intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

SKKN: Ứng dụng phép biến hình trong mặt phẳng giải các bài toán tìm tập hợp điểm

Chia sẻ: Nhi Nhi | Ngày: | Loại File: PDF | Số trang:29

281
lượt xem
56
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Toán hình học là một trong hai nội dung chủ đạo trong SKG môn Toán các lớp. Việc đưa các phép biến hình trong mặt phẳng vào giải các bài toán tập hợp điểm không chỉ nhằm cung cấp cho học sinh những công cụ mới để giải toán và cũng tập cho học sinh làm quen với các phương pháp tư duy và suy luận mới. Mời các bạn cùng tham khảo bài SKKN về hình học này nhé.

Chủ đề:
Lưu

Nội dung Text: SKKN: Ứng dụng phép biến hình trong mặt phẳng giải các bài toán tìm tập hợp điểm

  1. SÁNG KIẾN KINH NGHIỆM: “ỨNG DỤNG PHÉP BIẾN HèNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TèM TẬP HỢP ĐIỂM" Ứng dụng phép biến hình trong mặt phẳng giải các bài toán tìm tập hợp điểm Người thực hiện: Phạm Thị Bớch Ngọc 1 Tổ Toỏn - Tin Trường THPT Tiên Lữ
  2. SÁNG KIẾN KINH NGHIỆM: “ỨNG DỤNG PHÉP BIẾN HèNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TèM TẬP HỢP ĐIỂM" PHẦN MỞ ĐẦU 1. Lý do chọn đề tài Trong chương trình hình học ở bậc THPT chúng ta đã biết các phép biến hình trong mặt phẳng như phép đối xứng qua một đường thẳng, phép đối xứng qua một điểm,phép tịnh tiến,phép vị tự ,phép đồng dạng...,việc làm quen ,sử dụng và lại ứng dụng được nó là một điều hết sức khó khăn và học sinh rất ngại học phần này. Trong khi dạy học sinh ụn tập tôi đã chú trọng phân dạng và dạy cho học sinh những dạng toán cơ bản về phép biến hình,với những đối tượng học sinh học giỏi tôi mạnh dạn đưa và dạng toán ứng dụng phép biến hình trong mặt phẳng giải các bài toán tìm tập hợp điểm. 2. Mục đích nghiên cứu Nghiên cứu đề tài “ứng dụng phép biến hình trong mặt phẳng giải các bài toán tìm tập hợp điểm " nhằm giúp học sinh có thêm cách giải các bài toán về tập hợp điểm trong hình học.Có nhiều bài toán về tập hợp điểm khó khăn ( thậm chí cảm giác không tìm ra cách giải) dặc biệt là lời giải một cách tự nhiên nhất ,thì lại giải quyết một cách đơn giản bằng cách áp dụng phép biến hình .Phát huy kĩ năng giải toán ,phát triển tư duy lôgic cho học sinh đồng thời nâng cao chất lượng học tập của học sinh ,tạo được hứng thú học tập môn toán. 3. Nhiệm vụ nghiờn cứu - Phép biến hình trong mặt phẳng là khái niệm mới và khó nên học sinh ngại nghiên cứu tuy ứng dụng của nú rất lớn nhưng học sinh học trong thời gian ngắn nờn việc ỏp dụng thành thạo cỏc bài tập cơ bản đối với nhiều học sinh chưa được tốt. - Vỡ học sinh học phép biến hình chỉ nghĩ đơn thuần là nắm được định nghĩa và tớnh chất nờn khi ỏp dụng phộp biến hỡnh trong mặt phẳng vào giải cỏc bài toỏn tập hợp điểm, học sinh gặp nhiều khó khăn. Vậy ỏp dụng như thế nào và cú phổ biến trong mọi dạng toỏn hay khụng? Để giải quyết hết mọi vấn đề thỡ khú nhưng trong những dạng tôi đó dạy các em đó phần nào trả lời được cỏc cõu hỏi đó. 4. Đối tượng nghiên cứu Ứng phộp biến hỡnh trong mặt phẳng để giải cỏc bài toỏn tỡm tập hợp điểm trong chương trỡnh toỏn học THPT. 5. Phạm vi nghiờn cứu Người thực hiện: Phạm Thị Bớch Ngọc 2 Tổ Toỏn - Tin Trường THPT Tiên Lữ
  3. SÁNG KIẾN KINH NGHIỆM: “ỨNG DỤNG PHÉP BIẾN HèNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TèM TẬP HỢP ĐIỂM" Để thực hiện đề tài này, tôi dựa trên cơ sở các kiến thức của bộ môn toán trung học phổ thông, các tài liệu về phương pháp giảng dạy, các tài liệu bồi dưỡng học sinh luyện thi đại học ,cao đẳng và học sinh giỏi. 6. Phương pháp nghiờn cứu - Phương pháp nghiên cứu lý luận: Nghiờn cứu sỏch giỏo khao, sỏch tham khảo, cỏc tài liệu liờn quan khỏc,... - Phương pháp quan sát: Quan sát quá trỡnh dạy và học tại trường PTTH Tiờn Lữ - Phương pháp thực nghiệm sư phạm: Tổ chức một số tiết dạy. Người thực hiện: Phạm Thị Bớch Ngọc 3 Tổ Toỏn - Tin Trường THPT Tiên Lữ
  4. SÁNG KIẾN KINH NGHIỆM: “ỨNG DỤNG PHÉP BIẾN HèNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TèM TẬP HỢP ĐIỂM" PHẦN NỘI DUNG CHƯƠNG I: CƠ SỞ Lí LUẬN, THỰC TRẠNG VẤN ĐỀ I.1 Cơ sở lý luận của vấn đề Việc đưa các phép biến hỡnh trong mặt phẳng vào giải cỏc bài toỏn tỡm tập hợp điểm khụng chỉ nhằm cung cấp cho học sinh những cụng cụ mới để giải toỏn à cong tập cho học sinh làm quen với các phương pháp tư duy và suy luận mới, biết nhỡn nhận sự việc và cỏc hiện tượng xung quanh trong cuộc sống với sự vận động và biến đổi của chúng để nghiờn cứu, tỡm tũi, khỏm phỏ,tạo cơ sở cho sự ra đời của những phỏt minh và sỏng tạo trong tương lai. Ngoài ra có thể dựa vào một bài toỏn hỡnh học cụ thể về tỡm tập hợp điểm bằng phộp biến hỡnh ta cũn cú thể sỏng tạo ra các bài toán khác nhau và đây là một việc làm mang lại nhiều hứng thỳ trong việc tỡm tũi, nghiờn cứu hỡnh học. Hơn nữa việc lựa chọn cỏc cụng cụ thớch hợp cho mỗi loại toỏn hỡnh học khỏc nhau là một việc làm cần thiết giỳp chỳng ta tiết kiệm được thời gian và cụng sức để giải các bài toán đó một cỏch cú hiệu quả nhất. I.2 Thực trạng của vấn đề. Phộp biến hỡnh là khỏi niệm mới và khú nờn học sinh lười nghiờn cứu, tuy ứng dụng của nú rất lớn nhưng học sinh học trong thời gian ngắn nờn việc ỏp dụng thành thạo cỏc bài tập cơ bản đối với nhiều học sinh chưa được tốt. Trong quỏ trỡnh ụn tập cho học sinh tụi luụn quan tâm đến vấn đề này dạy cho học sinh hiểu bài khụng chỉ dạy lý thuyết mà phải cú ỏp dụng đi cùng. Khi chọn đề tài này đó phần nào giỳp học sinh thỏo gỡ việc nhận thức học phần phộp biến hỡnh và cú cụng cụ giải quyết được dạng bài tập về tập hợp điểm. Người thực hiện: Phạm Thị Bớch Ngọc 4 Tổ Toỏn - Tin Trường THPT Tiên Lữ
  5. SÁNG KIẾN KINH NGHIỆM: “ỨNG DỤNG PHÉP BIẾN HèNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TèM TẬP HỢP ĐIỂM" CHƯƠNG II DÙNG PHÉP BIẾN HÌNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TÌM TẬP HỢP ĐIỂM I. Phép biến hình - Phép tịnh tiến và phộp dời hình: 1. Phộp biến hỡnh là một quy tắc để với mỗi điểm M trên mặt phẳng có thể xác định được một điểm duy nhất M' thuộc mặt phẳng  2. Phép tịnh tiến theo vectơ u là phộp biến hỡnh biến điểm M thành điểm M' sao cho    MM '  u 3. Tính chất cơ bản của phép tịnh tiến: Phép tịnh tiến không làm thay đổi khoảng cách giữa hai chất điểm bất kỡ. 4. Phộp dời hỡnh là phộp biến hỡnh khụng làm thay đổi khoảng cách giữa hai điểm bất kỡ. Phộp tịnh tiến là một phộp dời hỡnh. 5. Phộp dời hỡnh cú tớnh chất: Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự ba điểm đó, biến đường thẳng thành đường thẳng, biến đoạn thẳng thành đoạn thẳng bằng nó, biến tia thành tia, biến tam giác thành tam giác bằng nó, biến góc thành góc bằng nó, biến đường trũn thành đường trũn cú cựng bỏn kớnh. 6. Cho hai phộp dời hỡnh F và G, giả sử M là điểm phép biến hỡnh F biến điểm M thành điểm M' và phép biến hỡnh G biến M' thành M". Khi đó phép biến hỡnh biến điểm M thành điểm M" được gọi là hợp thành của phép F và phép G. II. Phép đối xứng trục: 1. Phép đối xứng qua đường thẳng a là phép biến hỡnh biến mỗi điểm M thành điểm M' đối xứng với M qua đường thẳng a. Phép đối xứng qua đường thẳng a cũn gọi là phộp đối xứng trục. Đường thẳng a gọi là trục của phép đối xứng. 2. Phép đối xứng trục là một phép dời hỡnh. 3. Trục đối xứng của hỡnh H là đường thẳng mà phép đối xứng qua đường thẳng đó biến hỡnh H thành hỡnh H. III. Phép quay và phép đối xứng tâm: 1. Trong mặt phẳng, cho điểm O và góc lượng giác  . Phộp quay Q  0;   tõm O gúc quay  là phộp dời hỡnh biến điểm O thành chính nó và biến mỗi điểm M khác O thành điểm M' sao cho OM=OM' và (OM, OM')=  2. Phộp quay là một phộp dời hỡnh 3. Khi  =  thỡ phộp quay Q(O,  ) gọi là phép đối xứng qua điểm O, kí hiệu Đ0. Phép đối xứng qua điểm O cũn gọi là phộp đối xứng tâm.      