YOMEDIA
ADSENSE
Tiết 5+6+7 ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC, CỦA HÌNH THANG LUYỆN TẬP
318
lượt xem 23
download
lượt xem 23
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Nắm được định nghĩa và các định lý 1, định lý 2 về đường trung bình của tam giác, đường trung bình của hình thang. Biết vận dụng các định lý về đường trung bình cùa tam giác, của hình thang để tính độ dài, chứng minh hai đoạn thẳng bằng nhau, hai đoạn thẳng song song.
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Tiết 5+6+7 ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC, CỦA HÌNH THANG LUYỆN TẬP
- Tiết 5+6+7 ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC, CỦA HÌNH THANG - LUYỆN TẬP I/ Mục tiêu Nắm được định nghĩa và các định lý 1, định lý 2 về đường trung bình của tam giác, đường trung bình của hình thang. Biết vận dụng các định lý về đường trung bình cùa tam giác, của hình thang để tính độ dài, chứng minh hai đoạn thẳng bằng nhau, hai đoạn thẳng song song. Rèn luyện cách lập luận trong chứng minh định lý và vận dụng các định lý đã học vào các bài toán thực tế. Tiết 5 : Đường trung bình của tam giác. Tiết 6 : Đường trung bình của hình thang. Tiết 7 : Luyện tập. II/ Phương tiện dạy học SGK, thước thẳng, êke. III/ Quá trình hoạt động trên lớp 1/ Ổn định lớp 2/ Kiểm tra bài cũ
- Định nghĩa hình thang cân Muốn chứng minh một tứ giác là hình thang cân ta phải làm sao ? Sửa bài tập 18 trang 75 a/ Hình thang ABEC (AB // CE) có hai cạnh bên AC, BE song song nên BE = BD do đó BDE cân chúng bằng nhau : AC = BE mà AC = BD (gt) ˆ ˆ b/ Do AC // BE C1 E (đồng vị) ˆ ˆ D 1 C1 ˆ ˆ mà D1 E ( BDE cân tại B) Tam giác ACD và BCD có : AC = BD (gt) ˆ ˆ D1 C1 (cmt) DC là cạnh chung Vậy ACD BDC (c-g-c) c/ Do ACD BDC (cmt) ADC = BCD Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân. Sửa bài tập 19 trang 75 (Xem SGV trang 106) 3/ Bài mới Ghi bảng Hoạt động của HS Hoạt động của GV Hoạt động 1 : Đường trung bình của tam giác 1/ Đường trung bình ?1 Dự đoán E là trung Học sinh làm ?1
- của tam giác điểm AC Phát biểu Định lý 1: Đường thẳng dự đoán trên thành đi qua trung điểm một định lý. cạnh của tam giác và Chứng minh song song với cạnh thứ Kẻ EF // AB (F BC) hai thì đi qua trung điểm Hình thang DEFB có cạnh thứ ba. hai cạnh bên song song ABC (DB // EF) nên DB = GT AD = DB EF DE // BC Mà AD = DB (gt). Vậy KL AE = EC AD = EF Tam giác ADE và EFC có : ˆ Â = E1 (đồng vị) AD = EF (cmt) Định nghĩa : Đường ˆ ˆ D1 F1 (cùng trung bình của tam giác ˆ bằng B ) là đoạn thẳng nối trung Vậy ADE EFC (g- điể m hai cạnh của tam c-g) giác. AE = EC
- E là trung điểm AC Học sinh làm ?2 Học sinh làm ?2 Định lý 2 Chứng minh định lý 2 Vẽ điểm F sao cho E là trung điểm DF AED CEF (c-g-c) Định lý 2 : Đường trung ˆ AD = FC và Â = C1 bình của tam giác thì Ta có : AD = DB (gt) song song với cạnh thứ Và AD = FC ba và bằng nửa cạnh ấy. DB = FC ˆ Ta có : Â = C1 ABC ˆ Mà Â so le trong C1 AD = DB AD // CF tức là AB AE = EC // CF GT DE // BC Do đó DBCF là hình 1 KL DE BC thang 2 Hình thang DBCF có hai đáy DB = FC nên DF = BC và DF // BC
- Do đó DE // BC và DE 1 = BC 2 Học sinh làm ?3 ?3 Trên hình 33. DE là đường trung bình 1 ABC DE BC 2 Vậy BC = 2DE = 100m Bài tập 20 trang 79 ˆˆ Tam giác ABC có K C 50 0 ˆ ˆ Mà K đồng vị C Do đó IK // BC Ngoài ra KA = KC = 8 IA = IB mà IB = 10 .Vậy IA = 10 Bài tập 21 trang 79 Do C là trung điểm OA, D là trung điểm OB CD là đường trung bình OAB 1 CD AB AB 2CD 2.3cm 6cm 2 Ghi bảng Hoạt động của HS Hoạt động của GV
- Hoạt động 2 : Đường trung bình của hình thang HS làm ?4 2/ Đường trung bình ?4 Nhận xét : I là trung của hình thang điểm của AC, F là Định lý 1 : Đường thẳng trung điểm của BC đi qua trung điểm một Phát biểu thành cạnh bên của hình thang định lý và song song với hai đáy Chứng minh thì đi qua trung điểm Gọi I là giao điểm của cạnh bên thứ hai. AC và EF ABCD là hình Tam giác ADC có : thang E là trung điểm (đáy AB, CD) của AD(gt) GT AE = ED EI // DC (gt) EF // AB I là trung điểm của EF // CD AC KL BF = FC Tam giác ABC có : I là trung điểm Định nghĩa : Đường AC (gt) trung bình của hình IF // AB (gt) thang là đoạn thẳng nối F là trung điểm của
- BC trung điểm hai cạnh bên Giới thiệu đường trung của hình thang. bình của hình thang ABCD (đoạn thẳng EF) Chứng minh định lý 2 Gọi K là giao điểm của AF và DC Tam giác FBA và FCK có : ˆ ˆ F1 F2 (đối đỉnh) FB = FC (gt) Làm bài tập 23 trang 84 ˆˆ B C1 (so le Định lý 2 : Đường trung trong) bình của hình thang thì Vậy FBA FCK (g- song song với hai đáy và c-g) bằng nửa tổng hai đáy. AE = FK; AB = CK Tam giác ADK có E; F lần lượt là trung điểm của AD và AK nên EF
- là đường trung bình EF // DK (tức là EF // AB và EF // CD) Hình thang Và ABCD (đáy AB, CD) 1 DC AB EF DK EF 2 2 GT AE = ED; BF = ?5 FC KL EF // AB; EF // 24 x 32 24 x 64 2 CD Vậy x = 40 AB CD EF 2 Hoạt động 3 : Luyện tập Bài 24 trang 80 Khoảng cách từ trung điểm C của AB 12 20 đến đường thẳng xy bằng : 16cm 2 Bài 22 trang 80
- Tam giác BDC có : DE = EB EM là đường trung bình BM = MC Do đó EM // DC EM // DI Tam giác AEM có : AD = DE AI = IM (định lý) EM // DI Bài 25 trang 80 Tam giác ABD có : E, F lần lượt là trung điểm của AD và BD nên EF là đường trung bình EF // AB Mà AB // CD EF // CD (1) Tam giác CBD có : K, F lần lượt là trung điểm của BC và BD nên KF là đường trung bình KF // CD (2)
- Từ (1) và (2) ta thấy : Qua F có FE và FK cùng song song với CD nên theo tiên đề Ơclit E, F, K thẳng hàng. Bài 27 trang 80 a/ Tam giác ADC có : E, K lần lượt là trung điểm của AD và AC nên EK là đường trung bình CD (1) EK 2 Tam giác ADC có : K, F lần lượt là trung điểm của AC và BC nên KF là đường trung bình AB (2) KF 2 b/ Ta có : EF EK KF (bất đẳng thức EFK ) (3) CD AB CD AB Từ (1), (2) và (3) EF EK KF 2 2 2 Hoạt động 4 : Hướng dẫn học ở nhà Về nhà học bài Làm bài tập 26, 28 trang 80
- Tự ôn lại các bài toán dựng hình đã biết ở lớp 7 : 1/ Dựng đoạn thẳng bằng đoạn thẳng cho trước 2/ Dựng một góc bằng một góc cho trước 3/ Dựng đường trung trực của một đoạn thẳng cho trước, dựng trung điểm của một đoạn thẳng cho trước. 4/ Dựng tia phân giác của một góc cho trước. 5/ Qua một điểm cho trước dựng đường thẳng vuông góc với một đường thẳng cho trước. 6/ Qua một điểm nằm ngoài một đường thẳng cho trước, dựng đường thẳng song song với một đường thẳng cho trước. 7/ Dựng tam giác biết ba cạnh, biết hai cạnh và góc xen giữa, biết một cạnh và hai góc kề. Xem trước bài “Dựng hình thang”.
ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn