NGHIÊN CỨU ỨNG DỤNG MÔ HÌNH 4 BƯỚC PHÂN TÍCH, DỰ BÁO NHU CẦU ĐI LẠI TRONG QUY HOẠCH GIAO THÔNG
lượt xem 237
download
NGHIÊN CỨU ỨNG DỤNG MÔ HÌNH 4 BƯỚC PHÂN TÍCH, DỰ BÁO NHU CẦU ĐI LẠI TRONG QUY HOẠCH GIAO THÔNG PGS. TS. BÙI XUÂN CẬY ThS. ĐẶNG MINH TÂN Bộ môn Đường bộ Khoa Công trình Trường Đại học Giao thông Vận tải Tóm tắt: Bài báo trình bày về một quy trình dự báo nhu cầu đi lại phục vụ cho công tác quy hoạch giao thong được áp dụng rộng rãi ở các nước phát triển. Đặc biệt mô hình này đã và đang được cơ quan hợp tác Nhật Bản (JICA) áp dụng ở một số dự án...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: NGHIÊN CỨU ỨNG DỤNG MÔ HÌNH 4 BƯỚC PHÂN TÍCH, DỰ BÁO NHU CẦU ĐI LẠI TRONG QUY HOẠCH GIAO THÔNG
- NGHIÊN CỨU ỨNG DỤNG MÔ HÌNH 4 BƯỚC PHÂN TÍCH, DỰ BÁO NHU CẦU ĐI LẠI TRONG QUY HOẠCH GIAO THÔNG PGS. TS. BÙI XUÂN CẬY ThS. ĐẶNG MINH TÂN Bộ môn Đường bộ Khoa Công trình Trường Đại học Giao thông Vận tải Tóm tắt: Bài báo trình bày về một quy trình dự báo nhu cầu đi lại phục vụ cho công tác quy hoạch giao thong được áp dụng rộng rãi ở các nước phát triển. Đặc biệt mô hình này đã và đang được cơ quan hợp tác Nhật Bản (JICA) áp dụng ở một số dự án phát triển giao thông tổng thể ở một số nước trong đó có Việt Nam. Summary: This article presents travel demand process, a state-of-the-art analysis tool widely used in developing countries, in transportation planning process. This model has been used by Japan International Co-operation Agency (JICA) in some transport planning general development for several countries including Vietnam. CT 2 I. ĐẶT VẤN ĐỀ Quy hoạch giao thông là sử dụng có hiệu quả mạng lưới giao thông và hạ tầng đất đai sẵn có, xây dựng phát triển hệ thống giao thông vận tải mới, để đạt được những mục tiêu phát triển kinh tế - xã hội của khu vực và của quốc gia. Nó tạo nên hệ thống giao thông có chất lượng phục vụ cao với một chi phí hợp lý nhất và giảm thiểu tác động môi trường. Nếu quy hoạch giao thông thất bại sẽ dẫn đến ách tắc giao thông, đi lại mất an toàn giao thông, và sử dụng đất bất hợp lý, phản diện tác động môi trường và lãng phí tiền bạc và tài nguyên. Trong một quy trình quy hoạch giao thông thì một khâu quan trọng nhất đó là phân tích dự báo nhu cầu đi lại (Travel demand forecasting), nó sử dụng dữ liệu thu thập được về giao thông hiện tại, để dự báo nhu cầu đi lại và nhu cầu sử dụng hệ thống giao thông vận tải (hệ thống đường bộ, đường sắt, phương tiện GT cá nhân, phương tiện GTCC…) trong tương lai như thế nào? Trong bài báo này, tác giả đề cập đến một mô hình 4 bước là mô hình tiên tiến nhất dùng để phân tích, dự báo nhu cầu đi lại trong tương lai đã được áp dụng ở nhiều nước phát triển trên thế giới. Đặc biệt mô hình này đã và đang được cơ quan hợp tác Nhật Bản (JICA) áp dụng ở một số dự án phát triển giao thông tổng thể ở một số nước trong đó có Việt Nam.
- II. PHÂN TÍCH, DỰ BÁO NHU CẦU ĐI (Travel demand forecast) Mô hình phân tích nhu cầu đi lại đầu tiên phát triển vào những năm 1950 như là một công cụ tiên tiến của quy hoạch giao thông. Phân tích, dự báo nhu cầu đi lại được sử dụng để phát triển thông tin trợ giúp việc ra quyết định để phát triển và quản lý hệ thống giao thông, đặc biệt là giao thông đô thị. Quy trình này bao gồm bốn bước: 1. Phát sinh hành trình (Trip generation – Hành trình xuất phát ở đâu?) 2. Phân phối hành trình, (Trip distribution - Hành trình đi đến đâu) 3. Phương thức phân chia (Modal split – Loại mô hình nào được sử dụng, phương tiện giao thông cá nhân hoặc phương tiện giao thông công cộng). 4. Ấn định mạng lưới (Traffic assignment – Tuyến đường nào được sử dụng với mỗi loại mô hình). Dân số Kinh tế - Xã hội Sử dụng đất CT 2 Phân tích nhu cầu đi lại Phát sinh hành trình Phân phối hành trình Phương thức phân chia Ấn định tuyến đường Giao thông thuận lợi Hình 1. Quy trình, dự báo phân tích nhu cầu đi lại Quy trình bốn bước này sử dụng những mô hình toán học độc lập khác nhau cho mỗi hợp phần của quy trình. Kết quả của bước này thường là dữ liệu đầu vào để giải quyết các bước tiếp theo. Sau đây trình bày từng bước cụ thể:
- Bước 1. Phát sinh hành trình (Trip generation) Mô hình phát sinh hành trình dự báo và xác định số lượng lượt đi lại xuất phát trong vùng phân tích (mức độ tổng thể), lượt đi lại của hộ gia đình (mức độ cá thể) hoặc những nhóm tương đương. Vùng j Vùng i Hình 2. Phát sinh và hấp thu hành trình Sự phát sinh hành trình của mỗi vùng được tính toán như là một hàm số về kinh tế - xã hội, địa điểm, và đặc điểm sử dụng đất trong mỗi vùng. Hai phương pháp truyền thống là phân tích phân loại chéo và phân tích hồi quy. - Phương pháp phân tích phân loại chéo (Cross-classification analysis): là một kỹ thuật thông dụng để tìm hiểu mối quan hệ giữa các biến số được sử dụng trong việc xác số hành trình phát sinh của hộ gia đình. Phương pháp này dựa vào một hoặc nhiều thuộc tính xác định được trong cơ sở dữ liệu khảo sát số hành trình phát sinh và phân chia thành những nhóm có đặc trưng giống nhau, ví dụ số thành viên trong gia đình, số lượng phương tiện sở hữu, thu nhập. Mỗi một loại cấu thành một nhóm mà tỷ lệ phát sinh hành trình có thể xác định được hoặc dự báo được bằng phương CT 2 pháp thống kê. Ví dụ: số lượt đi lại phát sinh từ một vùng nghiên cứu điều tra được như sau: Số phương tiện sở hữu 0 1 2+ Hộ gđ Lượt Hộ gđ Lượt Hộ gđ Lượt Số thành viên 1,200 2,520 2,560 6,144 54 130 1 874 2,098 3,456 9,676 5,921 20,165 2 421 1,137 2,589 8,026 8,642 33,740 3+ Như vậy ta có tỷ lệ đi lại trung bình là: Số phương tiện sở hữu 0 1 2+ Số thành viên 1 2.10 2.40 2.41 2 2.40 2.80 3.41 3+ 2.70 3.10 3.90