Phép đối xứng qua điểm O biến mỗi điểm M thành điểm M' sao cho OM  OM '  0 Người thực hiện: Phạm Thị Bớch Ngọc 5 Tổ Toỏn - Tin Trường THPT Tiên Lữ
  6. SÁNG KIẾN KINH NGHIỆM: “ỨNG DỤNG PHÉP BIẾN HèNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TèM TẬP HỢP ĐIỂM" IV. Hai hỡnh bằng nhau: 1. Nếu ABC và A'B'C' là hai tam giỏc bằng nhau thỡ cú phộp dời hỡnh biến tam giỏc này thành tam giỏc kia 2. Hai hỡnh H và H' gọi là bằng nhau nếu cú phộp dời hỡnh biến hỡnh này thành hỡnh kia. V. Phép vị tự - Phép đồng dạng: 1. Phộp vị tự V(O;k) với tõm O, tỉ số k (k  0) là phộp biến hỡnh biến mỗi điểm M thành     điểm M' sao cho OM '  kOM 2. Phép vị tự tỉ số k biến đường thẳng thành đường thẳng song song ( hoặc trùng) với đường thẳng đó, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng mà độ dài được nhân lên với |k|, biến tam giác thành tam giác đồng dạng với tỉ số đồng dạng là |k|, biến góc thành góc bằng nó. 3. Phép vị tự biến đường trũn cú bỏn kớnh R thành đường trũn cú bỏn kớnh |k|R. 4. Tâm vị tự của hai đường trũn: đó là tâm của phép vị tự V biến đường trũn này thành đường trũn kia. Tõm vị tự đó gọi là tâm vị tự ngoài hay tâm vị tự trong tùy theo tỉ số của phép vị tự là dương hay âm. Hai đường trũn cú bỏn kớnh khỏc nhau thỡ cú một tâm vị từ ngoài và một tâm vị tự trong. Hai đường trũn cú bỏn kớnh bằng nhau ( tõm khỏc nhau) thỡ chỉ cú tõm vị tự trong, đó chính là trung điểm đoạn thẳng nối tâm hai đường trũn. 5. Phép đồng dạng tỉ số k ( k>0) là phép biến hỡnh biến hai điểm tùy ý M, N thành hai điểm M’, N’ sao cho M’N’=kMN 6. Mọi phép đồng dạng F tỉ số k là hợp thành của một phép vị tự V tỉ số k và một phép dời hỡnh D. 7. Hai hỡnh gọi là đồng dạng với nhau nếu có một phép đồng dạng biến hỡnh này thành hỡnh kia. Người thực hiện: Phạm Thị Bớch Ngọc 6 Tổ Toỏn - Tin Trường THPT Tiên Lữ
  7. SÁNG KIẾN KINH NGHIỆM: “ỨNG DỤNG PHÉP BIẾN HèNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TèM TẬP HỢP ĐIỂM" CHƯƠNG III ÁP DỤNG A. Tỡm tập hợp điểm bằng phép tịnh tiến Tu  Phương pháp: 1. Xác định phép tịnh tiến Tu biến điểm M thành M'  2. Tỡm quỹ tớch điểm M 3. Từ quỹ tích của điểm M, dựa vào tính chất của phép tịnh tiến để suy ra quỹ tích của điểm M' Bài toỏn 1: Cho đường trũn (O) và hai điểm A, B. Một điểm M thay đổi trên đường trũn (O). Tỡm quỹ tớch điểm M’ sao cho:     MM '  MA  MB       Giải: Ta cú MM '  MB  MA  AB   Phộp tịnh tiến T theo vecto AB biến M thành M’     Gọi O’ là ảnh của O qua phộp tịnh tiến T, tức là OO '  AB thỡ quỹ tớch M' là đường trũn O' cú bỏn kớnh bằng bỏn kớnh đường trũn (O). Bài toỏn 2: Cho đường trũn (O) với đường kính AB cố định, một đường kính MN thay đổi. Các đường thẳng AM và AN cắt tiếp tuyến tại B lần lượt tại P và Q. Tỡm quỹ tớch trực tõm cỏc tam giỏc MPQ và NPQ? Giải MPQ có QA là một đường cao ( vỡ QA  MP ). Kẻ MM'  PQ thỡ MM' cắt QA tại trực tõm H của MPQ , đoạn đường thẳng OA là đường trung       bỡnh của NMH nờn MH  2OA  BA   Vậy phộp tịnh tiến T theo BA biến M thành H. ( M khụng trựng A; M khụng trựng B)  Quỹ tớch H là ảnh của đường trũn (O) ( không kể hai điểm A và B) qua phép tịnh tiến đó. Làm tương tự đối với trực tâm H' của NPQ Bài toỏn 3:       Cho ABC , với mỗi điểm M ta dựng điểm N thỏa món: MN  MA  2 MB  3MC . Tỡm tập hợp điểm N, khi M thay đổi trên một đường thẳng d. Giải Người thực hiện: Phạm Thị Bớch Ngọc 7 Tổ Toỏn - Tin Trường THPT Tiên Lữ
