intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Nhập môn Kinh tế lượng với các ứng dụng - Chương 13: Các mô hình hệ phương trình

Chia sẻ: Ye Ye | Ngày: | Loại File: PDF | Số trang:24

63
lượt xem
7
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Trong chương này, chúng ta nghiên cứu những vấn đề đặc biệt nảy sinh khi ước lượng các mô hình hệ phương trình. Tuy nhiên, chỉ giới thiệu ở đây những mô hình hệ phương trình căn bản. Mời các bạn cùng tham khảo để biết thêm chi tiết.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Nhập môn Kinh tế lượng với các ứng dụng - Chương 13: Các mô hình hệ phương trình

Chöông trình Giaûng daïy Kinh teá Fulbright<br /> Nieân khoùa 2003-2004<br /> <br /> Phöông phaùp phaân tích<br /> Baøi ñoïc<br /> <br /> Nhaäp moân kinh teá löôïng vôùi caùc öùng duïng<br /> Chöông 13: Caùc moâ hình heä phöông trình<br /> <br /> CHÖÔNG 13<br /> <br /> Caùc Moâ Hình Heä Phöông Trình<br /> Taát caû caùc moâ hình kinh teá löôïng ñaõ thaûo luaän tröôùc ñaây chæ ñeà caäp ñeán moät bieán phuï<br /> <br /> thuoäc. Tuy nhieân, trong nhieàu moâ hình kinh teá, moät soá bieán noäi sinh (töùc laø bieán phuï thuoäc)<br /> ñöôïc xaùc ñònh moät caùch ñoàng thôøi. Öôùc löôïng nhöõng phöông trình cung vaø caàu laø moät ví<br /> duï cuûa loaïi bieåu thöùc naøy, ôû ñaây giaù vaø löôïng ñöôïc xaùc ñònh cuøng luùc. Nhöõng moâ hình kinh<br /> teá vó moâ cuõng laø nhöõng ví duï veà ñaëc tröng cuûa moâ hình heä phöông trình. Trong chöông<br /> naøy, chuùng ta nghieân cöùu nhöõng vaán ñeà ñaëc bieät naûy sinh khi öôùc löôïng caùc moâ hình heä<br /> phöông trình. Tuy nhieân, chæ giôùi thieäu ôû ñaây nhöõng moâ hình heä phöông trình caên baûn.<br /> Ngöôøi ñoïc ñöôïc höôùng daãn neân xem qua muïc luïc saùch tham khaûo ôû phaàn cuoái cuûa chöông<br /> ñeå bieát theâm chi tieát vaø toång quaùt hôn veà vaán ñeà naøy.<br /> <br /> 13.1 Daïng Caáu Truùc Vaø Daïng Ruùt Goïn Cuûa Moâ Hình Heä Phöông Trình<br /> Phöông Trình Caáu Truùc<br /> Xem xeùt caùc phöông trình bieåu dieãn cung vaø caàu cuûa luùa mì nhö sau (ñeå ñôn giaûn, chæ soá<br /> t ôû döôùi ñöôïc boû ñi):<br /> qd =α0 + α1p +α2y + u<br /> (13.1)<br /> qs = β0 + β1p + β2r + v<br /> (13.2)<br /> qd = qs<br /> (13.3)<br /> vôùi qd laø löôïng caàu luùa mì, qs laø löôïng cung luùa mì, p laø giaù, y laø thu nhaäp, r laø löôïng möa,<br /> vaø u vaø v laø caùc soá haïng nhieãu ngaãu nhieân. Phöông trình ñaàu tieân theå hieän quan heä caàu,<br /> trong ñoù löôïng caàu coù quan heä vôùi giaù vaø thu nhaäp. Phöông trình (13.2) chæ roõ löôïng cung<br /> laø haøm cuûa giaù vaø löôïng möa. Maëc duø nhöõng bieán khaùc ví duï nhö löôïng phaân boùn, maùy<br /> moùc söû duïng, … laø nhöõng yeáu toá quan