TRƯỜNG THPT BỈM SƠN ĐỀ THI THỬ ĐẠI HỌC ĐỢT I NĂM HỌC 2012-2013 Môn: Toán - Khối D
lượt xem 10
download
Phần I: Phần chung cho tất cả các thí sinh (7,0 điểm) 2x Câu I: (2 điểm) Cho hàm số y = (C ) x −1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Tìm m để đường thẳng ( d ) : y = mx − m + 2 cắt (C) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng 4. Câu II: (2 điểm) 2 ( cos x − sin x ) 1 1. Giải phương trình: = tan x + cot 2 x cot x − 1 x+ y + x− y = 4
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: TRƯỜNG THPT BỈM SƠN ĐỀ THI THỬ ĐẠI HỌC ĐỢT I NĂM HỌC 2012-2013 Môn: Toán - Khối D
- SỞ GD VÀ ĐT THANH HÓA ĐỀ THI THỬ ĐẠI HỌC ĐỢT I NĂM HỌC 2012-2013 TRƯỜNG THPT BỈM SƠN Môn: Toán - Khối D (Thời gian làm bài: 180 phút) Phần I: Phần chung cho tất cả các thí sinh (7,0 điểm) 2x Câu I: (2 điểm) Cho hàm số y = (C ) x −1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Tìm m để đường thẳng ( d ) : y = mx − m + 2 cắt (C) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng 4. Câu II: (2 điểm) 1 2 ( cos x − sin x ) 1. Giải phương trình: = tan x + cot 2 x cot x − 1 x+ y + x− y = 4 3. Giải hệ phương trình: x + y = 128 2 2 Câu III: (1 điểm) Giải bất phương trình 5 + x − − x − 3 < −1 + ( 5 + x )( − x − 3) Câu IV: (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SA vuông góc với đáy. Góc tạo bởi SC và mặt phẳng (SAB) bằng 300. Tính thể tích khối chóp S.ABCD và khoảng cách từ điểm A đến mặt phẳng (SBD). Câu V:(1 điểm)Với mọi số thực x, y thỏa mãn điều kiện 2 ( x 2 + y 2 ) = xy + 1 . x4 + y4 Tìm giá trị lớn nhất và nhỏ nhất của biểu thức P = 2 xy + 1 Phần II: Phần riêng (3 điểm): thí sinh chỉ được chọn một trong hai phần. A. Theo chương trình chuẩn Câu VIa.(2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có điểm A cố định nằm trên đường thẳng ∆ : 2 x − 3 y + 14 = 0 , cạnh BC song song với ∆ , đường cao CH có phương trình x − 2 y − 1 = 0 . Biết trung điểm cạnh AB là điểm M(-3; 0). Xác định tọa độ các đỉnh A, B, C. x2 y 2 2. Trong mặt phẳng với hệ tọa độ Oxy, cho Elip có phương trình chính tắc ( E ) : + =1. 25 9 Viết phương trình đường thẳng song song với Oy và cắt (E) tại hai điểm A, B sao cho AB = 4. 15
- n 1 CâuVIIa: (1 điểm) Tìm số hạng không chứa x trong khai triển nhị thức Newton 2 x 3 + , biết x n −1 rằng An − Cn +1 = 4 n + 6 2 B. Theo chương trình nâng cao. Câu VIb.