  8. SÁNG KIẾN KINH NGHIỆM: “ỨNG DỤNG PHÉP BIẾN HèNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TèM TẬP HỢP ĐIỂM"              MN  MA  2 MB  3MC  MN  2 AB  3 AC  AE     Ta cú AE là một vecto xác định  N là ảnh của M qua phộp tịnh tiến theo AE . Vỡ M thuộc d, nờn N thuộc d’ là ảnh của d qua phép tịnh tiến đó. Tập hợp N là cả đường thẳng d’. Bài toỏn 4: Cho ABC cố định có trực tâm H. Vẽ hỡnh thoi BCDE, từ D và E vẽ cỏc đường thẳng vuông góc với AB và AC. Các đường thẳng này cắt nhau tại điểm M. Tỡm quỹ tớch của điểm M. Giải Tứ giỏc BCDE là hỡnh thoi nờn BC=CD, BC//ED. H là trực tõm ABC nờn BH  AC , ME  AC  BH // ME. Suy ra HBC  MED Tương tự: HC//DM và BC//ED  HCB  MDE    Suy ra: HBC  MDE  CH  DM  Phộp tịnh tiến TCH  D   M  Ta có BC=CD nên điểm D chạy trên đường trũn (C) tõm C, bỏn kớnh R=BC  điểm M thuộc đường trũn tõm H, bán kính R=BC là ảnh của đường trũn (C) qua phộp tịnh tiến TCH  Bài toàn 5 ABC cú A  900 . Từ điểm P thay đổi trên cạnh huyền BC của ABC vẽ các đường vuông góc PR, PQ với cỏc cạnh vuụng AB, AC ( R  AB, Q  AC). Tỡm quỹ tớch trung điểm M của đoạn thẳng RQ. Giải Dựng hỡnh chữ nhật ABSQ Ta cú PR  AB, PQ  AC và RA  AQ  ARPQ là hỡnh chữ nhật. Suy ra RBSP là hỡnh chữ nhật. 1 Gọi N là trung điểm cạnh BP thỡ MN//SQ và MN= SQ 2 1  MN//BA và MN= BA 2  1      Đặt u  BA  NM  u . Phộp tịnh tiến Tu : N  M  2 Khi P  C thỡ N  D là trung điểm cạnh BC Người thực hiện: Phạm Thị Bớch Ngọc 8 Tổ Toỏn - Tin Trường THPT Tiên Lữ
  9. SÁNG KIẾN KINH NGHIỆM: “ỨNG DỤNG PHÉP BIẾN HèNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TèM TẬP HỢP ĐIỂM" Khi P thay đổi trên cạnh huyền BC thỡ N cũng thay đổi trên đoạn thẳng BD thuộc cạnh huyền BC. Tu : B  B1 và Tu : D  N1 thỡ B1 và N1 là trung điểm cạnh AB, AC. Suy ra quỹ tích của điểm   M là đoạn thẳng B1N1. B. Tỡm tập hợp điểm bằng phép đối xứng Đa Phương pháp: 1. Xác định phép đối xứng Đa biến điểm M thành M' 2. Tỡm quỹ tớch điểm M 3. Từ quỹ tích của ddierm M, dựa vào tính chất của phép đối xứng trục để suy ra quỹ tích điểm M' Bài toỏn 6: Cho đường trũn (O;R) và hai điểm A, B cố định. Với mỗi điểm M ta xác định điểm M' sao cho     MM '  MA  MB . Tỡm quỹ tớch điểm M' sao cho M chạy trờn (O;R). Giải Gọi I là trung điểm của AB         thi I cố định và MA  MB  2MI , MM '  MA  MB      MM '  2 MI  MM ' nhận I làm trung điểm hay phép đối xứng tâm ĐI biến điểm M thành M'. Vậy khi M chạy trên đường trũn (O;R) thỡ quỹ tớch điểm M' là ảnh của đường trũn qua ĐI. Nếu ta gọi O' là điểm đối xứng của O qua điểm I thỡ quỹ tớch của M' là đường trũn (O';R). Bài toỏn 7: Cho đường trũn (O) và ABC . Một điểm M thay đổi trên đường trũn (O). Gọi M 1 là điểm đối xứng của M qua A. M2 là điểm đối xứng của M1 qua B, M3 là điểm đối xứng của M2 qua C. Tỡm quỹ tớch điểm M3. Giải Gọi D là trung điểm của MM3 thỡ ABCD là hỡnh bỡnh hành  điểm D cố định. Vỡ phộp đối xứng qua điểm D biến M thành M3 nờn quỹ tớch M3 là ảnh của đường tũn (O) qua phộp đối xứng đó. Bài toỏn 8 Cho đoạn thẳng BC cố định và số k>0. Với mỗi điểm A ta xác định điểm D sao cho     AD  AB  AC . Tỡm tập hợp điểm D khi A thay đổi thỏa món điều kiện AB 2  AC 2  k Người thực hiện: Phạm Thị Bớch Ngọc 9 Tổ Toỏn - Tin Trường THPT Tiên Lữ
  10. SÁNG KIẾN KINH NGHIỆM: “ỨNG DỤNG PHÉP BIẾN HèNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TèM TẬP HỢP ĐIỂM" Giải      Gọi I là trung điểm của BC, khi đó 2AI  AB  AC  AD  I là trung điểm của AD. Phép đối xứng qua I biến A thành D. Tập hợp điểm A thỏa món điều kiện đó cho là một đường trũn hoặc một điểm hoặc rỗng. Vậy tập hợp điểm D là đường trũn hoặc một điểm hoặc tập rỗng. Bài toỏn 9 Cho hai điểm cố định A, B và số a>0. Xét các đường elip (E) đi qua A, nhận B là tâm đối xứng và có độ dài trục lớn là 2a. Tỡm tập hợp cỏc tiờu điểm của (E). Giải Gọi F1, F2 là hai tiêu điểm của (E). Với A’ đối xứng với A qua B, khi đó ta có: A'F1  AF1  A'F1  AF1  2a . Vậy tập hợp các tiêu điểm là một elip nhận A, A’ làm các tiêu điểm và có độ dài trục lớn là 2a. Bài toỏn 10 Cho ba điểm A, B, C cố định trên đường trũn (O) và điểm M thay đổi trên (O). Gọi M1 đối xứng với M qua A, M 2 đối xứng M1 qua B, M3 đối xứng với M2 qua C. Tỡm quỹ tớch của điểm M3. Giải Gọi D là trung điểm của M và M1 thỡ AD là đường trung 1 bỡnh của MM 1 M 3  AD//M1M3 và AD  M 1M 3 1 2 Ta có BC là đường trung bỡnh của 1 M 1M 2 M 3  BC//M1M3 và BC= M 1M 3  2 2 Từ (1), (2) ta cú AD//BC, AD=BC nờn ABCD là hỡnh bỡnh hành Ta có A, B, C cố định nên D cố định. Xét phép đối xứng tâm D là ĐD ĐD: M  M 3 điểm M chạy trên đường trũn (O) nên điểm M3 chạy trên đường trũn (O') Với (O') là ảnh của đường trũn (O) qua phộp đối xứng tâm D. Vậy quỹ tích các điểm M3 là đường trũn (O'). Bài toỏn 11 Cho hai điểm A, B cố định. Với mỗi đường thẳng đi qua B ta dựng điểm A’ đối xứng với A qua d. Tỡm tập hợp A’ đi qua d quay quanh B. Giải Gọi H là giao điểm của d với AA’, ta có BH  AA' . Người thực hiện: Phạm Thị Bớch Ngọc 10 Tổ Toỏn - Tin Trường THPT Tiên Lữ
  11. SÁNG KIẾN KINH NGHIỆM: “ỨNG DỤNG PHÉP BIẾN HèNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TèM TẬP HỢP ĐIỂM" Gọi C là điểm đối xứng với A qua B, khi đó A ' C //d, C cố định và A ' C  A ' A  A’ nằm trên đường trũn đường kính AC. Đảo lại nếu A’ là điểm nằm trên đường trũn đường kính AC thỡ đường thẳng d đi qua B và trung điểm của AA’ là trục đối xứng của hai điểm A và A’. Bài toỏn 12: Cho elip có hai tiêu điểm F1 và F2. Xét đường thẳng d có một điểm chung duy nhất M với elip và F’ là điểm đối xứng với F2 qua d. Tỡm tập hợp F khi d thay đổi. Giải Kí hiệu 2a là độ dài trục lớn của (E), theo định nghĩa MF1+MF2=2a. Vỡ F’ đối xứng với F2 qua d khi đó MF1+MF’= MF1+MF2=2a. Điều đó chứng tỏ M nằm trên đường thẳng F1F’ và tập hợp điểm F là một đường trũn tõm F1, bỏn kớnh bằng 2a. Bài toàn 13: Cho đường trũn (O;R) và hai điểm A, B thuộc đường trũn. Đường trũn (I,r) tiếp xỳc ngoài với đường trũn (O;R) tại A. Một điểm M di động trên đường trũn (O;R), tia MA cắt đường trũn (I,r) tại điểm thứ hai C. Qua C vẽ đường thẳng song song với AB cắt đường thẳng MB tại D. Tỡm quỹ tớch của điểm D. Giải Gọi E là giao điểm của CD với (I;r) Vẽ tiếp tuyến chung của (O;R) và (I;r) là xt Ta cú ABM  xAM ; CEA=tAC và xAM  tAC ABM  EDB do (CD//AB)  CEA  EDB nờn tứ giỏc ABDE là hỡnh thang cõn Gọi d là đường trung trực đoạn thẳng AB thi d cũng là đường trung trực của đoạn ED Phép đối xứng Đd: E  D Khi M di động trên đường trũn (O;R) thỡ E di động trên đường trũn (I;r) nờn quỹ tớch điểm D là đường trũn (I';r) ảnh của đường trũn (I;r) qua phộp đối xứng Đd. Do đường trũn (I;r) tiếp xỳc với đường trũn (O;R) tại A nờn đường trũn (I';r) tiếp xỳc với đường trũn (O;R) tại B. Bài toỏn 14 Cho đường trũn (O) cú dõy cung BC cố định và điểm A di động trên đường trũn (O). Tỡm quỹ tớch trực tõm H của  ABC. Giải Ta cú: HAC  CBH ( góc có cạnh tương ứng vuông góc) Người thực hiện: Phạm Thị Bớch Ngọc 11 Tổ Toỏn - Tin Trường THPT Tiên Lữ
