Iđêan nguyên tố gắn kết
-
Nội dung luận văn trình bày các kiến thức cơ sở cần thiết được dùng để chứng minh các kết quả ở các chương sau. Một số kiến thức được trình bày ở đây là: Vành và mô đun Artin, biểu diễn thứ cấp của mô đun Artin, mô đun đối đồng điều địa phương, dãy chính quy và độ sâu của mô đun, đối ngẫu Matlis và một số tính chất. Mời các bạn tham khảo!
48p elephantcarrot 02-07-2021 21 5 Download
-
Cho (R, m) là vành Noether địa phương và M là R-môđun hữu hạn sinh. Chiều Krull, tập iđêan nguyên tố liên kết, đa thức Hilbert-Samuel và số bội là các bất biến quan trọng của M trong nghiên cứu môđun này. Chúng có mối liên hệ chặt chẽ với nhau. Nếu kí hiệu chiều của M là d thì từ một kết quả quen thuộc SuppR(M) = Var(AnnR M) và min Var(AnnR M) = min AssR(M) ta tính được d thông qua tập iđêan nguyên tố liên kết của M.
53p capheviahe26 02-02-2021 66 4 Download
-
Đề tài gồm 2 chương trình bày các công thức chuyển dịch tập iđêan nguyên tố liên kết qua địa phương hóa và qua đầy đủ hóa; một số vấn đề về tiêu chuẩn Artin của Melkersson [Mel], tập iđêan nguyên tố gắn kết và môđun đối đồng điều địa phương. Chương 2 luận văn trình bày về hệ tham số, các lớp vành đặc biệt, một số bổ đề liên quan và chứng minh Định lý chính.
41p capheviahe26 02-02-2021 21 3 Download
-
Luận văn Thạc sĩ Toán học: Iđêan nguyên tố liên kết của môđun đối đồng điều địa phương suy rộng phân bậc giúp các bạn biết được những kiến thức cần chuẩn bị và Iđêan nguyên tố liên kết của môđun đối đồng điều địa phương suy rộng phân bậc.
58p maiyeumaiyeu01 07-07-2016 85 6 Download
-
Luận án Tiến sĩ Toán học: Về tập Iđêan nguyên tố gắn kết của môđun đối đồng điều địa phương do Trần Đõ Minh Châu thực hiện có kết cấu gồm 3 chương và phần kết luận - kiến nghị: Chương 1 - Kiến thức chuẩn bị, chương 2 - Môđun đối đồng điều địa phương với giá cực đại, chương 3 - Môđun đối đồng điều địa phương cấp cao nhất với giá tùy ý.
87p talata_8 27-01-2015 150 26 Download
-
Cho (R;m) là vành giao hoán, địa phương, Noether với iđêan cực đại duy nhất m; I là iđêan của R, M là R-môđun hữu hạn sinh và A là R-môđun Artin. Để nghiên cứu cấu trúc của các môđun Noether và môđun Artin, người ta thường quan tâm đến các tập iđêan nguyên tố liên kết và iđêan nguyên tố gắn kết tương ứng của chúng.
0p greengrass304 11-09-2012 112 23 Download