- Tính số hành trình phát sinh ra trong một khu vực nằm trong vùng nghiên cứu có số hộ gia đình (theo số lượng phương tiện sử hữu và số thành viên) như sau: Số phương tiện sở hữu 0 1 2+ Số thành viên 1 25 125 3 2 32 175 254 3+ 10 89 512 Kết quả: Số phương tiện sở hữu 0 1 2+ Số thành viên 1 53 300 7 2 77 490 865 Tổng 3+ 27 276 1,999 4,093 - Phương pháp phân tích hồi quy (Regression analysis): Phân tích hồi qui là phương pháp thống kê mà giá trị trung bình (mean) của một hay nhiều biến ngẫu nhiên là được dự đoán dựa vào điều kiện của các biến ngẫu nhiên (đã tính toán) khác. CT 2 Cụ thể, có hồi qui tuyến tình, hồi qui lôgic, hồi qui Poisson và học có giám sát. Phân tích hồi qui không chỉ là trùng khớp đường cong (lựa chọn một đường cong mà vừa khớp nhất với một tập điểm dữ liệu); nó còn phải trùng khớp với một mô hình với các thành phần ngẫu nhiên và xác định (deterministic and stochastic components). Thành phần xác định được gọi là bộ dự đoán (predictor) và thành phần ngẫu nhiên được gọi là phần sai số (error term). Một hàm hồi quy tổng quát như sau: Yi = ai + β1X1 + β2X2 + … + βnXn + εi (1) Trong đó: - Yi = là số hành trình phát sinh ra trong vùng i. - ai = số thực. - β1…. βn: = hệ số hồi quy. - X1…Xn = biến số ngẫu nhiên (các biến số đại diện cho một yếu tố ảnh hưởng đến số lượt đi lại ví dụ như dân số, hộ gia đình… - εi = hệ số hiệu chỉnh (số dư). Các giá trị ao, β1, β2,… βk, εi được xác định bằng phương pháp hồi quy.
- Ví dụ về một bài toán hồi quy tuyến tính: Một thành phố X có 10 khu vực như ở hình sau: Có kết quả điều tra dân số và hành trình phát sinh như sau: Khu vực Dân số Hành trình X Y 1 7,212 5,126 2 4,818 3,764 3 8,789 4,030 4 5,805 3,921 5 3,054 1,644 6 10,463 4,467 7 2,735 3,407 8 1,784 1,143 CT 2 9 4,418 3,202 10 6,657 3,900 Sử dụng công cụ Excel dễ dàng vẽ được biểu đồ và xác định được hàm hồi quy như ở hình dưới đây: Hình 3. Sử dụng công cụ Excel để xác định hàm hồi quy
- Như vậy ta có hàm số: Y = 0.343X + 1545 (2) Bước 2. Phân phối hành trình (Trip distribution) Sau khi dự báo được nhu cầu đi lại phát sinh ra trong vùng phân tích, mục tiêu tiếp theo là phải xác định được những hành trình này đi đâu trong số các hành trình xuất phát từ một điểm đi và đến nhiều điểm đến. 25 100 30 … Hình 4. Sự phân phối hành trình Có ba yếu ảnh hưởng tới sự phân chia này: + Số lượng hành trình phát sinh từ điểm xuất phát. CT 2 + Sự hấp dẫn của vùng đến. + Trở kháng (Chi phí, thời gian đi lại). Phương pháp thông dụng để xác định sự phân phối hành trình là dùng mô hình phân phối hấp dẫn (Gravity mode), phương pháp này xác định rõ số hành trình đi lại giữa điểm xuất phát và điểm đến như là một hàm số về thuộc tính đi và đến (thuộc tính OD) và chi phí đi lại giữa chúng: ⎡ ⎤ ⎢ A j .Fij .K ij ⎥ Tij = Pi .⎢ (3) A .F .K ⎥ ⎢ ∑ j ij ij ⎥ ⎣j ⎦ trong đó: Tij = Hành trình từ vùng i đến vùng j. Pi = Tổng số hành trình phát sinh từ vùng i. Aj = Số hành trình hấp thu vào vùng j. Fij = Hệ số trở kháng, thông thường là hàm số tỷ lệ nghịch với thời gian di chuyển giữa i và j.
- Kij = Hệ số hiệu chỉnh về mặt kinh tế xã hội cho những hành trình xuất phát từ i và đến vùng j, thường lấy bằng 1. Ta đã biết Ps và As được xác định được từ quá trình phát sinh hành trình, tổng hành trình phát sinh ra phải bằng tổng hành trình hấp thu ΣPi = ΣAj. Ví dụ: Một vùng nghiên cứu có 3 khu vực, dữ liệu điều tra về hành trình đi và đến mỗi khu vực được thể hiện ở bảng dưới. Giả thiết Kij = 1 Khu vực 1 2 3 Tổng Hành trình đi 140 330 280 750 Hành trình đến 300 270 180 750 Thời gian đi lại từ khu vực này đến khu vực khác như sau: Vùng 1 2 3 5 2 3 1 2 6 6 2 3 6 5 3 Hệ số trở kháng theo thời gian như sau: Time (min) F 1 82 2 52 CT 2 3 50 4 41 5 39 6 26 7 20 8 12 Hệ số trở kháng theo thời gian giữa các vùng: Fij theo thời gian Khu vực 1 2 3 39 52 50 1 52 26 26 2 50 26 39 3 Dùng công thức (3): Và lập các giá trị A*F*K thành bảng
- 1 2 3 Tổng AjFijKij 1 11700 14040 9000 34740 2 15600 7020 4680 27300 3 15000 7020 7020 29040 Khi các giá trị A*F*K cho mỗi cặp đi đến được lập bảng, bạn có thể chèn những giái trị này vào công thức trọng lực và xác định số lượng hành trình mỗi một cặp đi - đến. Như vậy ta tính được các giá trị Tij thể hiện ở bảng dưới này. Khu vực 1 2 3 P 1 47 57 36 140 2 189 85 57 330 3 145 68 68 280 A 380 209 161 750 A cho trước 300 270 180 750 Khi tổng số hành trình hấp thu cho mỗi vùng không bằng tổng số hành trình hấp thu ban đầu, ta cần điều chỉnh lại nhân tố hấp thu. Ta phải tính toán lại nhân tố hấp thu theo công thức sau: Aj A jk = A j( k −1) ( 4) C j( k −1) Trong đó: - Ajk = Nhân tố hấp thu hiệu chỉnh cho vùng hấp thu (cột) j lần thứ k. CT 2 - Ajk = Aj khi k=1 - Cjk = Tổng giá trị hấp thu (cột) thực tế cho vùng j lần thứ k - Aj = tổng số hấp thu mong muốn thuộc vùng hấp thu (cột) j - j = số thứ tự khu vực hấp thu - n = số lượng khu vực - k = số lần lặp Ví dụ: với khu vực 1 ta có: A1 300 A 12 = A 11 = 300 = 237 (5) C11 380 Khu vực 1 2 3 380 209 161 Aj1 300 270 180 A cho trước 237 349 201 Aj2
- Tiếp tục tính lại các giá trị A*F*K: AjFijKij 1 2 3 Tổng 1 9237 18138 10062 37437 2 12316 9069 5232 26617 3 11842 9069 7848 28759 Kết quả tính lặp lần 2: Khu vực 1 2 3 P 1 35 68 38 140 2 153 112 65 330 3 115 88 76 280 A 303 269 179 750 A cho trước 300 270 180 750 Tính lặp cho đến khi sai số tổng giá trị hấp thu A gần bằng giá trị A cho trước (sai số không quá 5%) là kết quả chấp nhận được như ở bảng dưới đây: Khu vực 1 2 3 35 68 38 1 CT 2 153 112 65 2 115 88 76 3 Bước 3. Phương thức phân chia Sau khi hoàn thành công tác phân phối hành trình, công việc tiếp theo là phải xác định được phương thức đi lại bằng phương tiện nào sẽ được sử dụng. Giai đoạn này dự báo có bao nhiêu người sử dụng phương tiện giao thông công cộng và bao nhiêu người sử dụng phương tiện giao thông cá nhân. Phương pháp thông thường nhất được sử dụng là mô hình Logit. Tất cả hành trình phát sinh Phương tiện GT Phương tiện GTCC cá nhân Xe con Xe máy … Xe bus Tàu điện … Hình 5. Phương thức phân chia
- Kết quả của quá trình phân tích này phụ thuộc vào các đặc điểm của từng loại hành trình từ điểm đi đến một điểm đến được ấn định, như là loại hành trình ( đi mua sắm, đi làm, đi học…), địa điểm đi và địa điểm đến, thời gian đi lại, chi phí đi lại, thời gian chờ đợi và chuyển đổi phương tiện, các nhân tố kinh tế xã hội và các biến tố khác có liên quan đến mức độ hấp dẫn của các mô hình khác nhau... Công thức tổng quát là: e Ui Pi = (6) ∑e Uj j trong đó: Pi: khả năng lựa chọn phương thức i Ui = Hàm tiện ích của phương thức i, hàm số có dạng Ui = α + β1. X1 + β2. X2 +… + βn. Xn Với: X1, X2,…, Xn, là các biến số thuộc tính tùy thuộc vào mô hình i (ví dụ như thời gian đi lại, chi phí đi lại, thu nhập…) α = Hằng số, β1, β2,…, βn là các hệ số đại diện cho các hợp phần mà nó kết hợp trong Hàm tiện ích. Hằng số, hệ số này có thể được xác định bằng phương pháp hồi quy. Kết quả: Xác định được số lượng hành trình từ mỗi vùng đến vùng khác được tổ chức bởi các mô hình giao thông khác nhau. CT 2 Ví dụ: Hàm số U cho trước như sau: UK= AK - 0.05 Ta - 0.04Tw - 0.02 Tr - 0.01 C Ta = Thời gian lên xe TW = Thời gian chờ đợi Tr = Thời gian hành trình C = Chi phí đi lại a. Sử dụng mô hình Logit để tính toán tỷ lệ sử dụng giữa hai loại phương tiện giao thông cá nhân (AK = -0.005) và phương tiện giao thông công cộng (AK = -0.05). Sử dụng dữ liệu dưới đây để phân tích: Mô hình Ta TW Tr C PTGTCN 5 0 30 100 PTGTCC 10 10 45 50
- Kết quả: Mô hình Uk e^Uk P PTGTCN -1.855 0.1565 0.621 PTGTCC -2.35 0.0954 0.379 0.2518 1 Như vậy 62% người sẽ sử dụng phương tiện giao thông cá nhân và 38% sử dụng phương tiện giao thông công cộng. Bước 4. Ấn định tuyến đường (Traffic assignment) Đây là giai đoạn cuối cùng sau khi xác định phương thức phân chia, mục đích là phải xác định được tuyến đường nào (cho mỗi phương thức) được sử dụng cho những hành trình từ điểm đi đến điểm đến. Tuyến đường nào? Điểm đến Điểm xuất phát Hấp thu Phát sinh Chi phí Thời gian Số lượng kết nối CT 2 Hình 6. Tuyến đường nào sẽ được lựa chọn cho hành trình? Quá trình ấn định tuyến đường bao gồm sử dụng các phương pháp sau: Phương pháp 1: Tất cả hoặc không có gì. Hầu hết hành trình được chỉ định cho những tuyến tuyến đường ngắn nhất. 100 0 Hình 7. Tất cả hoặc không có gì (All or nothing) Phương pháp 2: (Phương pháp cân bằng), phương pháp này bao gồm các bước sau: 1. Áp dụng một phương pháp 1 (tất cả hoặc không có gì). 2. Tính toán thời gian hành trình mới (liên quan đến lưu lượng và ách tắc giao thông) 3. Tính toán lại hành trình ngắn nhất với sự tăng trưởng giao thông 4. Kiểm tra lại tất cả các tuyến xem có thời gian đi lại là tương đương hay không, nếu không, lặp lại bước 1, ngược lại, kết thúc quá trình.