  12. SÁNG KIẾN KINH NGHIỆM: “ỨNG DỤNG PHÉP BIẾN HèNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TèM TẬP HỢP ĐIỂM" HAC  KBC (cựng chắn cung KC ) Suy ra: CBH  CBK nờn BC là phõn giỏc gúc KBH Mặt khỏc AI  BC Suy ra  BHK cõn tại B  HI=IK Phép đối xứng trục BC là ĐBC: K  H Khi A chạy trên đường trũn (O) thỡ K cũng chạy trên đường trũn (O) Quỹ tích điểm H là đường trũn (O), ảnh của đường trũn (O) qua phộp đối xứng trục BC Người thực hiện: Phạm Thị Bớch Ngọc 12 Tổ Toỏn - Tin Trường THPT Tiên Lữ
  13. SÁNG KIẾN KINH NGHIỆM: “ỨNG DỤNG PHÉP BIẾN HèNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TèM TẬP HỢP ĐIỂM" C. Tỡm tập hợp điểm bằng phương pháp quay Q  O;  : Phương pháp: 1. Xác định phép quay biến điểm M thành M' 2. Xác định quỹ tích của điểm M 3. Dựa vào tính chất phép quay để tỡm quỹ tớch của điểm M' Bài toỏn 15 Cho đường trũn (O) và một điểm I không nằm trên đường trũn. Với mỗi điểm A thay đổi trên đường trũn, ta xột hỡnh vuụng ABCD cú tõm là I. Tỡm quỹ tớch cỏc điểm B, C, D Giải Phép đối xứng qua điểm I biến A thành C. Vậy quỹ tích C là đường trũn đối xứng với (O) qua I. Phộp quay Q tõm I gúc quay 900 biến A thành B( hoặc thành D), phộp quay Q' tõm I gúc quay - 900 biến A thành D ( hoặc thành B). Vậy quỹ tớch B và D là ảnh của (O) qua hai phộp quay đó. Bài toỏn 16 Cho đường thẳng a và một điểm G không nằm trên a. Với mỗi điểm A nằm trên đường thẳng a ta dựng tam giác đều ABC có tâm là G. Tỡm quỹ tớch hai điểm B và C khi A chạy trên a. Giải 0 Phộp quay tõm G gúc quay 120 biến A thành B ( hoặc C) Phộp quay tõm G gúc quay 2400 biến A thành C ( hoặc B) Vậy quỹ tích B và C là ảnh của đường thẳng a qua hai phép quay nói trên. Bài toỏn 17 Cho đường thẳng d, điểm A cố định không nằm trên d. Với mỗi điểm B  d ta dựng tam giỏc đều ABC. Tỡm tập hợp điểm C khi B thay đổi trên đường thẳng d. Giải Từ điều kiện bài toán ta suy ra C là ảnh của B qua phép quay tâm A với góc quay 600. Tập hợp điểm C là ảnh của d qua phép quay đó. Bài toỏn 18 Cho điểm I cố định. Mọi M, M' là hai điểm sao cho  IMM' vuụng cõn tại I. a) Cho điểm M chạy trên đường trũn (O). Tỡm quỹ tớch cỏc điểm M' b) Cho điểm M chạy trên đường thẳng d. Tỡm quỹ tớch cỏc điểm M' . Gọi H là hỡnh chiếu của I xuống MM'. Tỡm quỹ tớch cỏc điểm H. Người thực hiện: Phạm Thị Bớch Ngọc 13 Tổ Toỏn - Tin Trường THPT Tiên Lữ
  14. SÁNG KIẾN KINH NGHIỆM: “ỨNG DỤNG PHÉP BIẾN HèNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TèM TẬP HỢP ĐIỂM" Giải  IMM' vuụng cõn tại I nờn IM=IM' và  IM , IM '   900 Suy ra M' là ảnh của M qua phộp quay tõm I, gúc quay 900. Tức là Q(I,900): M  M ' a) Khi M   O  Q(I,900): O  O '  Q(I,90 0): (O)  (O ') Suy ra M '   O '  Vậy quỹ tích điểm M' là đường trũn (O') ảnh của đường trũn (O) qua phộp quay Q(I,900) b) Khi M  d Gọi J là hỡnh chiếu vuụng gúc của I lờn d Q(I,900): J  J '  Q(I,90 0): d  d ' và d '  IJ ' tại J', d  d ', M  d  M  d ' Vậy quỹ tích điểm M' là đường thẳng d' đi qua J' và vuông góc với d. * Tỡm quỹ tớch điểm H: Kẻ IH  MM '  MIH  450 ( Do  IMM' vuụng cõn tại I ) Suy ra tứ giác IJMH nội tiếp đường trũn đường kính MI  MJH  MIH  450 ( cựng chắn cung MH ) Ta cú MJJ '  450 (JJ' là đường chéo hỡnh vuụng OJIJ')  MJH  MJJ ' . Hai điểm H và J' nằm cùng phía đối với đường thẳng d nên H  JJ ' . Quỹ tích của điểm H là đường thẳng JJ'. Người thực hiện: Phạm Thị Bớch Ngọc 14 Tổ Toỏn - Tin Trường THPT Tiên Lữ
  15. SÁNG KIẾN KINH NGHIỆM: “ỨNG DỤNG PHÉP BIẾN HèNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TèM TẬP HỢP ĐIỂM" D. Tỡm tập hợp điểm bằng phép vị tự: Phương phỏp: 1. Xác định phép vị tự biến điểm M thành điểm M' 2. Tỡm quỹ tớch của điểm M 3. Dựa vào tính chất của phép vị tự để tỡm quỹ tớch của điểm M' Bài toỏn 19 Tam giác ABC có bán kính B, C cố định cũn đỉnh A chạy trên một đường trũn (O;R) cố định không có điểm chung với đường thẳng BC. Tỡm quỹ tớch trọng tõm G của ABC Giải Gọi I là trung điểm của BC thỡ I cố định  1   Điểm G là trọng tâm ABC khi và chỉ khi IG  IA 3 1 Phộp vị tự tõm I tỉ số biến điểm A thành điểm G. 3 Khi A chạy trờn (O;R) thỡ quỹ tớch g là ảnh của đường trũn đó qua phép vị tự V, tức là đường trũn (O',R') mà  1   1 IO '  IO và R '  R 3 3 Bài toỏn 20 Cho đường trũn (O;R) và điểm I cố định khác O. Một điểm M thay đổi trên đường trũn. Tia phõn giỏc của gúc MOI cắt IM tại N. Tỡm quỹ tớch điểm N. Giải Đặt IO=d ( d  0). Theo tớnh chất tia phõn giỏc của MOI ta cú: IN IO d   NM OM R IN d IN d Suy ra    IN  NM d  R IM d  R     d  Hai vecto IN và IM cùng hướng nên IN  IM dR d Gọi V là phộp vị tự tõm I tỉ số k  thỡ V biến điểm M dR thành điểm N. Khi M ở vị trí M0 trên đường trũn (O;R) sao cho IOM 0  00 thỡ tia phõn giỏc của gúc IOM 0 cắt IM. Điểm N không tồn tại. Vậy khi M chạy trên (O;R) (M không trùng M0) thỡ quỹ tớch điểm N là ảnh của (O;R) qua phép vị tự V bỏ đi ảnh của điểm M 0. Bài toỏn 21 Người thực hiện: Phạm Thị Bớch Ngọc 15 Tổ Toỏn - Tin Trường THPT Tiên Lữ
  16. SÁNG KIẾN KINH NGHIỆM: “ỨNG DỤNG PHÉP BIẾN HèNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TèM TẬP HỢP ĐIỂM" Cho đường trũn (O) cú đường kính AB. Gọi C là điểm đối xứng với A qua B và PQ là đường kính thay đổi của (O) khác đường kính AB. Đường thẳng CQ cắt PA và PB lần lượt tại M và N. a) CMR: Q là trung điểm của CM, N là trung điểm của CQ b) Tỡm quỹ tớch cỏc điểm M và N khi đường kính PQ thay đổi. Giải a) QB//AP ( vỡ cựng vuụng gúc với PB) và B là trung điểm của AC nên Q là trung điểm của CM. AQ//BN ( vỡ cựng vuụng gúc với AP) và B là trung điểm của AC nên N là trung điểm của CQ.    b) CM  2CQ  Phộp vị tự V tõm C tỉ số 2 biến Q thành M. Vỡ Q chạy trờn đường trũn (O) ( trừ hai điểm A, B) nên quỹ tích M là ảnh của đường trũn đó qua phép vị tự V ( trừ ảnh của A,  1  1 B), CN  CQ  Quỹ tích N là ảnh của đường trũn (O) qua phộp vị tự V tõm C, tỉ số ( trừ 2 2 ảnh của A, B). Bài toỏn 22 Cho đường trũn (O;R) và điểm A cố định. Một dây cung BC thay đổi của (O;R) có độ dài       không đổi, BC=m. Tỡm quỹ tích các điểm G sao cho GA  GB  GC  0 Giải Gọi I là trung điểm của BC        2  GA  GB  GC  0  AG  AI 3 2  Phộp vị tự V tõm A tỉ số biến điểm I thành điểm G 3 m2 vuụng OIB: OI= OB 2  IB 2  R 2   R ' ( không đổi) 4 Nên quỹ tích I là đường trũn (O;R’) hoặc là điểm O ( nếu m=2R). Do đó quỹ tích G là ảnh của quỹ tích I qua phép vị tự V. Bài toỏn 23 Cho hai đường trũn (O) và (O') cắt nhau tại A và B. Một đường thẳng thay đổi đi qua A cắt (O) ở A và M, cắt (O') tại A và M'. Gọi P và P' lền lượt là trung điểm của AM và AM'. Người thực hiện: Phạm Thị Bớch Ngọc 16 Tổ Toỏn - Tin Trường THPT Tiên Lữ
  17. SÁNG KIẾN KINH NGHIỆM: “ỨNG DỤNG PHÉP BIẾN HèNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TèM TẬP HỢP ĐIỂM" a) Tỡm quỹ tớch trung điểm I của đoạn thẳng PP' b) Tỡm quỹ tớch trung điểm I của đoạn thẳng MM' Giải a) Gọi Q là trung điểm của OO' thỡ QI  IA  Quỹ tích I là đường trũn đường kính AQ b) Vỡ J là trung điểm MM' nên  1            AJ  AM  AM '  AP  AP '  2 AI 2 Vậy phép vị tự tâm A tỉ số 2 biến điểm I thành điểm J Do đó quỹ tích J là ảnh của đường trũn đường kính AQ qua phép vị tự đó. Bài toỏn 24 Cho đường trũn (O) và một điểm P nằm trong đường trũn đó. Một đường thẳng thay đổi đi       qua P, cắt (O) tại điểm A và B. Tỡm quỹ tớch điểm M sao cho PM  PA  PB Giải Gọi I là trung điểm của đoạn AB  1               PI  PA  PB do đó PM  PA  PB  2 PI 2 Gọi V là phộp vị tự tõm P tỉ số k =2 thỡ V biến điểm I thành điểm M Vỡ I là trung điểm của AB nên OI  AB . Suy ra quỹ tích điểm I là đường trũn (C) đường kính PO. Vậy quỹ tích điểm M là đường trũn (C') ảnh của (C) qua phộp vị tự V. Nếu O' là điểm sao cho     PO '  2 PO thỡ (C') là đường trũn đường kính PO' Bài toỏn 25 Cho tam giác ABC và đường thẳng d. Với mỗi điểm M thuộc d ta xác định điểm N sao       cho MN  MA  2MB  3MC . Tỡm tập hợp điểm N, khi điểm M thay đổi trờn d. Giải       Gọi I là điểm có tính chất: IA  2 IB  3IC  0        I là điểm cố định. Vỡ vậy MN  6MI  IN  5IM  N là ảnh của M qua phộp vị tự tõm I, tỉ số k=-5 Vậy tập hợp N là đường thẳng d’ nhận được từ d qua phép vị tự đó. Bài toỏn 26 Người thực hiện: Phạm Thị Bớch Ngọc 17 Tổ Toỏn - Tin Trường THPT Tiên Lữ
  18. SÁNG KIẾN KINH NGHIỆM: “ỨNG DỤNG PHÉP BIẾN HèNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TèM TẬP HỢP ĐIỂM" ABC và điểm M thuộc cạnh AB. Qua M vẽ các đường thẳng song song với trung tuyến AA1 và BB1 cắt BC, CA tại P và Q. Tỡm quỹ tớch cỏc điểm S sao cho tứ giác MPSQ là hỡnh bỡnh hành. Giải Gọi E, F lần lượt là giao điểm của MQ, MP với AA1, BB1. G là trọng tõm ABC . Khi đó: ME MQ ME BG 2  2        ME  MQ BG BB1 MQ BB1 3 3  2  Tương tự MF  MP 3      2  2  2     MG  ME  EG  ME  MF  MQ  MP  MG 3 3 3   1    GS   GM 2 1 Suy ra S là ảnh của M qua phộp vị tự tõm G, tỉ số k=  . Khi M thuộc cạnh AB thỡ S thuộc 2  1 đoạn A1B1 là ảnh của AB qua V  G;    2 Vậy quỹ tích S là đoạn thẳng A1B1. Bài toỏn 27 Gọi P, Q, R là các điểm đối xứng với điểm M qua trung điểm cỏc cạnh của ABC a) Chứng minh rằng các đoạn thẳng AP, BQ, CR cắt nhau tại trung điểm I của chúng b) Khi M chạy trên đường trũn ngoại tiếp ABC , tỡm quỹ tớch điểm I. Giải         a) Ta cú MP  2 MJ , MQ  2MK , MR  2 ML  V  M ; 2  : JKL  PQR  1 Gọi G là trọng tõm ABC thỡ V  G;   : ABC  PQR  2  1 mà V  M ; 2  .V  G;   =V(1;-1)  2 Suy ra I là trung điểm các đoạn thẳng AP, BQ, CR b) Ta cú G, M và I thẳng hàng  1    MI cắt AJ tại G  G là trọng tõm AMP  GI   GM 2 Người thực hiện: Phạm Thị Bớch Ngọc 18 Tổ Toỏn - Tin Trường THPT Tiên Lữ
  19. SÁNG KIẾN KINH NGHIỆM: “ỨNG DỤNG PHÉP BIẾN HèNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TèM TẬP HỢP ĐIỂM"  1  V  G;   : M  I  2 M thuộc đường trũn (O) ngoại tiếp ABC nên quỹ tích các điểm I là đường trũn (O) ngoại tiếp JKL Người thực hiện: Phạm Thị Bớch Ngọc 19 Tổ Toỏn - Tin Trường THPT Tiên Lữ
  20. SÁNG KIẾN KINH NGHIỆM: “ỨNG DỤNG PHÉP BIẾN HèNH TRONG MẶT PHẲNG GIẢI CÁC BÀI TOÁN TèM TẬP HỢP ĐIỂM" E. Tỡm tập hợp điểm bằng phương pháp đồng dạng: Phương pháp: Tỡm tập hợp điểm bằng phương pháp đối xứng tâm Bài toỏn 28 Cho điểm A cố định nằm trên đường trũn (O) và điểm C thay đổi trên đường trũn đó. Dựng hỡnh vuụng ABCD. Tỡm quỹ tớch điểm B và điểm D Giải Gọi AR là đường kính của (O) và PQ là đường kính của (O) vuông góc với AR ((AR,AP)=450)  Phép đồng dạng F biến AR thành AP. Vậy quỹ tích B là đường trũn đường kính AP. Tương tự quỹ tích D là đường trũn đường kính AQ. 2 ( Lưu ý: F là hợp thành của phộp vị tự tõm A tỉ số k = 2 và phộp quay tõm A gúc quay 450) Bài toỏn 29: Cho đường trũn (O), đường kính AB=2R. M là một điểm bất kỳ trên (O), dựng hỡnh vuụng AMNP cú cỏc đỉnh theo chiều dương. Tỡm quỹ tớch cỏc điểm N Giải Ta cú AN  2 AM và (AM, AN)=450 Phộp quay Q(A;450): M  M1 Phộp vị tự V(A; 2 ): M1  N      V A; 2 .Q A; 450 : M  N M thuộc đường trũn (O), đường kính AB=2R nên N thuộc đường trũn (O') là ảnh của (O) qua phộp đồng dạng     là hợp thành của V A; 2 và Q A; 450 có tâm O' là trung điểm của cung AB và bán kính R'= 2R Người thực hiện: Phạm Thị Bớch Ngọc 20 Tổ Toỏn - Tin Trường THPT Tiên Lữ
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2