intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Tiết 5+6+7 ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC, CỦA HÌNH THANG LUYỆN TẬP

Chia sẻ: Paradise1 Paradise1 | Ngày: | Loại File: PDF | Số trang:11

321
lượt xem
23
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Nắm được định nghĩa và các định lý 1, định lý 2 về đường trung bình của tam giác, đường trung bình của hình thang.  Biết vận dụng các định lý về đường trung bình cùa tam giác, của hình thang để tính độ dài, chứng minh hai đoạn thẳng bằng nhau, hai đoạn thẳng song song.

Chủ đề:
Lưu

Nội dung Text: Tiết 5+6+7 ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC, CỦA HÌNH THANG LUYỆN TẬP

  1. Tiết 5+6+7 ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC, CỦA HÌNH THANG - LUYỆN TẬP I/ Mục tiêu  Nắm được định nghĩa và các định lý 1, định lý 2 về đường trung bình của tam giác, đường trung bình của hình thang.  Biết vận dụng các định lý về đường trung bình cùa tam giác, của hình thang để tính độ dài, chứng minh hai đoạn thẳng bằng nhau, hai đoạn thẳng song song.  Rèn luyện cách lập luận trong chứng minh định lý và vận dụng các định lý đã học vào các bài toán thực tế. Tiết 5 : Đường trung bình của tam giác. Tiết 6 : Đường trung bình của hình thang. Tiết 7 : Luyện tập. II/ Phương tiện dạy học SGK, thước thẳng, êke. III/ Quá trình hoạt động trên lớp 1/ Ổn định lớp 2/ Kiểm tra bài cũ
  2.  Định nghĩa hình thang cân  Muốn chứng minh một tứ giác là hình thang cân ta phải làm sao ?  Sửa bài tập 18 trang 75 a/ Hình thang ABEC (AB // CE) có hai cạnh bên AC, BE song song nên  BE = BD do đó BDE cân chúng bằng nhau : AC = BE mà AC = BD (gt) ˆ ˆ b/ Do AC // BE  C1  E (đồng vị) ˆ ˆ  D 1  C1 ˆ ˆ mà D1  E ( BDE cân tại B) Tam giác ACD và BCD có :  AC = BD (gt) ˆ ˆ  D1  C1 (cmt)  DC là cạnh chung Vậy ACD  BDC (c-g-c) c/ Do ACD  BDC (cmt)  ADC = BCD Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.  Sửa bài tập 19 trang 75 (Xem SGV trang 106) 3/ Bài mới Ghi bảng Hoạt động của HS Hoạt động của GV Hoạt động 1 : Đường trung bình của tam giác 1/ Đường trung bình ?1 Dự đoán E là trung Học sinh làm ?1
  3. của tam giác điểm AC  Phát biểu Định lý 1: Đường thẳng dự đoán trên thành đi qua trung điểm một định lý. cạnh của tam giác và Chứng minh song song với cạnh thứ Kẻ EF // AB (F  BC) hai thì đi qua trung điểm Hình thang DEFB có cạnh thứ ba. hai cạnh bên song song ABC (DB // EF) nên DB = GT AD = DB EF DE // BC Mà AD = DB (gt). Vậy KL AE = EC AD = EF Tam giác ADE và EFC có : ˆ  Â = E1 (đồng vị)  AD = EF (cmt) Định nghĩa : Đường ˆ ˆ  D1  F1 (cùng trung bình của tam giác ˆ bằng B ) là đoạn thẳng nối trung Vậy ADE  EFC (g- điể m hai cạnh của tam c-g) giác.  AE = EC
  4.  E là trung điểm AC Học sinh làm ?2 Học sinh làm ?2  Định lý 2 Chứng minh định lý 2 Vẽ điểm F sao cho E là trung điểm DF AED  CEF (c-g-c) Định lý 2 : Đường trung ˆ  AD = FC và Â = C1 bình của tam giác thì Ta có : AD = DB (gt) song song với cạnh thứ Và AD = FC ba và bằng nửa cạnh ấy.  DB = FC ˆ Ta có : Â = C1 ABC ˆ Mà Â so le trong C1 AD = DB  AD // CF tức là AB AE = EC // CF GT DE // BC Do đó DBCF là hình 1 KL DE  BC thang 2 Hình thang DBCF có hai đáy DB = FC nên DF = BC và DF // BC
  5. Do đó DE // BC và DE 1 = BC 2 Học sinh làm ?3 ?3 Trên hình 33. DE là đường trung bình 1 ABC  DE  BC 2 Vậy BC = 2DE = 100m Bài tập 20 trang 79 ˆˆ Tam giác ABC có K  C  50 0 ˆ ˆ Mà K đồng vị C Do đó IK // BC Ngoài ra KA = KC = 8  IA = IB mà IB = 10 .Vậy IA = 10 Bài tập 21 trang 79 Do C là trung điểm OA, D là trung điểm OB  CD là đường trung bình OAB 1  CD  AB  AB  2CD  2.3cm  6cm 2 Ghi bảng Hoạt động của HS Hoạt động của GV
  6. Hoạt động 2 : Đường trung bình của hình thang HS làm ?4 2/ Đường trung bình ?4 Nhận xét : I là trung của hình thang điểm của AC, F là Định lý 1 : Đường thẳng trung điểm của BC đi qua trung điểm một  Phát biểu thành cạnh bên của hình thang định lý và song song với hai đáy Chứng minh thì đi qua trung điểm Gọi I là giao điểm của cạnh bên thứ hai. AC và EF ABCD là hình Tam giác ADC có : thang  E là trung điểm (đáy AB, CD) của AD(gt) GT AE = ED  EI // DC (gt) EF // AB  I là trung điểm của EF // CD AC KL BF = FC Tam giác ABC có :  I là trung điểm Định nghĩa : Đường AC (gt) trung bình của hình  IF // AB (gt) thang là đoạn thẳng nối  F là trung điểm của
  7. BC trung điểm hai cạnh bên Giới thiệu đường trung của hình thang. bình của hình thang ABCD (đoạn thẳng EF) Chứng minh định lý 2 Gọi K là giao điểm của AF và DC Tam giác FBA và FCK có : ˆ ˆ  F1  F2 (đối đỉnh)  FB = FC (gt) Làm bài tập 23 trang 84 ˆˆ  B  C1 (so le Định lý 2 : Đường trung trong) bình của hình thang thì Vậy FBA  FCK (g- song song với hai đáy và c-g) bằng nửa tổng hai đáy.  AE = FK; AB = CK Tam giác ADK có E; F lần lượt là trung điểm của AD và AK nên EF
  8. là đường trung bình  EF // DK (tức là EF // AB và EF // CD) Hình thang Và ABCD (đáy AB, CD) 1 DC  AB EF  DK  EF  2 2 GT AE = ED; BF = ?5 FC KL EF // AB; EF // 24  x 32   24  x  64 2 CD Vậy x = 40 AB  CD EF  2 Hoạt động 3 : Luyện tập Bài 24 trang 80 Khoảng cách từ trung điểm C của AB 12  20 đến đường thẳng xy bằng :  16cm 2 Bài 22 trang 80
  9. Tam giác BDC có : DE = EB  EM là đường trung bình BM = MC Do đó EM // DC  EM // DI Tam giác AEM có : AD = DE  AI = IM (định lý) EM // DI Bài 25 trang 80 Tam giác ABD có : E, F lần lượt là trung điểm của AD và BD nên EF là đường trung bình  EF // AB Mà AB // CD  EF // CD (1) Tam giác CBD có : K, F lần lượt là trung điểm của BC và BD nên KF là đường trung bình  KF // CD (2)
  10. Từ (1) và (2) ta thấy : Qua F có FE và FK cùng song song với CD nên theo tiên đề Ơclit E, F, K thẳng hàng. Bài 27 trang 80 a/ Tam giác ADC có : E, K lần lượt là trung điểm của AD và AC nên EK là đường trung bình CD (1)  EK  2 Tam giác ADC có : K, F lần lượt là trung điểm của AC và BC nên KF là đường trung bình AB (2)  KF  2 b/ Ta có : EF  EK  KF (bất đẳng thức EFK ) (3) CD AB CD  AB Từ (1), (2) và (3)  EF  EK  KF    2 2 2 Hoạt động 4 : Hướng dẫn học ở nhà  Về nhà học bài  Làm bài tập 26, 28 trang 80
  11.  Tự ôn lại các bài toán dựng hình đã biết ở lớp 7 : 1/ Dựng đoạn thẳng bằng đoạn thẳng cho trước 2/ Dựng một góc bằng một góc cho trước 3/ Dựng đường trung trực của một đoạn thẳng cho trước, dựng trung điểm của một đoạn thẳng cho trước. 4/ Dựng tia phân giác của một góc cho trước. 5/ Qua một điểm cho trước dựng đường thẳng vuông góc với một đường thẳng cho trước. 6/ Qua một điểm nằm ngoài một đường thẳng cho trước, dựng đường thẳng song song với một đường thẳng cho trước. 7/ Dựng tam giác biết ba cạnh, biết hai cạnh và góc xen giữa, biết một cạnh và hai góc kề.  Xem trước bài “Dựng hình thang”.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2