(2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có trực tâm H(11; 0), trung điểm cạnh BC là M(3; -1), đỉnh B thuộc đường thẳng ∆1 : x + y − 5 = 0 và đỉnh C thuộc đường thẳng ∆ 2 : x − y − 5 = 0 . Xác định tọa độ các đỉnh A, B, C. 2. Trong mặt phẳng với hệ tọa độ Oxy, lập phương trình chính tắc của Elip (E) có độ dài trục lớn bằng 4 2 , các đỉnh trên trục nhỏ và hai tiêu điểm của (E) cùng nằm trên một đường tròn. Câu VIIb. (1 điểm) Tìm số nguyên dương n biết: C2 n + C2 n + C2 n + ... + C2 n −1 = 2 23 1 3 5 2n …………………..Hết…………………. ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC LẦN I KHỐI D Câu Nội dung Điểm I.1 + Tập xác định: D = ℝ \ {1} + Giới hạn: lim y = 2 ⇒ y =2 là tiệm cận ngang của đồ thị hàm số 0.25 x →±∞ lim y = +∞, lim y = −∞ ⇒ x =1 là tiệm cận đứng của đồ thị hàm số x →1+ − x →1 −2 + Đaọ hàm y ' = < 0, ∀x ≠ 1 . ( x − 1) 2 Hàm số nghịch biến trên mỗi khoảng ( −∞;1) , (1; +∞ ) . BBT: x -∞ 1 +∞ 0.5 y’ - - y 2 +∞ -∞ 2 Hàm số không có cực trị. + Đồ thị: Đồ thị hàm số đi qua gốc tọa độ và nhận giao điểm I(1; 2) của hai đường tiệm cận làm tâm đối xứng. 0.25 16
- 8 6 2·x f(x) = x 1 4 2 I 15 10 5 O 1 5 10 15 2 4 6 8 + Phương trình hoành độ giao điểm của (C) và (d) là: 2x x ≠ 1 0.25 = mx − m + 2 ⇔ x −1 g ( x ) = mx − 2mx + m − 2 = 0(*) 2 + (d) cắt (C) tại hai điểm phân biệt ⇔ g ( x ) = 0 có hai nghiệm phân biệt khác 1 m ≠ 0 0.25 ⇔ ∆ > 0 ⇔ m > 0 g 1 ≠ 0 ( ) Gọi x1, x2 là hai nghiệm của pt (*). Khi đó A ( x1; mx1 − m + 2 ) , B ( x2 ; mx2 − m + 2 ) I.2 x1 + x2 = 2 Theo định lí viét, ta có: x1.x2 = m − 2 ⇒ AB = ( x2 − x1 ) 1 + m = 2 2 2 8 m ( 1 + m2 ) ( ) 0.25 m m−2 Ta có: d ( O, AB ) = 1 + m2 m−2 Do đó: SOAB = 4 ⇔ 1 8 ( 1 + m2 ) = 4 ⇔ m − 2 = 2 2m ⇔ m = 6 ± 4 2 (thỏa 2 m 1 + m2 0.25 mãn điều kiện) Vậy m = 6 ± 4 2 1 2 ( cos x − sin x ) 1 2 ( cos x − sin x ) pt ⇔ = ⇔ = II.1 sin x cos 2 x cos x cos x cos x − sin x 0.25 + −1 cos x sin 2 x sin x cos x.sin 2 x sin x kπ sin 2 x ≠ 0 x ≠ 2 Điều kiện: ⇔ 0.25 cos x − sin x ≠ 0 x ≠ π + kπ 4 2 π Khi đó pt ⇔ sin 2 x = 2 sin x ⇔ cos x = ⇔ x = ± + k 2π ( k ∈ ℝ ) 0.25 2 4 17
- π Đối chiếu với điều kiện, pt đã cho có nghiệm là x = − + k 2π ( k ∈ ℝ ) 0.25 4 x + y + x − y = 4 (1) 2 x + y = 128 2 ( 2) x + y ≥ 0 Điều kiện: (*) x − y ≥ 0 x ≤ 8 Ta có: (1) ⇔ 2 x + 2 x 2 − y 2 = 16 ⇔ x 2 − y 2 = 8 − x ⇔ 2 x − y = 64 − 16 x + x 2 2 0.25 II.2 x ≤ 8 ⇔ 2 − y = 64 − 16 x ( 3 ) x = 8 Cộng (2) với (3) vế với vế ta được: x 2 + 16 x − 192 = 0 ⇔ (thỏa mãn x ≤ 8 ) 0.25 x = −24 + Với x = 8, thay vào (2) ta được y = ±8 0.25 + Với x = -24, thay vào (2) ta được phương trình vô nghiệm Vậy hệ phương tình có hai cặp nghiệm ( x; y ) = ( 8;8 ) ; ( 8; −8 ) 0.25 Điều kiện: −5 ≤ x ≤ −3 0.25 5 + x − − x − 3 < −1 + ( 5 + x )( − x − 3) ⇔ 5 + x − −x − 3 +1− ( 5 + x )( − x − 3) < 0 0.25 III ⇔ ( )( ) 5 + x +1 1− −x − 3 < 0 ⇔ 1 − −3 − x < 0 ⇔ −3 − x > 1 ⇔ −3 − x > 1 ⇔ x < −4 0.25 Đối chiếu với đk ta được −5 ≤ x < −4 0.25 Vậy bpt có nghiệm x thỏa mãn −5 ≤ x < −4 S H A D IV O B C 18
- CB ⊥ AB Vì ⇒ CB ⊥ ( SAB ) ⇒ SB là hình chiếu của SC lên mp(SAB) CB ⊥ SA ( ) ( ) ⇒ SC , ( SAB ) = SC , SB = CSB = 300 ⇒ SB = BC.cot 300 = a 3 ⇒ SA = a 2 1 1 2a 3 Vậy thể tích khối chóp S.ABCD là: VS . ABCD = SA.S ABCD = a 2.a 2 = (dvtt ) 0.25 3 3 3 SA ⊥ BD + Ta có ⇒ BD ⊥ ( SAC ) ⇒ ( SBD ) ⊥ ( SAC ) = SO ( O = AC ∩ BD ) AC ⊥ BD 0.25 Trong mp (SAC), kẻ AH ⊥ SO ⇒ AH ⊥ ( SBD ) ⇒ d ( A, ( SBD ) ) = AH + Trong tam giác vuông SAO có: 1 1 1 1 1 5 10 a 2 = 2+ 2 = 2 + 2 = 2 ⇒ AH = AH SA AO 2a a 2a 5 0.25 2 Vậy d ( A, ( SBD ) ) = 10a 5 1 Đặt t = xy . Ta có: xy + 1 = 2 ( x + y ) − 2 xy ≥ −4 xy ⇒ xy ≥ − 2 5 0.25 1 1 1 Và xy + 1 = 2 ( x − y ) + 2 xy ≥ 4 xy ⇒ xy ≤ . nên − ≤ t ≤ . 2 3 5 3 (x ) 2 2 + y2 − 2 x2 y2 −7t 2 + 2t + 1 Suy ra P = = 0.25 2 xy + 1 4 ( 2t + 1) ( ) V −7t 2 + 2t + 1 7 −t 2 − t t = 0 Xét hàm số f ( t ) = có f ' ( t ) = ; f ' (t ) = 0 ⇔ 4 ( 2t + 1) 2 ( 2t + 1) 2 t = −1(l ) 0.25 1 1 2 1 f − = f = ; f ( 0) = 5 3 15 4 1 2 Vậy GTLN bằng , GTNN bằng 0.25 4 15 Vì AB ⊥ CH nên AB có pt: 2x + y + c = 0 0.25 Do M(-3; 0) ∈ AB nên c = 6. Vậy pt AB: 2x + y + 6 = 0 2 x − 3 y + 14 = 0 Do A ∈ ∆ nên tọa độ của A thỏa mãn hệ pt: ⇒ A ( −4; 2 ) 0.25 2 x + y + 6 = 0 VIa. Vì M(-3; 0) là trung điểm cạnh AB nên B(-2; -2) 1 Phương trình cạnh BC đi qua B và song song với ∆ là: 0.25 2 ( x + 2) − 3( y + 2) = 0 ⇔ 2x − 3 y − 2 = 0 2 x − 3 y − 2 = 0 Vậy tọa độ điểm C là nghiệm của hpt: ⇒ C (1; 0 ) 0.25 x − 2 y −1 = 0 Gọi pt đường thẳng song song với Oy là (d): x = a (với a ≠ 0 ). Tung độ giao điêm của VIa. a2 y 2 25 − a 2 25 − a 2 ( a ≤ 5 ) 3 0.25 2 (d) và (E) là: + = 1 ⇔ y = 9. 2 ⇔ y=± 25 9 25 5 3 3 6 V ậ y A a; 25 − a 2 , B a; − 25 − a 2 ⇒ AB = 25 − a 2 0.25 5 5 5 19
- 6 100 5 5 Do đó AB = 4 ⇔ 25 − a 2 = 4 ⇔ 25 − a 2 = ⇔a=± (thỏa mãn đk) 0.25 5 9 3 5 5 5 5 Vậy phương trình đường thẳng cần tìm là x = ,x = − 0.25 3 3 Điều kiện n ≥ 2, n ∈ ℤ An − Cn +1 = 4n + 6 ⇔ n ( n − 1) − 2 n −1 ( n + 1) n = 4n + 6 2 0.5 Ta có: n = −1(loai ) VII ⇔ n 2 − 11n − 12 = 0 ⇔ a n = 12 n 12 k 1 1 1 ( ) 12 12 − k 12 Với n = 12 ta có: 2 x 3 + = 2 x3 + = ∑ C12 2 x3 k = ∑ C12 212− k x36− 4 k k x x k =0 x k =0 0.5 Số hạng không chứa x ứng với k = 9 là C12 .2 = 1760 9 3 Vì B ∈ ∆1 ⇒ B ( b,5 − b ) ; C ∈ ∆ 2 ⇒ C ( c, c − 5 ) Do M(3; -1) là trung điểm của BC nên ta có hpt: b + c 2 =3 b + c = 6 c = 2 0.5 ⇔ ⇔ ⇒ B ( 4;1) , C ( 2; −3) VIb 5 − b + c − 5 = −1 c − b = −2 b = 4 1 2 Vì H(11; 0) là trực tâm của tam giác ABC nên ta có: AH .BC = 0 (11 − x A )( −2 ) + ( − y A )( −4 ) = 0 x A + 2 y A = 