intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Phương Sai Không Đồng Nhất

Chia sẻ: Truong Dung | Ngày: | Loại File: PPT | Số trang:16

258
lượt xem
9
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bản chất và hậu quả của phương sai không đồng nhất. Bản chất của phương sai không đồng nhất. Nguyên nhân của phương sai không đồng nhất. Hậu quả của phương sai không đồng nhất. Phương pháp bình phương bé nhất tổng quát. Phương pháp bình phương bé nhất có trọng số. Phương pháp bình phương bé nhất tổng quát. Các phương pháp phát hiện phương sai không đồng nhất Xem xét đồ thị phần dư. Kiểm định tương quan hạng Spearman. Kiểm định Goldfeld-Quandt. Kiểm định White.Kiểm định dựa vào biến phụ thuộc. Biện pháp khắc phục...

Chủ đề:
Lưu

Nội dung Text: Phương Sai Không Đồng Nhất

  1. PHƯƠNG SAI KHÔNG  ĐỒNG NHẤT  1
  2. Phương sai không đồng nhất Bản chất và hậu quả của phương sai không đồng   nhất Bản chất của phương sai không đồng nhất  Nguyên nhân của phương sai  không đồng nhất  Hậu quả của phương sai không đồng nhất  Phương pháp bình phương bé nhất tổng quát  Phương pháp bình phương bé nhất có trọng số  Phương pháp bình phương bé nhất tổng quát  Các phương pháp phát hiện phương sai không   đồng nhất Xem xét đồ thị phần dư  Kiểm định tương quan hạng Spearman  Kiểm định Goldfeld­Quandt  Kiểm định White  2 Kiểm định dựa vào biến phụ thuộc 
  3. Bản chất và hậu quả của PSKĐN Trong mô hình hồi qui tuyến tính, có giả thiết không tồn tại phương sai không đồng nhất. Vậy: Bản chất của hiện tượng này là gì?  Những nguyên nhân nào gây ra hiện tượng  này? Nếu vi phạm giả thiết này, thì hậu quả sẽ ra  sao? 3
  4. Bản chất Một giả thiết quan trọng trong mô hình hồi quy  tuyến tính cổ điển là phương sai có điều kiện của  mỗi phần  nhiễu ui với giá trị của biến giải thích  đã cho là không đổi nghĩa là:  ∀i = 1, n Var (u i /X i ) = E(u i2 ) = σ 2 Phương sai có điều kiện của ui thay đổi theo Xi  nghiã là Var (u i /X i ) = E(u i2 ) = σi2 4
  5. Nguyên nhân của PSKĐN Bản chất của mối liên hệ kinh tế giữa các biến kinh tế   Do kỹ thuật thu thập số liệu, phương sai sai số có xu   hướng giảm Do con người học được hành vi trong quá khứ  Do sự bất đối xứng trong phân phối của các biến có   trong mô hình Hiện tượng này còn do số liệu có những phần tử bất   thường  Hiện tượng này còn có thể xuất hiện khi chúng ta  sai   lầm trong chỉ định biến Ngoài ra, hiện tượng này còn do: việc đổi biến sai hay   dạng hàm của mô hình sai  5
  6. Hậu quả Các ước lượng bình phương bé nhất vẫn là  ước lượng không chệch nhưng không hiệu quả. Ước lượng của các phương sai bị chệch, do  đó các kiểm định mức ý nghĩa và khoảng tin cậy dựa theo phân phối T và F không còn đáng tin cậy nữa. 6
  7. Các phương pháp phát hiện PSKĐN Việc phát hiện phương sai không đồng nhất   không đơn giản. Chúng ta chỉ biết  khi có tài  liệu đầy đủ về σi2 tổng thể.  Không có một phương pháp chắc chắn để phát   hiện phương sai không đồng nhất mà chỉ có  phương pháp chẩn đoán. Ta xét một số phương pháp sau:  Xem xét đồ thị phần dư  Kiểm định tương quan hạng Spearman  Kiểm định Goldfeld­Quandt  Kiểm định White  Kiểm định dựa vào biến phụ thuộc 7 
  8. Phương pháp đồ thị Thực hiện hồi quy và tính các bình phương phần dư ûi2. Vẽ các ûi2 theo các Ŷi hay Xji. Quan sát đồ thị và có kết luận. ûi2 Xi(Ŷi) a b c d Trường hợp b, c, d: tồn tại phương sai không đồng nhất. 8
  9. Kiểm định Goldfeld­Quandt  Phương pháp này dùng để kiểm định cặp giả thuyết: H0: Phương sai đồng nhất σi2=σ2 H1:σi2 có tương quan dương với 1 biến giải thích  Qui tắc kiểm định, gồm các bước sau:  Sắp xếp các quan sát theo thứ tự tăng dần của biến X  nào đó, j Bỏ c quan sát ở giữa, phân chia số quan sát thành hai phần có số   quan sát tương ứng n1 và n2,  Thực hiện hồi quy theo OLS cho mỗi phần. Tính RSS1 cho mẫu đầu,   RSS2 cho mẫu sau. Sau đó tính: F=(RSS2/df2)/(RSS1/df1) Với với df1 = n1­k; df2 = n2­k  Nếu H0 đúng thì F~F(df2,df1) vậy: Nếu F > Fα(df2,df1): Bác bỏ H0 →Tồn tại PSKĐN.   Nếu F ≤ Fα(df2,df1): Chấp nhận H0 →Tồn tại PSKĐN 9
  10. Kiểm định White  Kiểm định White không đòi hỏi ui tuân theo phân phối chuẩn. Xét mô hình sau: Yi = β1 + β2 X2 + β3 X3+ ui  (5­1) σi2=α1+α2X2i+α3X3i+α4X2i2+α5X3i2+α6X2iX3i+vi Qui tắc kiểm định, gồm các bước:  Xây dựng cặp giả thuyết: H0: α1=…=α6=0 H1: Phương sai không đồng nhất. Thực hiện hồi qui (5.1), tính ûi2 và thực hiện hồi qui phụ  ûi2=α1+α2X2i+ α3X3i+α4X2i2+α5X3i2+α6X2iX3i+vi bằng OLS và tính  R2. Ta có nR2~χ2(df) với df là số các hệ số của hồi qui phụ không   kể số hạng chặn. Bác bỏ H0 nếu nR2 > χ2α(df): như vậy tồn tại PSK0 N 1Đ
  11. Kiểm định dựa vào biến phụ thuộc  Giả định σi2=α1+α2[E(Yi)]2 Trong thực hành, dùng ûi2 và Ŷi thay cho σi2 và E(Yi) Trình tự kiểm định như sau: Xây dựng cặp giả thuyết  H0: α2=0 và H1 α2≠ 0 Thực hiện hồi qui gốc bằng OLS, tính û 2 và Ŷ ,và thực  i i hiện hồi qui ûi2=α1+α2Ŷi2 bằng OLS. Tính R2. Ta có nR2 ~ χ2(1) Bác bỏ H  nếu  nR2 > χ2 (1)  0 α 11
  12. Biện pháp khắc phục Để khắc phục phương sai không đồng nhất, chúng ta  cần thực hiện một số biến đổi. Sự biến đổi phụ thuộc  vào mối quan hệ giữa σi2 với một biến giải thích nào  đó. Để hình dung, thực hiện phép biến đổi đối với mô  hình: Yi = β1 + β2X2 + ui     (5­2) Giả sử mô hình này thoả mãn các giả thiết của mô  hình hồi quy tuyến tính cổ điển ngoại trừ giả thiết  PSKĐN 12
  13. Trường hợp 1: Var(ui) =σi2 =σ2Xi  Trong trường hợp này ta thực hiện hồi quy  theo mô hình sau: Yi 1 = β1 +β 2 X i + vi (5 − 3) Xi Xi ui vi = và dễ thấy rằng Var (vi) = σ2  Xi Như vậy mô hình (5­3) thoả mãn đầy đủ các  giả thiết của mô hình hồi quy tuyến tính cổ  điển. Do đó có thể ước lượng mô hình (5­3)  bằng OLS . Dùng kết quả để suy ngược cho  mô hình (5­2)  13
  14. Trường hợp 2: Var(ui) =σi2 =σ2Xi2  Trong trường hợp này ta thực hiện hồi quy  theo mô hình sau: Yi 1 = β1 +β2 + v i (5 − 4) Xi Xi ui Trong  và dễ thấy rằng Var (vi) =σ2 vi = Xi đó: Như vậy mô hình (5­4) thoả mãn đầy đủ các  giả thiết của mô hình hồi quy tuyến tính cổ  điển.Do đó có thể ước lượng mô hình (5­4)  bằng OLS . Dùng kết quả để suy ngược cho  mô hình (5­2) 14
  15. Phép biến đổi để làm ổn định  phương sai tiếp Khi biến phụ thuộc có một  độ lệch chuẩn    so với trung bình của nó là lớn (hệ số biến  thiên, tình trạng hiện hành đối với các biến  kinh tế), một phép biến  đổi logarithmic nói  chung cho phép: Giảm  đi  sự  không  đồng  nhất  phương  sai  của   các sai số của mô hình Chuẩn hóa biến  15
  16. Phép biến đổi để làm ổn định  phương sai Nói  chung,  sự  ổn  định  của  phương  sai  làm   chuẩn hóa sự phân phối của biến Khi  phương  sai  của  các  phần  dư  (residues)   của mô hình tăng lên với giá trị của một biến  độc lập, một phép biến  đổi có thể là chia tất  cả mô hình ban đầu cho X: ε Y 1 Y ' = , X ' = , β '0 = β1 , β '1 = β 0 , ε ' = Điều  này  là  tương  đương  với  việc  áp  dụng  X X X  phương pháp bình phương bé nhất (WLS) 16
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2