- Ví d ụ : Hành trình đi lại giữa các vùng Từ/đến 1 2 3 4 5 1 - 100 100 200 150 2 400 - 200 100 500 3 200 100 - 100 150 4 250 150 300 - 400 5 200 100 50 350 - 3 phút 8 phút 1 2 3 12 phút 5 phút 7 phút 5 phút 4 5 6 phút Hình 8 . Thời gian đi lại giữa các điểm Kỹ thuật “tất cả hoặc không có gì” đơn giản giả thuyết rằng tất cả các phương tiện từ một điểm đi đến một điểm đến sẽ chọn hành trình ngắn nhất (với thời gian ngắn nhất). Ví dụ tất cả 200 xe đi từ điểm 1 đến 4 sẽ đi theo hành trình 1-5-4. Bảng dưới đây thể hiện tất cả các tuyến đường được chọn giữa mỗi cặp điểm đi và đến. Từ đó tính ra hành trình ngắn nhất giữa hai cặp điểm tương đương. Điểm nút Đường CT 2 Từ Đến Đoạn Thời gian Lưu lượng 1 2 1-2 8 100 3 1-2,2-3 11 100 4 1-5,5-4 11 200 5 1-5 5 150 2 1 2-1 8 400 3 2-3 3 200 4 2-4 5 100 5 2-4,4-5 11 500 3 1 3-2,2-1 11 200 2 3-2 3 100 4 3-3 7 100 5 3-4,4-5 13 150 4 1 4-5,5-1 11 250 2 4-2 5 150 3 4-3 7 300 5 4-5 6 400 5 1 5-1 5 200 2 5-4,4-2 11 100 3 5-4,4-3 13 50 4 5-4 6 350
- Kết quả: Liên kết Lưu lượng Liên kết Lưu lượng 1-2 200 3-2 300 2-1 600 2-4 600 1-5 350 4-2 250 5-1 450 3-4 250 2-5 0 4-3 350 5-2 0 4-5 1300 2-3 300 5-4 700 III. KẾT LUẬN Việc phân tích, dự báo nhu cầu đi lại có tầm quan trọng rất lớn đối với quy hoạch giao thông. Nhờ kết quả của mô hình phân tích, dự báo nói trên mà các nhà quản lý, chuyên gia đưa ra được các quyết định quy hoạch đúng đắn cho công tác quy hoạch hệ thống giao thông vận tải. Các mô hình phân tích, dự báo nhu cầu đi lại dễ dàng áp dụng công nghệ tự động hóa trong phân tích. Các mô hình này được tích hợp trong một số phần mềm phân tích giao thông cùng với công nghệ GIS. Một số phần mềm nổi tiếng trên thế giới dùng để phân tích, dự báo nhu cầu đi lại như TransCAD, EMME/2, Cube… Đặc biệt là phần mềm STRADA của Nhật Bản đã được cơ quan hợp tác Nhật Bản (JICA) áp dụng trong một số dự án quy hoạch ở Việt Nam là một chương trình rất mạnh, gồm 17 hợp phần, có thể giải bài toán với 50.000 tuyến đường, 40.000 điểm nút, và 3.000 vùng. CT 2 Hiện nay ở Việt Nam đã bắt đầu áp dụng mô hình phân tích này trong một số các dự án quy hoạch giao thông tổng thể của TPHCM, Hà Nội… nhưng các dự án này đều do các tổ chức nước ngoài thực hiện. Trong nước chưa có nhiều nghiên cứu phát triển các lý thuyết quy hoạch giao thông, các tư vấn trong nước chưa thể đảm nhiệm được công việc nói trên bởi vì chưa có nhân lực và công cụ thực hiện về lĩnh vực này. Do vậy cần thiết phải nghiên cứu để xây dựng các mô hình dự báo thực sự phù hợp với điều kiện thực tế ở Việt Nam. Đưa nhiều cán bộ đi nước ngoài học tập, nghiên cứu và đầu tư xây dựng các phần mềm phân tích, dự báo nhu cầu đi lại là một hướng đi phù hợp. Tài liệu tham khảo [1]. Ths Đặng Minh Tân, 2007. Nghiên cứu ứng dụng công nghệ GIS nhằm nâng cao năng lực quy hoạch và quản lý giao thông. Luận văn thạc sĩ khoa học kỹ thuật – ĐHGTVT Hà Nội. [2]. Harvey J.Miller, Shih-Lung Shaw, 2001. Geographic information systems for transportation. Oxford University Press. [3]. JICA Training, 2007. Urban Transportation Survey & Analysis (Module III). [4]. Transportation engineering online lab manual. Chapter: Travel Demand Forecasting. Oregon State University, Portland State University, University of Idaho. [5]. Thomas A. Domenich and Daniel McFadden, 1975. Urban travel demand. North Holland Publishing company – Amsterdam Oxford American Elsevier Publishing Company, Inc – Newyork.♦
CÓ THỂ BẠN MUỐN DOWNLOAD
-
KINH TẾ VI MÔ - Lý thuyết trò chơi Phần 1
8 p | 691 | 144
-
Kinh tế vi mô - Hệ số co giãn và ứng dụng
64 p | 1049 | 92
-
GIỚI THIỆU LÝ THUYẾT TRÒ CHƠI VÀ MỘT SỐ ỨNG DỤNG TRONG KINH TẾ HỌC VI MÔ
8 p | 312 | 86
-
bài giảng Kinh tế vi mô - Bài số 4
37 p | 215 | 63
-
Tiểu luận đề tài: Quy hoạch tuyến tính - Trường ĐH Công Nghiệp HCM
105 p | 393 | 57
-
Bài giảng Xây dựng thành phố thông minh (Smart city) với các chỉ số an ninh, an sinh, an toàn thích ứng với cuộc cách mạng công nghiệp lần thứ 4 (4.0)
86 p | 200 | 46
-
Kinh tế vi mô Nhập môn Lý thuyết trò chơi Phần 1
10 p | 122 | 26
-
Bài giảng Kinh tế lượng: Chương 4 - Hồi quy với biến giả
13 p | 299 | 21
-
Các ứng dụng của mô hình kinh tế vĩ mô
5 p | 189 | 21
-
Bài giảng Mô hình so sánh bằng điểm xu hướng - Lê Việt Phú
20 p | 255 | 19
-
Hệ thống quản lý chất lượng Q-BasePage
5 p | 113 | 13
-
Bài giảng Kinh tế vĩ mô (dành cho học viên cao học): Chapter 11 - TS. Phan Thế Công
14 p | 88 | 9
-
Bài giảng Nhập môn Kinh tế lượng với các ứng dụng - Chương 1: Giới thiệu
16 p | 111 | 9
-
Bài giảng Nhập môn Kinh tế lượng với các ứng dụng - Chương 13: Các mô hình hệ phương trình
24 p | 62 | 7
-
Bài giảng Hướng dẫn bài tập nhóm học phần: Kinh tế vĩ mô ứng dụng
0 p | 79 | 3
-
Bài giảng 2: Kinh tế vĩ mô và kinh tế học phát triển
6 p | 75 | 2
-
Học thuyết đúc kết từ lịch sử: Charter City của Paul Romer và ứng dụng chính sách
13 p | 71 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn