intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Kinh tế lượng 1: Chương 2 - Bùi Dương Hải (2018)

Chia sẻ: Minh Hoa | Ngày: | Loại File: PDF | Số trang:31

69
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng "Kinh tế lượng 1 - Chương 2: Mô hình hồi quy bội" cung cấp cho người học các kiến thức: Sự cần thiết của hồi quy bội, phương pháp ước lượng OLS, sự phù hợp của hàm hồi quy, một số dạng mô hình hồi quy. Mời các bạn cùng tham khảo.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Kinh tế lượng 1: Chương 2 - Bùi Dương Hải (2018)

  1. Chương 2. MÔ HÌNH HỒI QUY BỘI ▪ Đặt k là số hệ số có trong mô hình ▪ Mô hình có hệ số chặn thì số biến bằng k, số biến độc lập không kể hằng số bằng (k – 1) ▪ Với k = 2 là hồi quy đơn (single-regression) ▪ Với k  2: hai biến độc lập trở lên, gọi là hồi quy bội (multi-regression) hay hồi quy đa biến (multivariate regression) KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 50
  2. Chương 2. Mô hình hồi quy bội NỘI DUNG CHƯƠNG 2 ▪ 2.1. Sự cần thiết của hồi quy bội ▪ 2.2. Phương pháp ước lượng OLS ▪ 2.3. Sự phù hợp của hàm hồi quy ▪ 2.4. Một số dạng mô hình hồi quy KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 51
  3. Chương 2. Mô hình hồi quy bội 2.1. SỰ CẦN THIẾT CỦA HỒI QUY BỘI ▪ Hồi quy đơn: Y = β1 + β2X + u ▪ Nếu u có tương quan với X: 𝐶𝑜𝑣(𝑢, 𝑋) ≠ 0 thì X gọi là biến độc lập nội sinh. → giả thiết 2 bị vi phạm → các ước lượng là chệch. ▪ Yếu tố có tương quan với X trong u, giả sử là Z ▪ Z là biến độc lập mới, mô hình có dạng Y = β1 + β2X + β3Z + u KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 52
  4. Chương 2. Mô hình hồi quy bội 2.1. Sự cần thiết của hồi quy bội Vấn đề dạng hàm hồi quy ▪ Hồi quy đơn hạn chế về dạng hàm ▪ Hồi quy bội có dạng hàm β1 + β2X + β3X2 phù hợp hơn, dự báo tốt hơn ▪ Phong phú hơn trong β1 + β2X phân tích kinh tế KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 53
  5. Chương 2. Mô hình hồi quy bội 2.1. Sự cần thiết của hồi quy bội Mô hình hồi quy ba biến ▪ Biến Y phụ thuộc vào 2 biến độc lập X2, X3 Y = β1 + β2X2 + β3X3 + u ▪ PRF: E(Y | X2 , X3) = β1 + β2X2 + β3X3 ▪ SRF: 𝑌෠𝑖 = 𝛽መ1 + 𝛽መ2 𝑋2𝑖 + 𝛽መ3 𝑋3𝑖 ▪ Nếu X2, X3 có quan hệ cộng tuyến: X3 = α1 + α2X2 thì Y = (β1 + α1β3) + (β2 + α2β3)X2 + u ▪ Mô hình ba biến chỉ đúng khi các biến độc lập không có quan hệ cộng tuyến KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 54
  6. Chương 2. Mô hình hồi quy bội 2.1. Sự cần thiết của hồi quy bội Mô hình hồi quy k biến ▪ Mô hình có (k – 1) biến độc lập, k hệ số: 𝑌 = 𝛽1 + 𝛽2 𝑋2 + 𝛽3 𝑋3 + ⋯ + 𝛽𝑘 𝑋𝑘 + 𝑢 𝐸(𝑌|𝑋2 , … 𝑋𝑘 ) = 𝛽1 + 𝛽2 𝑋2 + 𝛽3 𝑋3 + ⋯ + 𝛽𝑘 𝑋𝑘 ▪ Ý nghĩa hệ số: • Hệ số chặn: 𝛽1 = 𝐸 𝑌 𝑋2 = ⋯ = 𝑋𝑘 = 0 • Hệ số góc: 𝛽𝑗 (j = 2,…, k): tác động riêng của Xj 𝜕𝐸 𝑌 𝛽𝑗 = 𝜕𝑋𝑗 ▪ Nếu 𝛽2 = ⋯ = 𝛽𝑘 = 0: hàm hồi quy không phù hợp KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 55
  7. Chương 2. Mô hình hồi quy bội 2.1. Sự cần thiết của hồi quy bội Mô hình hồi quy k biến ▪ Mô hình trong mẫu • 𝑌෠𝑖 = 𝛽መ1 + 𝛽መ2 𝑋2𝑖 + 𝛽መ3 𝑋3𝑖 + ⋯ + 𝛽መ𝑘 𝑋𝑘𝑖 • 𝑌𝑖 = 𝛽መ1 + 𝛽መ2 𝑋2𝑖 + 𝛽መ3 𝑋3𝑖 + ⋯ + 𝛽መ𝑘 𝑋𝑘𝑖 + 𝑒𝑖 ▪ Mô hình k biến chỉ đúng khi các biến độc lập không được quan hệ cộng tuyến với nhau: • Không tồn tại các hằng số λ1, λ2,…, λk không đồng thời bằng 0 sao cho: λ1 + λ2X2 +…+ λkXk = 0 ▪ 𝛽መ𝑗 là ước lượng điểm cho 𝛽𝑗 (j = 1, 2,…, k) KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 56
  8. Chương 2. Mô hình hồi quy bội 2.2. PHƯƠNG PHÁP ƯỚC LƯỢNG OLS ▪ Tìm 𝛽መ𝑗 sao cho ( ) n n 2 RSS =  e =  Yi − ˆ1 − ˆ2 X 2i − ... − ˆk X ki 2 i → min i =1 i =1 ▪ Giải hệ k phương trình bậc nhất k ẩn ▪ Cách giải qua ma trận ▪ Để giải được nghiệm: các biến độc lập không được có quan hệ cộng tuyến hoàn toàn với nhau KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 57
  9. Chương 2. Mô hình hồi quy bội 2.2. Phương pháp ước lượng OLS Các giả thiết OLS ▪ Giả thiết 1: Mẫu là ngẫu nhiên, độc lập (X2i ,…, Xki ,Yi), i = 1,2,…, k là độc lập ▪ Giả thiết 2: Kì vọng sai số ngẫu nhiên bằng 0 E(u | X2 ,…, Xk ) = 0 hay E(ui | X2i ,…, Xki) = 0 ▪ Giả thiết 3: Phương sai sai số ngẫu nhiên không đổi Var(u | X2,…, Xk) = 2 ▪ Giả thiết 4: Các biến độc lập không có quan hệ cộng tuyến hoàn hảo KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 58
  10. Chương 2. Mô hình hồi quy bội 2.2. Phương pháp ước lượng OLS Định lý Gauss – Markov ▪ Định lý: Khi các giả thiết 1 đến 4 được thỏa mãn thì các ước lượng OLS là các ước lượng tuyến tính, không chệch, tốt nhất (trong lớp các ước lượng tuyến tính không chệch) ▪ 𝛽መ𝑗𝑂𝐿𝑆 là BLUE: Best Linear Unbiased Estimator ▪ 𝛽መ𝑗𝑂𝐿𝑆 là ước lượng tuyến tính, không chệch, tốt nhất của βj (j = 1  k ) KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 59
  11. Chương 2. Mô hình hồi quy bội 2.2. Phương pháp ước lượng OLS Tính vững của ước lượng ▪ Ước lượng vững (consistent estimator): khi kích thước mẫu rất lớn thì ước lượng hệ số trong mẫu tiệm cận hệ số trong tổng thể ▪ Nếu các giả thiết OLS được thỏa mãn thì ước lượng OLS là ước lượng vững ▪ Nếu mẫu lớn, có thể thay giả thiết 2 bởi những giả thiết bớt chặt hơn mà vẫn đảm bảo tính vững ▪ Khi không thể có ước lượng không chệch, ước lượng vững cũng có thể dùng được. KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 60
  12. Chương 2. Mô hình hồi quy bội 2.2. Phương pháp ước lượng OLS Độ chính xác của ước lượng OLS ▪ Kỳ vọng của ước lượng: 𝐸 𝛽መ𝑗 = 𝛽𝑗 ▪ Phương sai:  2 Var( ˆ j ) = (1 − R 2j )( X ji − X j )2 ▪ Với Rj2 là hệ số xác định khi hồi quy Xj theo các biến độc lập còn lại, có hệ số chặn ▪ Xj tương quan với các biến còn lại càng nhiều → 𝑉𝑎𝑟(𝛽መ𝑗 ) càng lớn KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 61
  13. Chương 2. Mô hình hồi quy bội 2.2. Phương pháp ước lượng OLS Độ chính xác của ước lượng OLS ▪ Phương sai sai số ngẫu nhiên được ước lượng bởi 2 𝑅𝑆𝑆 𝜎ො = 𝑛−𝑘 ▪ Thay 𝜎ො 2 vào công thức 𝑉𝑎𝑟(𝛽መ𝑗 ), được 𝑉𝑎𝑟 ෢ 𝛽መ𝑗 ▪ Sai số chuẩn của ước lượng: 𝑆𝑒 𝛽መ𝑗 = ෢ 𝛽መ𝑗 𝑉𝑎𝑟 ▪ Tính được các hiệp phương sai của các cặp ước lượng hệ số: 𝐶𝑜𝑣 𝛽መ𝑗 , 𝛽መ𝑠 , 𝑗 ≠ 𝑠 KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 62
  14. Chương 2. Mô hình hồi quy bội 2.2. Phương pháp ước lượng OLS Sự tác động đến ước lượng hệ số ▪ Xét mô hình: 𝑌 = 𝛽1 + 𝛽2 𝑋2 + 𝑢 ; 𝑌෠𝑖 = 𝛽መ1 + 𝛽መ2 𝑋2𝑖 ▪ Khi thêm biến Z: 𝑌 = 𝛽1∗ + 𝛽2∗ 𝑋2 + 𝛽3 𝑍 + 𝑢 𝑌෠𝑖 = 𝛽መ1∗ + 𝛽መ2∗ 𝑋𝑖 + 𝛽መ3 𝑍𝑖 ▪ Ước lượng hệ số biến X không đổi: 𝛽መ2 = 𝛽መ2∗ nếu: • Ước lượng hệ số biến Z bằng 0: 𝛽መ3 = 0 • Hoặc hệ số tương quan mẫu X và Z bằng 0: rX,Z = 0 ▪ Tổng quát: Nếu tất cả các biến thêm vào đều không tương quan với biến X thì ước lượng hệ số của X sẽ không đổi KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 63
  15. Chương 2. Mô hình hồi quy bội 2.3. SỰ PHÙ HỢP CỦA HÀM HỒI QUY MẪU ▪ Hệ số xác định (bội) 𝟐 𝐸𝑆𝑆 𝑅𝑆𝑆 𝑹 = =1− 𝑇𝑆𝑆 𝑇𝑆𝑆 ▪ R2  [0,1] ▪ Cho biết tỉ lệ (%) sự biến động trong mẫu của biến phụ thuộc được giải thích bởi mô hình (bởi sự biến động của tất cả các biến độc lập). ▪ R2 = 0: tất cả các biến độc lập đều không giải thích 2 ▪ 𝑅2 = 𝑟 ෠ 𝑌,𝑌 KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 64
  16. Chương 2. Mô hình hồi quy bội 2.3. Sự phù hợp của hàm hồi quy mẫu Hệ số xác định (bội) điều chỉnh ▪ Thêm biến độc lập → R2 tăng lên ▪ Mô hình có R2 lớn hơn chưa chắc tốt hơn ▪ Hệ số xác định điều chỉnh (Adjuted R-squared) 2 RSS /(n − k ) 2 n−1 R =1− = 1 − (1 − R ) TSS /(n − 1) n−k ▪ Dấu hiệu nên thêm biến vào mô hình: 𝑅ത 2 tăng KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 65
  17. Chương 2. Mô hình hồi quy bội 2.4. MỘT SỐ DẠNG MÔ HÌNH HỒI QUY ▪ Xét các mô hình kinh tế đưa được về hồi quy tuyến tính theo hệ số ▪ Hàm tuyến tính (linear-linear) ▪ Hàm logarit (log-log) ▪ Hàm nửa logarit (lin-log và log-lin) ▪ Hàm đa thức theo biến độc lập KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 66
  18. Chương 2. Mô hình hồi quy bội 2.4. Một số dạng mô hình hồi quy Mô hình dạng tuyến tính theo biến ▪ Còn gọi là linear-linear ▪ Ví dụ: Hàm cầu tiêu dùng hàng hóa: 𝐷𝐴 = 𝛽1 + 𝛽2 𝑌𝑑 + 𝛽3 𝑃 + 𝛽4 𝑃𝑆 + 𝛽5 𝑃𝐶 + 𝑢 • Với DA là lượng cầu hàng hóa A, Yd là thu nhập khả dụng, PA là giá hàng hóa A, PS là giá hàng hóa thay thế, PC là giá hàng hóa bổ sung • Theo hệ số β2 thì phân loại hàng hóa A thế nào? • Dấu các hệ số góc như thế nào thì phù hợp? KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 67
  19. Chương 2. Mô hình hồi quy bội 2.4. Một số dạng mô hình hồi quy Mô hình dạng log-log ▪ Hàm sản xuất Cobb-Douglas: 𝑄 = 𝐴. 𝐾𝛽2 𝐿𝛽3 ▪ Thêm sai số: 𝑄 = 𝐴. 𝐾𝛽2 𝐿𝛽3 𝑒 𝑢 ▪ Logarit: ln 𝑄 = ln 𝐴 + 𝛽2 ln 𝐾 + 𝛽3 ln 𝐿 + 𝑢 ▪ Tổng quát: ln 𝑌 = 𝛽1 + 𝛽2 ln 𝑋2 + ⋯ + 𝛽𝑘 ln 𝑋𝑘 + 𝑢 𝑑𝑌 𝑑𝑋2 • Vi phân hai vế: = 𝛽2 𝑌 𝑋2 • 𝛽2 = 𝜀𝑋𝑌2 là độ co giãn của Y theo X2 • Khi X2 tăng 1%, trung bình Y tăng β2% KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 68
  20. Chương 2. Mô hình hồi quy bội 2.4. Một số dạng mô hình hồi quy Mô hình dạng log-log ▪ Ví dụ: Phân tích kết quả ước lượng hàm sản xuất như sau: ෣ = 0,23 + 0,62 ln 𝐾 + 0,57ln(𝐿) ln(𝑄) Với Q là sản lượng, K là vốn, L là lao động ▪ Ví dụ: Khi nào hàng hóa là thấp cấp, thông thường, thiết yếu, xa xỉ nếu hàm cầu theo thu nhập khả dụng có dạng: ln(D) = β1 + β2 ln(Yd) + u KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 69
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2