troïng ñoái vôùi löôïng cung, nhöng ñeå ñôn giaûn trong<br /> giaûi thích ta khoâng ñöa chuùng vaøo trong moâ hình. Phöông trình (13.1) vaø (13.2) ñöôïc bieát<br /> ñeán nhö nhöõng phöông trình haønh vi (bôûi vì chuùng ñöôïc xaùc ñònh bôûi haønh vi cuûa caùc<br /> taùc nhaân kinh teá). Lyù thuyeát kinh teá cô baûn cho chuùng ta bieát söï caân baèng cuûa giaù vaø<br /> löôïng baùn ra ñöôïc xaùc ñònh bôûi söï caân baèng giöõa löôïng cung vaø caàu. Do vaäy, phöông<br /> trình (13.3) laø ñieàu kieän caân baèng maø noù xaùc ñònh möùc giaù vaø löôïng baùn ra. Do ñoù heä<br /> thoáng heä phöông trình bao goàm hai phöông trình haønh vi vaø moät ñieàu kieän caân baèng.<br /> Phöông trình (13.1), (13.2), vaø (13.3) ñöôïc bieát ñeán nhö nhöõng phöông trình caáu<br /> truùc cuûa moâ hình heä phöông trình, vaø caùc heä soá hoài qui – α vaø β – laø nhöõng thoâng soá<br /> caáu truùc. Bôûi vì giaù vaø löôïng ñöôïc xaùc ñònh moät caùch ñoàng thôøi, neân chuùng ñeàu laø nhöõng<br /> bieán noäi sinh. Chuùng ta löu yù giaù taùc ñoäng leân löôïng vaø ngöôïc laïi. Ñieàu naøy ñöôïc bieát<br /> Ramu Ramanathan<br /> <br /> 1<br /> <br /> Thuc Doan/Hao Thi<br /> <br /> Chöông trình Giaûng daïy Kinh teá Fulbright<br /> Nieân khoùa 2003-2004<br /> <br /> Phöông phaùp phaân tích<br /> Baøi ñoïc<br /> <br /> Nhaäp moân kinh teá löôïng vôùi caùc öùng duïng<br /> Chöông 13: Caùc moâ hình heä phöông trình<br /> <br /> ñeán nhö hieän töôïng phaûn hoài, laø moät ñaëc tính thoâng thöôøng giöõa nhöõng moâ hình heä<br /> phöông trình. Thu nhaäp vaø löôïng möa khoâng ñöôïc xaùc ñònh bôûi moâ hình ñaëc tröng nhöng<br /> chuùng ñöôïc coi laø ngoaïi sinh, vaø do vaäy chuùng laø nhöõng bieán ngoaïi sinh. Trong caùc moâ<br /> hình phöông trình-ñôn, chuùng ta söû duïng nhöõng thuaät ngöõ nhö bieán ngoaïi sinh vaø bieán<br /> giaûi thích thay theá cho nhau. Ñoái vôùi nhöõng moâ hình heä phöông trình, thì khoâng theå söû<br /> duïng nhö vaäy ñöôïc nöõa. Trong Phöông Trình (13.1), giaù caû laø bieán giaûi thích nhöng laïi<br /> khoâng phaûi laø moät bieán ngoaïi sinh.<br /> Maëc duø moâ hình ñöôïc ñaëc tröng baèng ba phöông trình, cho neân baèng caùch ñaët qd =<br /> qs = q, chuùng ta coù theå giaûm moâ hình xuoáng coøn moät ñaëc tröng hai-phöông trình. Moâ<br /> hình heä phöông trình do ñoù chæ coøn hai phöông trình vôùi hai bieán noäi sinh (p vaø q) vaø ba<br /> bieán ngoaïi sinh (moät soá haïng haèng soá, thu nhaäp, vaø löôïng möa). Soá phöông trình trong<br /> moät heä thoáng (maø noù töông töï nhö soá bieán noäi sinh) ñöôïc kyù hieäu laø G, vaø soá bieán ngoaïi<br /> sinh ñöôïc kyù hieäu laø K.<br /> Moät moâ hình heä phöông trình coù theå coù caùc loaïi phöông trình vaø bieán khaùc nhau.<br /> Ñieàu naøy ñöôïc theå hieän toát nhaát baèng moät ví duï. Haõy xem xeùt moâ hình vó moâ ñôn giaûn<br /> sau:<br /> Ct = α0 + α1DYt +α2DYt-1 + ut<br /> (13.4)<br /> It = β0 + β 1Yt +β2Yt-1 + vt<br /> (13.5)<br /> DYt = Yt - Tt<br /> (13.6)<br /> Yt = Ct + It + Gt<br /> (13.7)<br /> vôùi C laø chi tieâu hoä gia ñình, I laø ñaàu tö, Y laø toång saûn phaåm quoác gia (GNP), G laø chi<br /> tieâu cuûa chính phuû, T laø toång thueá, vaø DY laø thu nhaäp khaû duïng. Phöông trình (13.6) ñònh<br /> nghóa thu nhaäp khaû duïng baèng GNP tröø ñi caùc loaïi thueá. Do vaäy phöông trình naøy laø moät<br /> ñoàng nhaát thöùc. Phöông trình (13.4) vaø (13.5) laø nhöõng phöông trình haønh vi, vaø Phöông<br /> trình (13.7) laø ñieàu kieän caân baèng, khaù noåi tieáng trong caùc moâ hình vó moâ. Do ñoù moâ hình<br /> bao goàm boán phöông trình caáu truùc vôùi boán bieán noäi sinh Yt, Ct, It, vaø DYt (töùc laø, G = 4).<br /> Bieán DYt-1 laø thu nhaäp khaû duïng trong thôøi ñoaïn tröôùc. ÔÛ thôøi ñieåm t, bieán noäi sinh bò treã,<br /> vaø do ñoù ñöôïc xaùc ñònh tröôùc laø Yt-1. Do ñoù chuùng ta thaáy raèng moät moâ hình heä phöông<br /> trình bao goàm boán bieán ngoaïi sinh maø giaù trò cuûa chuùng ñöôïc cung caáp töø ngoaøi heä thoáng,<br /> vaø caùc bieán ñöôïc xaùc ñònh tröôùc bao goàm nhöõng bieán noäi sinh treã. Ñeå traùnh söï loän xoän,<br /> töø giôø trôû ñi chuùng ta goäp taát caû caùc bieán ngoaïi sinh döôùi nhoùm teân ñöôïc xaùc ñònh tröôùc.<br /> Moät moâ hình do vaäy seõ bao goàm nhöõng bieán noäi sinh (baèng soá laø G) vaø nhöõng bieán ñöôïc<br /> xaùc ñònh tröôùc (baèng soá laø K). Trong ví duï vó moâ, G baèng 4 vaø K baèng 5 (Ct, Tt, Yt-1, DYt1, vaø moät haèng soá).<br /> Moät loaïi phöông trình khaùc, chöa ñöôïc xaùc ñònh trong nhöõng ví duï tröôùc ñaây, laø moät<br /> phöông trình kyõ thuaät. Ví duï, chuùng ta coù theå ñöa theâm moät haøm saûn xuaát vaøo moâ hình<br /> vó moâ, lieân heä toång cung (Q) vôùi nhöõng yeáu toá nhaäp löôïng nhö voán (K) vaø lao ñoäng (L).<br /> Do ñoù, caùc loaïi phöông trình gaëp phaûi trong nhöõng moâ hình heä phöông trình laø nhöõng<br /> phöông trình haønh vi, kyõ thuaät, ñieàu kieän caân baèng, vaø ñoàng nhaát thöùc.<br /> Ramu Ramanathan<br /> <br /> 2<br /> <br /> Thuc Doan/Hao Thi<br /> <br /> Chöông trình Giaûng daïy Kinh teá Fulbright<br /> Nieân khoùa 2003-2004<br /> <br /> Phöông phaùp phaân tích<br /> Baøi ñoïc<br /> <br /> Nhaäp moân kinh teá löôïng vôùi caùc öùng duïng<br /> Chöông 13: Caùc moâ hình heä phöông trình<br /> <br /> Phöông Trình Daïng Ruùt Goïn<br /> Giaûi phöông trình (13.1) vaø (13.2) vaø tìm p, chuùng ta thu ñöôïc quan heä sau:<br /> β −α0<br /> α2<br /> β2<br /> v−u<br /> y+<br /> r+<br /> p= 0<br /> −<br /> (13.8)<br /> α1 − β1 α 1 − β1<br /> α 1 − β1 α1 − β1<br /> phöông trình naøy coù theå vieát laïi döôùi daïng<br /> <br /> p = λ 0 + λ 1y + λ 2r + ε 1<br /> <br /> (13.9)<br /> <br /> Thay phöông trình naøy vaøo Phöông trình (13.1), ta ñöôïc (q laø löôïng baùn caân baèng):<br /> q = (α0 + α 1λ0) + (α 1λ1 + α 2)y + α 1λ2r + ε2 = µ0 + µ 1y + µ 2r + ε2<br /> (13.10)<br /> ε1 vaø ε2 laø nhöõng soá haïng sai soá môùi maø chuùng phuï thuoäc vaøo u vaø v. Phöông trình (13.9)<br /> vaø (13.10) xaùc ñònh töøng bieán noäi sinh döôùi daïng nhöõng bieán ñöôïc xaùc ñònh tröôùc, nhöõng<br /> thoâng soá cuûa moâ hình, vaø nhöõng soá haïng nhieãu ngaãu nhieân. Löu yù raèng caùc veá phaûi cuûa<br /> phöông trình (13.9) vaø (13.10) khoâng bao goàm baát kyø caùc bieán noäi sinh. Hai phöông trình<br /> naøy ñöôïc hieåu nhö daïng nhöõng phöông trình ruùt goïn, vaø caùc thoâng soá λ vaø µ laø nhöõng<br /> thoâng soá ruùt goïn. Daïng phöông trình ruùt goïn coù ñöôïc baèng caùch giaûi ra töøng bieán noäi<br /> sinh döôùi daïng caùc bieán ñöôïc xaùc ñònh tröôùc, nhöõng thoâng soá chöa bieát, vaø nhöõng soá haïng<br /> nhieãu. Chuùng ta deã daøng thaáy raèng moät daïng phöông trình ruùt goïn noùi chung seõ bao goàm<br /> caùc soá haïng sai soá töø taát caû caùc phöông trình. Do ñoù, daïng phöông trình ruùt goïn cho GNP<br /> trong moâ hình vó moâ seõ phuï thuoäc vaøo moät haèng soá, Gt, Tt, Yt-1, DYt-1, taát caû caùc thoâng soá<br /> caáu truùc, vaø caùc soá haïng sai soá ut vaø vt.<br /> BAØI THÖÏC HAØNH 13.1<br /> Tìm daïng ruùt goïn cho moâ hình vó moâ trong caùc Phöông Trình töø (13.4) – (13.7)<br /> 13. 2 Caùc Keát Quaû Cuûa Vieäc Boû Qua Tính Ñoàng Thôøi<br /> Giaû söû chuùng ta xem xeùt töøng phöông trình trong moâ hình heä phöông trình nhö moät moâ<br /> hình phöông trình ñôn vaø öôùc löôïng caùc thoâng soá, neáu coù, baèng OLS. Tính chaát cuûa<br /> nhöõng öôùc löôïng naøy laø gì? Cuï theå, chuùng coù khoâng thieân leäch, nhaát quaùn, hieäu quaû,<br /> BLUE, … hay khoâng? Ví duï, ñeå öôùc löôïng Phöông Trình (13.4), giaû söû chuùng ta hoài qui Ct<br /> theo moät haèng soá, DYt, vaø DYt-1. Bieát tính chaát cuûa caùc öôùc löôïng khaù laø höõu ích. Vaán ñeà<br /> naøy seõ ñöôïc xem xeùt trong phaàn keá tieáp baèng moät moâ hình kinh teá vó moâ ñôn. Tuy nhieân,<br /> keát luaän naøy ñöôïc toång quaùt hoùa cho nhöõng moâ hình vôùi nhieàu phöông trình.<br /> Xem xeùt moâ hình xaùc ñònh thu nhaäp noåi tieáng sau ñaây maø ñaõ ñöôïc trình baøy trong<br /> nhöõng khoaù hoïc ñaàu tieân veà kinh teá vó moâ:<br /> <br /> Ct = α + βYt + ut<br /> Yt = Ct + It<br /> Ramu Ramanathan<br /> <br /> 0
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
6=>0