Đề thi thử CĐ ĐH môn Toán năm 2010 - đề số 2

Chia sẻ: Nguyen Nhi | Ngày: | Loại File: PDF | Số trang:6

0
136
lượt xem
75
download

Đề thi thử CĐ ĐH môn Toán năm 2010 - đề số 2

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề thi thử cđ đh môn toán năm 2010 - đề số 2', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề thi thử CĐ ĐH môn Toán năm 2010 - đề số 2

  1. Bộ Giáo Dục và Đào tạo ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 ĐỀ THAM KHẢO Môn thi : TOÁN - khối A. Email: phukhanh@moet.edu.vn Ngày thi : 07.03.2010 (Chủ Nhật ) ĐỀ 02 I. PHẦN BẮT BUỘC ( 7,0 điểm ) Câu I : ( 2 điểm ) Cho hàm số : y = x 3 − 3x 2 − 9x + m , m là tham số thực . 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 0 . 2. Tìm tất cả các giá trị của tham số m để đồ thị hàm số đã cho cắt trục hoành tại 3 điểm phân biệt có hoành độ lập thành cấp số cộng. Câu II: ( 2 điểm ) 1 1 ( ) ( ) ( ) 8 1. Giải phương trình log 2 x + 3 + log4 x − 1 = 3 log 8 4x . 2 4 1 x 1 2x 2. Giải phương trình: + cos2 = sin . 4 3 2 2 π 4 ta n x Câu III: ( 1 điểm ) Tính tích phân: I = ∫ π cos x 1 + cos2 x dx . 6  2 Câu IV: ( 1 điểm ) Cho tứ diện ABCD có AB = CD = 2x ,  0 < x <  và AC = BC = BD = DA = 1 . Tính  2   thể tích tứ diện ABCD theo x .Tìm x để thể tích này lớn nhất và tính giá trị lớn nhất đó. Câu V: ( 1 điểm ) Tìm các giá trị của tham số thực m để phương trình 3 1 − x 2 − 2 x 3 + 2x 2 + 1 = m có  1  nghiệm duy nhất thuộc đoạn  − ;1 .  2  II. PHẦN TỰ CHỌN ( 3,0 điểm ) Thí sinh chỉ được làm một trong hai phần ( phần 1 hoặc 2 ). 1. Theo chương trình Chuẩn : Câu VI.a ( 2 điểm ) ( ) 1. Tìm tham số thực m sao cho đường thẳng d : x = 2 y − 1 = z + 1 cắt mặt cầu ( ) (S ) : x 2 + y 2 + z 2 + 4x − 6y + m = 0 tại 2 điểm phân biệt M , N sao cho độ dài dây cung MN = 8 . 2. Trong mặt phẳng Oxy , cho đường thẳng (d ) có phương trình: 2x − y − 5 = 0 và hai điểm A 1;2 , B 4;1 . ( ) ( ) Viết phương trình đường tròn có tâm thuộc đường thẳng (d ) và đi qua hai điểm A, B . Câu VII.a ( 1 điểm ) Với n là số tự nhiên, chứng minh đẳng thức: 0 1 2 3 n n ( ) C n + 2.C n + 3.C n + 4.C n + ... + n.C n −1 + n + 1 .C n = n + 2 .2n −1 . ( ) 2. Theo chương trình Nâng cao : Câu VI.b ( 2 điểm ) ( ) 1. Tìm tham số thực m sao cho đường thẳng d : x = 2 y − 1 = z + 1 tiếp xúc mặt cầu ( ) (S ) : x 2 + y 2 + z 2 + 4x − 6y + m = 0 . 2. Tìm trên đường thẳng (d ) : 2x − y − 5 = 0 những điểm M sao cho khoảng cách từ M đến đường thẳng 2x + y + 5 = 0 bằng 5 . Câu VII.b ( 1 điểm ) Với n là số tự nhiên, giải phương trình: 0 1 2 3 n n ( ) C n + 2.C n + 3.C n + 4.C n + ... + n.C n −1 + n + 1 .C n = 128. n + 2 . ( ) ..........................................................Cán Bộ coi thi không giải thích gì thêm.......................................................
  2. I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH ( 7,0 điểm ) Câu I : ( 2 điểm ) Cho hàm số : y = x 3 − 3x 2 − 9x + m , m là tham số thực . 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 0 .Học sinh tự làm . 2. Tìm tất cả các giá trị của tham số m để đồ thị hàm số đã cho cắt trục hoành tại 3 điểm phân biệt có hoành độ lập thành cấp số cộng. Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt có hoành độ lập thành cấp số cộng ⇔ Phương trình x 3 − 3x 2 − 9x + m = 0 có 3 nghiệm phân biệt x 1, x 2 , x 3 lập thành cấp số cộng () () ⇔ Phương trình x 3 − 3x 2 − 9x + m = 0 * có 3 nghiệm phân biệt x 1, x 2 , x 3 thỏa mãn : x 1 + x 3 = 2x 2 1 mà () ()() x 1 + x 3 + x 2 = 3 2 . Từ 1 , 2 suy ra x 2 = 1 . () • x 2 = 1 là nghiệm phương trình * nên ta có : 13 − 3.12 − 9.1 + m = 0 ⇔ m = 11 () • m = 11 phương trình * ⇔ x 3 − 3x 2 − 9x + 11 = 0 có 3 nghiệm x 1, x 2 , x 3 luôn thỏa điều kiện x 1 + x 3 = 2x 2 . Vậy m = 11 là tham số thực cần tìm . Ngoài cách giải trên hs có thể lựa chọn phương pháp cấp số cộng thuộc chương trình giải tích lớp 11 Chú ý : Do chương trình mới giảm tải bài điểm uốn của chương trình ban cơ bản , sự giảm tải này đã dẫn đến các bài toán về cấp số cộng , cấp số nhân khá hạn chế trong mỗi đề thi . Nếu xuất hiện bài toán về cấp số thì việc lựa chọn phương pháp giải liên quan điểm uốn đều không chấp nhận. Do đó học sinh cần lưu ý điều này. Câu II: ( 2 điểm ) 1 1 1. Giải phương trình log 2 (x + 3) + log 4 (x − 1)8 = 3 log 8 (4x ) 2 4 x > −3  Điều kiện : x ≠ 1 ⇔ 0 < x ≠ 1 x > 0  1 1 2 4 () Phương trình : log 2 (x + 3) + log 4 (x − 1)8 = 3 log 8 (4x ) ⇔ log2 (x + 3) + log2 x − 1 = log2 (4x ) * TH1: 0 < x < 1 () (  )(  ) ( ) Phương trình : * ⇔ ... ⇔ log2  x + 3 −x + 1  = log2 4x . Hs tự giải TH2: x > 1 () ( )( ) Phương trình : * ⇔ ... ⇔ log2  x + 3 x − 1  = log2 4x   ( ) ⇔ x 2 − 2x − 3 = 0 ⇔  x = −1 l() ⇔ x = 3. x = 3  1 x 1 x 2. Giải phương trình: + cos2 = sin2 . 4 3 2 2 2x 1 + cos 1 + cos 2 x 1 2x = sin ⇔ + 1 3 = 1 − cos x ⇔ 1 + 2 + 2 cos 2x = 1 − cos x 4 3 2 2 4 2 4 3 x  x   x    x   x  ⇔ 2 + 2 cos 2   = − cos 3   ⇔ 2 + 2  2 cos2   − 1  = −  4 cos3   − 3 cos        3 3  3   3  3  x  x  x  x x  x  x   ⇔ 2 + 4 cos2   − 2 + 4 cos3   − 3 cos   = 0 ⇔ cos      4 cos2   + 4 cos   − 3  = 0   3 3 3  3  3  3 3 
  3.  x  cos   = 0  x   3 cos   = 0 x π  3π  x  1 3  = + kπ x = + k 3π ⇔ cos   = ⇔   ⇔ 3 2 ⇔ 2   3 2  x  π  x = ± π + k 2π x = ±π + k 6π . cos   = cos 3   x  3  3 cos   = − () l   3 3  3 2  2 Câu IV: ( 1 điểm ) Cho tứ diện ABCD có AB = CD = 2x ,  0 < x <  và AC = BC = BD = DA = 1 . Tính   2   thể tích tứ diện ABCD theo x .Tìm x để thể tích này lớn nhất và tính giá trị lớn nhất đó. Đây là dạng toán trong sách bài tập hình học 12 . Học sinh tự vẽ hình Gọi I , J lần lượt là trung điểm của các cạnh AB,CD 1 1 Dễ thấy VABCD = VAICD + VBICD , VAICD =AI .dtICD , VBICD = BI .dtICD 3 3 1 1 ( Hay : VABCD = dtICD AI + BI , dtICD = .IJ .CD 3 2 ) Dễ dàng chứng minh được IJ là đoạn vuông góc chung của AB,CD Ta có : IJ 2 = CI 2 − CJ 2 = 1 − 2x 2, AI = BI = x 1 1 ⇒ dtICD = .IJ .CD = . 1 − 2x 2 .2x = x . 1 − 2x 2 (đvdt). 2 2 1 1 2x 2 VABCD 3 ( 3 ) = dtICD AI + BI = x . 1 − 2x 2 x + x = 3 ( ) . 1 − 2x 2 (đvtt). ( ) 3  2 2  x + x + 1 − 2x 2 2 2 2x 3 2 . 1 − 2x 2 = . x 2 .x 2 1 − 2x 2 3 ( ) ≤ . 3  3   = 2 9 3   3 Đẳng thức xảy ra khi : x 2 = x 2 = 1 − 2x 2 ⇔ x = 3 2 3 Vậy maxVABCD = (đvdt) khi x = . 9 3 3 π 4 ta n x Câu III: ( 1 điểm ) Tính tích phân: I = ∫ π cos x 1 + cos2 x dx . 6 π π π 4 4 4 ta n x ta n x ta n x I = ∫ π cos x 1 + cos2 x dx = ∫ π 1 dx = ∫ π cos 2 x t a n2 x + 2 dx . 6 6 2 cos x +1 6 cos2 x 1 Đặt u = t a n x ⇒ du = dx . . cos2 x  π 1 x = ⇒ u =  Đổi cận :  6 3 π x = ⇒ u = 1   4
  4. ( ) 1 1 u 1 3− 7 Do đó I = ∫ 1 u +22 du = ∫d 1 u2 + 2 = u2 + 2 1 = 3 3 3 3 u Học sinh yếu hơn có thể đặt t = u 2 + 2 ⇒ dt = du . u +2 2 Câu V: ( 1 điểm ) Tìm các giá trị của tham số thực m để phương trình 3 1 − x 2 − 2 x 3 + 2x 2 + 1 = m có nghiệm  1  duy nhất thuộc đoạn  − ;1 .  2  3 1 − x 2 − 2 x 3 + 2x 2 + 1 = m, m ∈ R .  1  ( ) Xét hàm số : f x = 3 1 − x 2 − 2 x 3 + 2x 2 + 1 xác định và liên tục trên đoạn  − ;1 .  2  3x 3x 2 + 4x  3 3x + 4  ( ) Ta có : f ' x = − − = −x   + .  1 − x2 x 3 + 2x 2 + 1  1−x 2 x 3 + 2x 2 + 1   1  4 3 3x + 4 ∀x ∈  − ;1 ta có x > − ⇒ 3x + 4 > 0 ⇒ + > 0.  2  3 1 − x2 x 3 + 2x 2 + 1 ( ) Vậy: f ' x = 0 ⇔ x = 0 . Bảng biến thiên: 1 x − 0 1 2 f' x( ) | + 0 − || 1 3 3 − 22 f x ( ) 2 −4  1  3 3 − 22 Phương trình đã cho có 1 nghiệm duy nhất thuộc  − ;1 ⇔ −4 ≤ m < hoặc m = 1 .  2  2 II. PHẦN RIÊNG ( 3,0 điểm ) Ban cơ bản và nâng cao có cùng đáp án. Câu VI.a ( 2 điểm ) ( ) 1. Tìm tham số thực m sao cho đường thẳng d : x = 2 y − 1 = z + 1 cắt mặt cầu ( ) (S ) : x 2 + y 2 + z 2 + 4x − 6y + m = 0 tại 2 điểm phân biệt M , N sao cho độ dài dây cung MN = 8 . (S ) : x 2 + y 2 + z 2 + 4x − 6y + m = 0 ⇔ (S ) :(x − 2)2 + (y − 3)2 + z 2 = 13 − m có tâm I ( 2; 3; 0 ) , bán kính R = IN = 13 − m , m < 13 Dựng IH ⊥ MN ⇒ MH = HN = 4 ⇒ IH = IN 2 − HN 2 = 13 − m − 16 = −m − 3, m < −3 và IH = d I ; d ( ( )) 1  1  (d ) luôn đi qua A ( 0;1; −1) và có vectơ chỉ phương u =  1; 2 ; 1  = 2 (2; 1; 2)  
  5. AI = (−2; 2; 1); [AI ; u ] = (3; 6; − 6) [AI ; u ] 32 + 62 + 62 81 ⇒ d I; d = = = = 3. ( ( )) u 22 + 12 + 22 9 IH = d I ; d ⇔ −m − 3 = 3 ⇔ − m − 3 = 9 ⇔ m = −12 ( ( )) Vậy m = −12 thỏa mãn yêu cầu bài toán . 2. Trong mặt phẳng Oxy , cho đường thẳng (d ) có phương trình: 2x − y − 5 = 0 và hai điểm A(1;2) , B(4;1) . Viết phương trình đường tròn có tâm thuộc đường thẳng (d ) và đi qua hai điểm A, B . Phương trình đường trung trực của AB là 3x − y − 6 = 0 . 2x − y = 5  x = 1  Tọa độ tâm I của đường tròn là nghiệm của hệ:  ⇔ ⇒ I 1; −3 ⇒ R = IA = 5 ( ) 3x − y = 6  y = −3  ( ) ( ) 2 2 Phương trình đường tròn là x − 1 + y + 3 = 25 . Câu VII.a ( 1 điểm ) Với n là số tự nhiên, chứng minh đẳng thức: C n + 2.C n + 3.C n + 4.C n + ... + n.C n −1 + (n + 1).C n = (n + 2).2n −1 . 0 1 2 3 n n ( ) n Ta có : 1 + x = C n + C n x + C n x 2 + C n x 3 + ... + C n −1x n −1 + C n x n . 0 1 2 3 n n ( ) n Nhân vào hai vế với x ∈ ℝ , ta có: 1 + x x = C n x + C n x 2 + C n x 3 + C n x 4 + ... + C n −1x n + C n x n +1 . 0 1 2 3 n n Lấy đạo hàm hai vế ta được: C n + 2C n x + 3C n x 2 + 4C n x 3 + ... + nC n −1x n −1 + n + 1 C n x n 0 1 2 3 n n ( ) ( ) ( ) = (1 + x ) (nx + x + 1) . n −1 n n −1 = n 1+x x + 1+x Thay x = 1 , ta được kết quả : C n + 2.C n + 3.C n + 4.C n + ... + n.C n −1 + (n + 1).C n = (n + 2).2n −1 0 1 2 3 n n Một bài toán giải thế này đúng chưa ? 95  y2  Cho nhị thức  x 3y +  , có bao nhiêu số hạng trong dãy mà số mũ của x chia hết số mũ của y .  x  95  y2  Cho nhị thức  x 3y +  , có bao nhiêu số hạng trong dãy mà số mũ của x chia hết số mũ của y  x  95 i  3 y2  95 95 −i  y  2 95  x y + x  = ∑C 95 ( x y )  x  = ∑C 95x 3.95 − 4.i 95 +i i 3 i .y , 0 ≤ i ≤ 95 .   i =0   i =0 Số mũ của của x chia hết số mũ của y , khi đó tồn tại số nguyên t sao cho (t + 4 ) i = 95 ( 3 − t ) ( *) • t = −4 thì ( * ) vô nghiệm . 95 ( 3 − t ) • t ≠ −4 thì ( * ) ⇒ i = , 0 ≤ i ≤ 95 ⇒ t = 0,1, 2, 3 . t+4 95.3 + t =0⇒i = loại . 4 95.2 + t =1⇒i = = 38 nhận , số hạng cần tìm là C 95 x 133 .y 133 . 38 5 95 + t =2⇒i = loại . 6
  6. + t = 3 ⇒ i = 0 nhận , số hạng cần tìm là C 95x 258 .y 95 . 0 Vậy có hai số hạng thỏa mãn bài toán : C 95x 258 .y 95 và C 95 x 133 .y 133 . 0 38
Đồng bộ tài khoản