11 xA = 3 ⇔ ⇔ ⇔ ⇒ A ( 3; 4 ) 0.5 BH . AC = 0 7. ( 2 − x A ) + ( −1)( −3 − y A ) = 0 7 x A − y A = 17 yA = 4 x2 y2 Gọi pt Elip cần tìm là: + = 1( a > b > 0 ) a 2 b2 0.25 Theo giả thiết ta có 2a = 4 2 ⇔ a = 2 2 (1) Vì hai đỉnh B1, B2 cùng hai tiêu điểm F1, F2 nằm trên một đường tròn nên VIb OF2 = OB2 ⇒ b = c (2) 0.25 2 Mặt khác c = a − b ( 3) 2 2 2 Giải hệ gồm (1), (2) và (3) ta được b 2 = 4 0.25 x2 y2 Vậy (E) đã cho có pt: + =1 0.25 8 4 Ta có: (1 + 1) = C2 n + C2 n + C2 n + C2 n + ... + C2 n 2n 0 1 2 3 2n (1 − 1) 2n = C2 n − C2 n + C2 n − C2 n + ... + C2 n 0 1 2 3 2n VII ( 3 5 2n ) ⇒ 2 C2 n + C2 n + C2 n + ... + C2 n −1 = 22 n 1 b ⇒ C2 n + C2 n + C2 n + ... + C2 n −1 = 2 2 n −1 1 3 5 2n 0.5 Do giả thiết: C2 n + C2 n + C2 n + ... + C2 n −1 = 2 23 nên 2n −1 = 2 23 ⇔ n − 1 = 23 ⇔ n = 24 1 3 5 2n 0.5 ……………………….Hết………………………………. 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
ĐỀ THI THỬ ĐẠI HỌC ĐỢT I NĂM HỌC 2012-2013 Môn: Toán - Khối A TRƯỜNG THPT BỈM SƠN
20 p | 234 | 77
-
Đề thi thử Đại học – Cao đẳng : MÔN HÓA - Trường THPT Bỉm Sơn
5 p | 134 | 33
-
ĐỀ THI THỬ ĐẠI HỌC LẦN 2 NĂM 2011 MÔN: TOÁN, KHỐI A - TRƯỜNG THPT BỈM SƠN - THANH HÓA
7 p | 159 | 31
-
Đề thi thử môn hóa ĐHCĐ THPT Bỉm Sơn
5 p | 177 | 23
-
ĐỀ THI THỬ ĐẠI HỌC LẦN I NĂM 2013 môn toán khối A TRƯỜNG THPT BỈM SƠN
20 p | 189 | 21
-
ĐỀ THI THỬ ĐẠI HỌC LẦN 1 – NĂM 2010 MÔN: HÓA HỌC; Khối A, B mã đề 132
6 p | 63 | 16
-
KỲ THI THỬ ĐẠI HỌC LẦN 2 NĂM 2011 MÔN: TOÁN - TRƯỜNG THPT BỈM SƠN
6 p | 131 | 12
-
Đề thi thử THPT quốc gia lần 1 có đáp án môn: Tiếng Anh - Trường THPT Bỉm Sơn (Mã đề 132)
11 p | 194 | 10
-
ĐỀ THI THỬ ĐẠI HỌC ĐỢT I NĂM HỌC 2012-2013 Môn: Toán - Khối B TRƯỜNG THPT BỈM SƠN
7 p | 79 | 8
-
Đề kiểm tra chất lượng bồi dưỡng lần 2 có đáp án môn: Tiếng Anh 10 - Trường THPT Bỉm Sơn (Năm học 2014-2015)
4 p | 161 | 7
-
Đề thi thử THPT quốc gia lần 1 năm học 2014-2015 có đáp án môn: Tiếng Anh - Trường THPT Bỉm Sơn (Mã đề thi 132)
14 p | 157 | 5
-
Đề thi thử ĐH môn Toán - THPT Bỉm Sơn lần 1 (2012-2013)
7 p | 59 | 3
-
Đề thi thử THPT QG môn Tiếng Anh năm 2020-2021 có đáp án (Lần 1) - Trường THPT Bỉm Sơn, Thanh Hóa
16 p | 7 | 3
-
Đề thi thử tuyển sinh đại học đợt 1 môn Toán (năm 2012-2013): Khối A
20 p | 55 | 2
-
Đề thi thử THPT Quốc gia 2019 môn Ngữ văn lần 1 có đáp án - Trường THPT Bỉm Sơn
5 p | 209 | 2
-
Đề thi thử lần 1 THPT Quốc gia năm 2017 môn Hóa học có đáp án - Trường THPT Bỉm Sơn
14 p | 53 | 2
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Tiếng Anh lần 1 có đáp án - Trường THPT Bỉm Sơn, Thanh Hóa
15 p | 41 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn