Phương Sai Không Đồng Nhất
lượt xem 9
download
Bản chất và hậu quả của phương sai không đồng nhất. Bản chất của phương sai không đồng nhất. Nguyên nhân của phương sai không đồng nhất. Hậu quả của phương sai không đồng nhất. Phương pháp bình phương bé nhất tổng quát. Phương pháp bình phương bé nhất có trọng số. Phương pháp bình phương bé nhất tổng quát. Các phương pháp phát hiện phương sai không đồng nhất Xem xét đồ thị phần dư. Kiểm định tương quan hạng Spearman. Kiểm định Goldfeld-Quandt. Kiểm định White.Kiểm định dựa vào biến phụ thuộc. Biện pháp khắc phục...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Phương Sai Không Đồng Nhất
- PHƯƠNG SAI KHÔNG ĐỒNG NHẤT 1
- Phương sai không đồng nhất Bản chất và hậu quả của phương sai không đồng nhất Bản chất của phương sai không đồng nhất Nguyên nhân của phương sai không đồng nhất Hậu quả của phương sai không đồng nhất Phương pháp bình phương bé nhất tổng quát Phương pháp bình phương bé nhất có trọng số Phương pháp bình phương bé nhất tổng quát Các phương pháp phát hiện phương sai không đồng nhất Xem xét đồ thị phần dư Kiểm định tương quan hạng Spearman Kiểm định GoldfeldQuandt Kiểm định White 2 Kiểm định dựa vào biến phụ thuộc
- Bản chất và hậu quả của PSKĐN Trong mô hình hồi qui tuyến tính, có giả thiết không tồn tại phương sai không đồng nhất. Vậy: Bản chất của hiện tượng này là gì? Những nguyên nhân nào gây ra hiện tượng này? Nếu vi phạm giả thiết này, thì hậu quả sẽ ra sao? 3
- Bản chất Một giả thiết quan trọng trong mô hình hồi quy tuyến tính cổ điển là phương sai có điều kiện của mỗi phần nhiễu ui với giá trị của biến giải thích đã cho là không đổi nghĩa là: ∀i = 1, n Var (u i /X i ) = E(u i2 ) = σ 2 Phương sai có điều kiện của ui thay đổi theo Xi nghiã là Var (u i /X i ) = E(u i2 ) = σi2 4
- Nguyên nhân của PSKĐN Bản chất của mối liên hệ kinh tế giữa các biến kinh tế Do kỹ thuật thu thập số liệu, phương sai sai số có xu hướng giảm Do con người học được hành vi trong quá khứ Do sự bất đối xứng trong phân phối của các biến có trong mô hình Hiện tượng này còn do số liệu có những phần tử bất thường Hiện tượng này còn có thể xuất hiện khi chúng ta sai lầm trong chỉ định biến Ngoài ra, hiện tượng này còn do: việc đổi biến sai hay dạng hàm của mô hình sai 5
- Hậu quả Các ước lượng bình phương bé nhất vẫn là ước lượng không chệch nhưng không hiệu quả. Ước lượng của các phương sai bị chệch, do đó các kiểm định mức ý nghĩa và khoảng tin cậy dựa theo phân phối T và F không còn đáng tin cậy nữa. 6
- Các phương pháp phát hiện PSKĐN Việc phát hiện phương sai không đồng nhất không đơn giản. Chúng ta chỉ biết khi có tài liệu đầy đủ về σi2 tổng thể. Không có một phương pháp chắc chắn để phát hiện phương sai không đồng nhất mà chỉ có phương pháp chẩn đoán. Ta xét một số phương pháp sau: Xem xét đồ thị phần dư Kiểm định tương quan hạng Spearman Kiểm định GoldfeldQuandt Kiểm định White Kiểm định dựa vào biến phụ thuộc 7
- Phương pháp đồ thị Thực hiện hồi quy và tính các bình phương phần dư ûi2. Vẽ các ûi2 theo các Ŷi hay Xji. Quan sát đồ thị và có kết luận. ûi2 Xi(Ŷi) a b c d Trường hợp b, c, d: tồn tại phương sai không đồng nhất. 8
- Kiểm định GoldfeldQuandt Phương pháp này dùng để kiểm định cặp giả thuyết: H0: Phương sai đồng nhất σi2=σ2 H1:σi2 có tương quan dương với 1 biến giải thích Qui tắc kiểm định, gồm các bước sau: Sắp xếp các quan sát theo thứ tự tăng dần của biến X nào đó, j Bỏ c quan sát ở giữa, phân chia số quan sát thành hai phần có số quan sát tương ứng n1 và n2, Thực hiện hồi quy theo OLS cho mỗi phần. Tính RSS1 cho mẫu đầu, RSS2 cho mẫu sau. Sau đó tính: F=(RSS2/df2)/(RSS1/df1) Với với df1 = n1k; df2 = n2k Nếu H0 đúng thì F~F(df2,df1) vậy: Nếu F > Fα(df2,df1): Bác bỏ H0 →Tồn tại PSKĐN. Nếu F ≤ Fα(df2,df1): Chấp nhận H0 →Tồn tại PSKĐN 9
- Kiểm định White Kiểm định White không đòi hỏi ui tuân theo phân phối chuẩn. Xét mô hình sau: Yi = β1 + β2 X2 + β3 X3+ ui (51) σi2=α1+α2X2i+α3X3i+α4X2i2+α5X3i2+α6X2iX3i+vi Qui tắc kiểm định, gồm các bước: Xây dựng cặp giả thuyết: H0: α1=…=α6=0 H1: Phương sai không đồng nhất. Thực hiện hồi qui (5.1), tính ûi2 và thực hiện hồi qui phụ ûi2=α1+α2X2i+ α3X3i+α4X2i2+α5X3i2+α6X2iX3i+vi bằng OLS và tính R2. Ta có nR2~χ2(df) với df là số các hệ số của hồi qui phụ không kể số hạng chặn. Bác bỏ H0 nếu nR2 > χ2α(df): như vậy tồn tại PSK0 N 1Đ
- Kiểm định dựa vào biến phụ thuộc Giả định σi2=α1+α2[E(Yi)]2 Trong thực hành, dùng ûi2 và Ŷi thay cho σi2 và E(Yi) Trình tự kiểm định như sau: Xây dựng cặp giả thuyết H0: α2=0 và H1 α2≠ 0 Thực hiện hồi qui gốc bằng OLS, tính û 2 và Ŷ ,và thực i i hiện hồi qui ûi2=α1+α2Ŷi2 bằng OLS. Tính R2. Ta có nR2 ~ χ2(1) Bác bỏ H nếu nR2 > χ2 (1) 0 α 11
- Biện pháp khắc phục Để khắc phục phương sai không đồng nhất, chúng ta cần thực hiện một số biến đổi. Sự biến đổi phụ thuộc vào mối quan hệ giữa σi2 với một biến giải thích nào đó. Để hình dung, thực hiện phép biến đổi đối với mô hình: Yi = β1 + β2X2 + ui (52) Giả sử mô hình này thoả mãn các giả thiết của mô hình hồi quy tuyến tính cổ điển ngoại trừ giả thiết PSKĐN 12
- Trường hợp 1: Var(ui) =σi2 =σ2Xi Trong trường hợp này ta thực hiện hồi quy theo mô hình sau: Yi 1 = β1 +β 2 X i + vi (5 − 3) Xi Xi ui vi = và dễ thấy rằng Var (vi) = σ2 Xi Như vậy mô hình (53) thoả mãn đầy đủ các giả thiết của mô hình hồi quy tuyến tính cổ điển. Do đó có thể ước lượng mô hình (53) bằng OLS . Dùng kết quả để suy ngược cho mô hình (52) 13
- Trường hợp 2: Var(ui) =σi2 =σ2Xi2 Trong trường hợp này ta thực hiện hồi quy theo mô hình sau: Yi 1 = β1 +β2 + v i (5 − 4) Xi Xi ui Trong và dễ thấy rằng Var (vi) =σ2 vi = Xi đó: Như vậy mô hình (54) thoả mãn đầy đủ các giả thiết của mô hình hồi quy tuyến tính cổ điển.Do đó có thể ước lượng mô hình (54) bằng OLS . Dùng kết quả để suy ngược cho mô hình (52) 14
- Phép biến đổi để làm ổn định phương sai tiếp Khi biến phụ thuộc có một độ lệch chuẩn so với trung bình của nó là lớn (hệ số biến thiên, tình trạng hiện hành đối với các biến kinh tế), một phép biến đổi logarithmic nói chung cho phép: Giảm đi sự không đồng nhất phương sai của các sai số của mô hình Chuẩn hóa biến 15
- Phép biến đổi để làm ổn định phương sai Nói chung, sự ổn định của phương sai làm chuẩn hóa sự phân phối của biến Khi phương sai của các phần dư (residues) của mô hình tăng lên với giá trị của một biến độc lập, một phép biến đổi có thể là chia tất cả mô hình ban đầu cho X: ε Y 1 Y ' = , X ' = , β '0 = β1 , β '1 = β 0 , ε ' = Điều này là tương đương với việc áp dụng X X X phương pháp bình phương bé nhất (WLS) 16
CÓ THỂ BẠN MUỐN DOWNLOAD
-
thống kê II phân tích số liệu định lượng phần 9
19 p | 115 | 15
-
Bài giảng TÍNH TOÁN TRONG HẢI DƯƠNG HỌC - Chương 3
17 p | 97 | 13
-
Nâng cao chất lượng giảng dạy Đại số tuyến tính: Khắc phục tình trạng quên kiến thức và không tập trung học của sinh viên
7 p | 22 | 6
-
CHƯƠNG 3 - PHÂN TÍCH QUAN TRẮC DÒNG CHẢY VÀ THỦY TRIỀU3.1. PHÂN TÍCH CHUỖI QUAN
0 p | 107 | 6
-
Thực hành 6: Phương sai không bằng nhau (Heteroschedasticity)
10 p | 74 | 3
-
Hiệu chỉnh hiệu ứng matrix trong phân tích huỳnh quang tia X cho mẫu Cr-Fe-Ni bằng thuật toán Claisse-Quintin
12 p | 72 | 3
-
Phạm trù mô hình và tính duy nhất của phạm trù ổn định
8 p | 64 | 2
-
Thuật toán xác định mật độ giao thông đối với bài toán LWR không thuần nhất với điều kiện biên hỗn hợp
7 p | 29 | 2
-
Tính đến dị thường địa hình - đăng tĩnh khi xây dựng cơ sở dị thường trọng lực ở vùng núi cao
4 p | 21 | 2
-
Ứng dụng phân tích thống kê và công nghệ GIS xác định và khoanh vùng đồng nhất số liệu mưa năm vùng đông bằng sông Cửu Long
12 p | 17 | 2
-
Một cách tiếp cận độ tin cậy của kết cấu có đại lượng mờ và đại lượng ngẫu nhiên
9 p | 63 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn