: - Chính sách thuế khuyến khích người sử dụng - Cơ sở hạ tầng phục vụ việc cung cấp NGV cho ô tô (Trạm dịch vụ công cộng hay cá nhân, hình 8.24 và 8.25) - Giải quyết được vấn đề tâm lí của người sử dụng liên quan đến tính an toàn của ô tô dùng NGV. Hình 8.24: Trạm dịch vụ công cộng cung cấp NGV cho ô tô 162
- Chương 8: Động cơ sử dụng nhiên liệu khí: một giải pháp làm giảm ô nhiễm môi trường Hình 8.25: Máy nén cá nhân cung cấp NGV cho ô tô 163
- XU HƯỚNG PHÁT TRIỂN Chương 9 ĐỘNG CƠ Ô TÔ NHẰM LÀM GIẢM Ô NHIỄM MÔI TRƯỜNG Để đáp ứng với yêu cầu của luật bảo vệ môi trường ngày càng trở nên khắt khe, các nhà chế tạo ô tô đã không ngừng cải tiến sản phẩm của mình. Những tiến bộ mới đây trong lĩnh vực tổ chức quá trình phun nhiên liệu nhờ ứng dụng thành tựu của kĩ thuật điều khiển cũng như sử dụng các loại nhiên liệu khí để chạy động cơ đã tạo ra một viễn ảnh khá lạc quan cho sự phát triển động cơ nhiệt truyền thống. Trong chương này, chúng ta sẽ đề cập đến các xu hướng hoàn thiện động cơ đốt trong lắp trên các phương tiện giao thông vận tải. 9.1. Cải thiện tính năng của động cơ truyền thống 9.1.1. Động cơ đánh lửa cưỡng bức làm việc với hỗn hợp cháy hoàn toàn lí thuyết Động cơ này được phát triển để bảo đảm tính hiệu quả của việc xử lí khí xả bằng bộ xúc tác 3 chức năng. Trong nhiều năm qua, loại động cơ này chưa có những cải tiến gì đáng kể. Các cải tiến hiện nay tập trung vào việc nâng cao tính kinh tế và giảm thời gian khởi động của bộ xúc tác. 9.1.1.1 Cải thiện hiệu suất Hiệu suất thực tế mà động cơ đạt được hiện nay còn cách xa so với hiệu suất lí thuyết mà nó đạt được khi làm việc trong điều kiện khí trời. Kĩ thuật nâng cao hiệu suất được quan tâm hiện nay là giảm tổn thất bơm trong chu trình công tác và giảm tổn thất nhiệt ở tải cục bộ nhờ hồi lưu khí xả. Kĩ thuật này đồng thời cũng góp phần làm giảm NOx và tạo điều kiện thuận lợi cho việc xử lí khí xả bằng bộ xúc tác. Sự khác biệt giữa các kĩ thuật này thể hiện ở cách thức nạp khí xả hồi lưu. Chẳng hạn theo phương pháp Ricardo, khí mới nạp vào động cơ được thực hiện nhờ hai ống dẫn khác nhau: một ống dẫn không khí giống như ống nạp truyền thống và ống còn lại, có độ tiết lưu thay đổi theo điều kiện làm việc, dẫn hỗn hợp không khí và khí xả hồi lưu. Sự phân lớp khí nạp như vậy cần thiết trong trường hợp tỉ lệ khí xả hồi lưu cao. Hệ thống vừa mô tả có thể làm tăng hiệu suất khoảng từ 6÷8% đối với động cơ làm việc với hỗn hợp cháy hoàn toàn lí thuyết. Sự phát sinh NOx ở nguồn, nghĩa là trước khi 165
- Chương 9: Xu hướng phát triển động cơ ô tô nhằm làm giảm ô nhiễm môi trường vào ống xả xúc tác, giảm từ 85÷90% nhưng nồng độ HC gia tăng khoảng 10%. Điều này không gây khó khăn gì trong việc xử lí khi bộ xúc tác làm việc bình thường. Một hệ động cơ khác ngày nay đang được nghiên cứu áp dụng, đó là động cơ làm việc theo chu trình Miller. Khác với chu trình Beau de Rochas, ở động cơ này hành trình nạp và nén khác với hành trình giãn nở và thải. Thực ra chỉ có quá trình nạp và nén được thực hiện khác với động cơ truyền thống: soupape nạp đóng trước ĐCD khi piston đi xuống. Kết quả là tỉ số nén thực bị giảm nhưng điều đó không gây ảnh hưởng đến hiệu suất chu trình nhiệt của động cơ vì hiệu suất của chu trình bị ảnh hưởng chủ yếu bởi tỉ số giãn nở của khí cháy. Sử dụng chu trình Miller cho phép giảm tổn thất bơm. Bướm ga trở nên không cần thiết vì thời gian mở soupape nạp quyết định lượng khí nạp vào cylindre. Hãng Mazda từ năm 1993 đã thương mại hóa ô tô trang bị động cơ làm việc theo chu trình này. Động cơ Mazda làm việc theo chu trình Miller có tỉ số nén và giãn nở khác nhau, nhưng soupape nạp đóng sau ĐCD chứ không phải trước ĐCD như chu trình Miller cổ điển. Thêm vào đó, sự định lượng khí nạp mới cũng được thực hiện nhờ bướm ga. Mặt khác động cơ cũng được trang hệ thống tăng áp và hệ thống làm mát trung gian khí nạp. Việc áp dụng các hệ thống này cho phép nâng cao tính năng của động cơ dù tỉ số nén thực tế bé. Thêm vào đó, việc sử dụng hệ thống tăng áp hạn chế được hiện tượng quay ngược khí ga vào đường nạp. So với động cơ cổ điển có cùng dung tích cylindre, động cơ Mazda có công suất và momen cao gấp 1,5 lần và suất tiêu hao nhiên liệu giảm từ 10 đến 15%. Một phương án khác nhằm cải thiện hiệu suất động cơ là cho ngưng hoạt động của soupape nạp và xả của một vài cylindre khi động cơ làm việc ở chế độ tải cục bộ và tốc độ thấp. Lợi ích chủ yếu của giải pháp này là giảm vùng áp suất thấp của chu trình. Khi đó một vài cylindre không hoạt động còn các cylindre khác hoạt động ở tải lớn hơn so với khi nó làm việc theo phương pháp phối khí cổ điển. Kết quả là tổn thất bơm giảm. Kĩ thuật này làm giảm ma sát động cơ và cải thiện được quá trình cháy trong trường hợp tải rất thấp. Hãng Mitsubishi từ năm 1994 đã phát triển hệ thống này. Hệ thống có tên gọi là MIVEC (Mitsubishi Innovative Valve timing and lift Electronic Control). Ngoài việc cho ngừng họat động một số soupape ở tải thấp, hệ thống này còn được trang bị thêm một hệ thống điều chỉnh góc phối khí và độ nâng soupape. Động cơ trang bị hệ thống MIVEC cho phép giảm suất tiêu hao nhiên liệu đến 30% ở chế độ không tải và giảm hơn 15% khi thử theo chu trình tiêu chuẩn của Nhật. Công suất và momen của động cơ có thể cao hơn 15% so với động cơ cổ điển. Kĩ thuật điều chỉnh góc độ phối khí theo tải động cơ cũng là hướng nghiên cứu được nhiều nhà chế tạo quan tâm. Thường hướng lựa chọn thiên về việc làm giảm đến mức thấp nhất khoảng trùng điệp của các soupape ở chế độ tải thấp để làm giảm lượng khí sót trong cylindre và cải thiện quá trình cháy. Trong trường hợp tải lớn, góc độ trùng điệp của các soupape phải tăng lên để tạo điều kiện thuận lợi cho việc nạp đầy cylindre nghĩa là 166
- Chương 9: Xu hướng phát triển động cơ ô tô nhằm làm giảm ô nhiễm môi trường cải thiện hệ số nạp và từ đó làm tăng hiệu suất động cơ. Mặt khác, sự modul hóa khoảng trùng điệp của soupape cho phép làm giảm mức độ phát sinh HC và NOx. Trong thực tế, người ta có thể phối hợp giữa việc điều chỉnh góc độ phối khí với sự thay đổi luật nâng soupape. Nhìn chung, độ nâng của soupape ở chế độ tốc độ thấp nhỏ hơn độ nâng ở chế độ tốc độ cao. Hệ thống này đã được hãng Honda phát triển với tên gọi là VTEC (Variable valve Timing and lift Electronic Control). Nó được trang bị trên động cơ có 4 soupape cho mỗi cylindre. Mỗi soupape mở theo một một luật riêng phụ thuộc chế độ làm việc của động cơ. 9.1.1.2. Gia tốc quá trình khởi động bộ xúc tác Các bộ xúc tác 3 chức năng hiện nay được lắp đặt trên ô tô chỉ hoạt động hiệu quả sau khi động cơ đã làm việc khoảng 2-3 phút. Thường sau khoảng thời gian này bộ xúc tác mới đạt được nhiệt độ khởi động. Để gia tốc giai đoạn sấy, người ta có thể đặt ống xúc tác gần động cơ nhưng điều này không phù hợp khi động cơ làm việc ở tải cao. Vì vậy, người ta nghiên cứu những giải pháp khác phức tạp hơn. Một trong những giải pháp đó là lắp đặt ở trước bộ xúc tác chính một bộ xúc tác khởi động. Bộ xúc tác khởi động này có đặc điểm là nhiệt dung thấp và khởi động nhanh do đó nó cho phép xử lí khí xả ngay sau khi khởi động động cơ. Ngoài ra người ta cũng áp dụng một số những kĩ thuật khác như: - Sấy bộ xúc tác bằng điện: Bộ xúc tác này cho phép xử lí triệt để khí xả để đạt được tiêu chuẩn ULEV. Việc sấy thường được thực hiện ở bộ xúc tác khởi động. Công suất điện (cũng chính là năng lượng cần thiết) để gia tốc việc khử các chất ô nhiễm tới một giới hạn cho trước trong trường hợp đó thấp hơn là trong trường hợp sấy trực tiếp bộ xúc tác chính. Trong trường hợp cụ thể người ta sử dụng bộ sấy có công suất điện khoảng 1kW tiêu thụ chưa đầy 4Wh để đảm bảo khí xả động cơ thỏa mãn tiêu chuẩn ULEV. Các giá trị năng lượng tiêu tốn này sẽ tăng lên ít nhất 2 lần khi bộ sấy đặt ngay ở ống xúc tác chính. - Sấy bằng nhiệt do đốt nhiên liệu: năng lượng tỏa ra có thể do đốt cháy bộ phận nhiên liệu còn sót hoặc lượng nhiên liệu phun vào khí xả (hình 9.1). Cả 2 trường hợp đều cần phải cấp thêm một lượng không khí phụ vào ống xả để đảm bảo đốt cháy lượng nhiên liệu này. Hình 9.2 giới thiệu một ví dụ về giảm ô nhiễm nhờ sấy bộ xúc tác. Không khí thứ cấp Nhiên liệu –ng xả Động cơ Bộ67 tác 1 xúc Vòi đốt
- Chương 9: Xu hướng phát triển động cơ ô tô nhằm làm giảm ô nhiễm môi trường Hình 9.1: Gia nhiệt bộ xúc tác bằng vòi đốt nhiên liệu Mức độ ô nhiễm khi động cơ hoạt động với bộ xúc tác cũ Sãy điện 3,5kW Sãy bằng đốt nhiên liệu còn lại trong khí xả (15kW) Sãy bằng vòi đốt nhiên liệu trên đường xả (15kW) Hình 9.2: Hiệu quả xử lí khí xả nhờ sấMbộ đúcôtác ễm y ức x ộ nhi (giá trị tương đối) - Phun không khí: Việc phun không khí được thực hiện ngay sau soupape xả bắt đầu khi khởi động động cơ. Giải pháp này cho phép điều chỉnh thành phần khí xả phù hợp với điều kiện xử lí tối ưu bằng bộ xúc tác ba chức năng, đồng thời nó cũng tạo điều kiện oxy hóa trước CO và HC góp phần làm tăng nhiệt độ bộ xúc tác. - Lưu giữ tạm thời HC: Việc lưu giữ tạm thời HC trong khí xả được thực hiện ở bộ hấp thụ (hình 9.3). Hệ thống này có thể đi kèm với bộ xúc tác khởi động. ‘Bẫy’ chứa than hoạt tính Động cơ Van điều khiển Bộ xúc tác Bộ xúc tác ba khởi động chức năng Hình 9.3: Hệ thống xúc tác có thêm bộ lưu giữ tạm thời HC Hiện nay các nhà chế tạo đang tiếp tục nghiên cứu các hệ thống này để có thể phát triển áp dụng trong những năm tới. Mặc dù chúng cần có một hệ thống điều khiển phức tạp và đắt tiền nhưng mang lại hiệu quả rất cao trong xử lí khí xả. 9.1.1.3. Động cơ đánh lửa cưỡng bức phun trực tiếp, 168
- Chương 9: Xu hướng phát triển động cơ ô tô nhằm làm giảm ô nhiễm môi trường làm việc với hỗn hợp nghèo Loại động cơ này cho phép nâng cao hiệu suất bằng cách cho động cơ làm việc với hỗn hợp nghèo. Việc thiết kế chế tạo động cơ này rất phức tạp nên cho tới nay chúng vẫn chưa được áp dụng rộng rãi (chủ yếu áp dụng ở Nhật). Tuy nhiên do tính ưu việt của chúng về nhiều mặt, các nhà chế tạo đang khẩn trương nghiên cứu phát triển loại động cơ này. Nến đánh lửa Vòi phun nhiên liệu Không khí Các ống tách dòng đường nạp Đầu piston định hình Hỗn hợp rất đậm Hình 9.4: Tạo hỗn hợp ở tải thấp của động cơ Mitsubishi Động cơ làm việc với hỗn hợp nghèo thế hệ đầu tiên được chế tạo dựa trên việc tối ưu hóa sự đồng nhất của hỗn hợp nhiên liệu cũng như sự phân bố nhiên liệu trong buồng cháy. Nhờ vậy, quá trình cháy trong các loại động cơ này được tiến hành một cách bình thường với độ đậm đặc của hỗn hợp thấp hơn so với động cơ cổ điển khoảng (f=0,7 - 0,8). Suất tiêu hao nhiên liệu (g/kWh) f=1 Mức độ phát sinh NOx (g/kWh) f điều chỉnh 169 Giới hạn ổn định
- Chương 9: Xu hướng phát triển động cơ ô tô nhằm làm giảm ô nhiễm môi trường Hình 9.5: Ảnh hưởng của độ đậm đặc đến suất tiêu hao nhiên liệu và mức độ phát sinh NOx của động cơ Honda VTEC Động cơ làm việc với hỗn hợp phân lớp cho phép nâng cao thêm hiệu suất công tác. Việc thiết kế chế tạo loại động cơ này rất được quan tâm hiện nay. Kĩ thuật động cơ làm việc với hỗn hợp phân lớp dựa trên việc tạo ra trong buồng cháy một hỗn hợp đậm đặc cục bộ (gần nếu đánh lửa) đủ để khởi động và đảm bảo sự lan tràn màng lửa phù hợp trong điều kiện thành phần hỗn hợp có độ đậm đặc thấp nhất. Hiện nay, hỗn hợp phân lớp chỉ dùng khi động cơ làm việc ở tải thấp; khi động cơ làm việc với tải cao, động cơ sử hỗn hợp cháy hoàn toàn lí thuyết. 9.1.2. Động cơ Diesel Động cơ Diesel cũng sẽ được tiếp tục cải tiến để nâng cao hiệu suất dù hiện nay nó đã có nhiều ưu điểm về mặt này. Về phương diện hạn chế mức độ phát sinh ô nhiễm của động cơ Diesel, các giải pháp kĩ thuật nói chung vẫn còn ở trong giai đoạn thí nghiệm. Cho tới những năm cuối của thập niên 1990, các kĩ thuật này vẫn còn áp dụng rất hạn chế vì nó đắt tiền và làm việc chưa thật đáng tin cậy. Các giải pháp đó là: . Bộ xúc tác giảm NOx . Lọc bồ hóng Việc áp dụng bộ xúc tác oxy hóa trên động cơ Diesel không vấp phải trở ngại gì đặc biệt. Chỉ có điều cần chú ý là hiệu quả của nó cao khi hàm lượng lưu huỳnh trong nhiên liệu thấp. Kĩ thuật xúc tác loại trừ NOx đang được phát triển. Việc ứng dụng kĩ thuật này đặt ra một số vấn đề về kĩ thuật, đặc biệt là vấn đề làm việc ổn định của bộ xúc tác theo thời gian. Mặt khác, bộ xúc tác loại trừ NOx đòi hỏi nhiên liệu không được chứa lưu huỳnh. Tuy hiện nay hiệu quả của nó thấp hơn bộ xúc tác 3 chức năng nhưng người ta có thể lạc quan tin rằng kĩ thuật này sẽ được áp dụng trong một tương lai gần. Kĩ thuật lọc bồ hóng có nhiều hứa hẹn sẽ được áp dụng trên ô tô du lịch cũng như ô tô vận tải. Tuy nhiên, việc áp dụng kĩ thuật này đòi hỏi những tiến bộ cả về lõi lọc lần kĩ thuật tái sinh lọc (xem chương 7). 170
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Môi trường động và thực vật đồng bằng sông Cửu Long
7 p | 848 | 221
-
Kỹ thuật môi trường - Chương 2
12 p | 235 | 56
-
Tác động của phát triển kinh tế nông nghiệp đến môi trường sinh thái tỉnh Đồng Tháp
6 p | 112 | 13
-
Kinh nghiệm sử dụng tài nguyên gắn với bảo vệ môi trường của cộng đồng người Thái tại ven hồ thủy điện Sơn La
9 p | 109 | 6
-
Sử dụng công cụ độc học đánh giá rủi ro môi trường do nước thải từ các khu công nghiệp
5 p | 107 | 6
-
Tác động môi trường sinh thái của “vùng chết” trên đại dương thế giới và đề xuất nghiên cứu quản lý tại vùng biển Việt Nam
3 p | 6 | 4
-
Đánh giá tác động của tái sử dụng chất thải chăn nuôi lên chất lượng môi trường ở Đồng bằng Sông Hồng giai đoạn 2000-2020
9 p | 15 | 4
-
Tín ngưỡng của người Hrê dưới góc nhìn bảo vệ môi trường sinh thái
13 p | 7 | 4
-
Tìm hiểu thực trạng ô nhiễm môi trường nước ở xã Định Yên – Lấp Vò – Đồng Tháp và một số giải pháp khắc phục
8 p | 30 | 4
-
Chất lượng môi trường nước tại một số làng nghề huyện Yên Phong tỉnh Bắc Ninh
7 p | 48 | 4
-
Công nghệ xử lý môi trường trong lĩnh vực y tế tại Bình Dương
2 p | 92 | 4
-
Đề thi kết thúc học phần học kì 2 môn Sinh thái môi trường năm 2021-2022 có đáp án - Trường ĐH Đồng Tháp
3 p | 22 | 3
-
Bài giảng Chính sách về bảo vệ môi trường trong hoạt động khai thác tài nguyên khoáng sản ở Việt Nam - Đỗ Thanh Bái
9 p | 13 | 3
-
Nâng cao ý thức bảo vệ môi trường sinh thái biển cho bộ đội Hải quân trong giai đoạn hiện nay
9 p | 8 | 2
-
Động học quá trình hấp phụ NO3- lên than sinh học biến tính từ cây mai dương
12 p | 12 | 2
-
Áp lực môi trường từ hoạt động chăn nuôi lợn trên địa bàn huyện Yên Dũng, tỉnh Bắc Giang
4 p | 17 | 2
-
Thực hành nhà hàng xanh – Giải pháp giảm thiểu tác động tiêu cực đến môi trường sinh thái
9 p | 34 | 1
-
Tổng quan về sự xuất hiện, nguồn gốc, sự chuyển hóa của dược phẩm và sản phẩm chăm sóc cá nhân (PPCPs) trong môi trường nước
6 p | 48 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn