intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Kinh tế lượng 1: Chương 2 - Bùi Dương Hải

Chia sẻ: Minh Hoa | Ngày: | Loại File: PDF | Số trang:17

55
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng "Kinh tế lượng 1 - Chương 2: Mô hình hồi quy bội" cung cấp cho người học các kiến thức: Sự cần thiết của hồi quy bội, phương pháp ước lượng OLS, sự phù hợp của hàm hồi quy, một số dạng mô hình hồi quy. Mời các bạn cùng tham khảo.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Kinh tế lượng 1: Chương 2 - Bùi Dương Hải

  1. Chương 2. MÔ HÌNH HỒI QUY BỘI ▪ Đặt k là số hệ số có trong mô hình ▪ Với k = 2 là hồi quy đơn (single-regression) ▪ Với k  2: hai biến độc lập trở lên, gọi là hồi quy bội (multi-regression) hay hồi quy đa biến (multivariate regression) KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 38
  2. Chương 2. Mô hình hồi quy bội NỘI DUNG CHƯƠNG 2 ▪ 2.1. Sự cần thiết của hồi quy bội ▪ 2.2. Phương pháp ước lượng OLS ▪ 2.3. Sự phù hợp của hàm hồi quy ▪ 2.4. Một số dạng mô hình hồi quy KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 39
  3. Chương 2. Mô hình hồi quy bội 2.1. SỰ CẦN THIẾT CỦA HỒI QUY BỘI ▪ Hồi quy đơn: Y = β1 + β2X + u ▪ Yếu tố có tương quan với X trong u, giả sử là Z ▪ Z là biến độc lập mới, mô hình có dạng Y = β1 + β2X + β3Z + u ▪ Hồi quy đơn hạn chế về dạng hàm ▪ Hồi quy bội có dạng hàm phù hợp hơn, dự báo tốt hơn ▪ Phong phú hơn trong phân tích kinh tế KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 40
  4. Chương 2. Mô hình hồi quy bội 2.1. Sự cần thiết của hồi quy bội Mô hình hồi quy k biến ▪ Mô hình có (k – 1) biến độc lập, k hệ số: 𝑌 = 𝛽1 + 𝛽2 𝑋2 + 𝛽3 𝑋3 + ⋯ + 𝛽𝑘 𝑋𝑘 + 𝑢 𝐸(𝑌|𝑋2 , … 𝑋𝑘 ) = 𝛽1 + 𝛽2 𝑋2 + 𝛽3 𝑋3 + ⋯ + 𝛽𝑘 𝑋𝑘 • Hệ số chặn: 𝛽1 = 𝐸 𝑌 𝑋2 = ⋯ = 𝑋𝑘 = 0 • Hệ số góc: 𝛽𝑗 (j = 2,…, k): tác động riêng của Xj • Nếu 𝛽2 = ⋯ = 𝛽𝑘 = 0: hàm hồi quy không phù hợp KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 41
  5. Chương 2. Mô hình hồi quy bội 2.2. PHƯƠNG PHÁP ƯỚC LƯỢNG OLS ▪ Tìm 𝛽መ𝑗 sao cho   n n 2 RSS   e   Yi  ˆ1  ˆ2 X 2i  ...  ˆk X ki 2 i  min i 1 i 1 ▪ Giải hệ k phương trình bậc nhất k ẩn ▪ Cách giải qua ma trận ▪ Để giải được nghiệm: các biến độc lập không được có quan hệ cộng tuyến hoàn toàn với nhau KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 42
  6. Chương 2. Mô hình hồi quy bội 2.2. Phương pháp ước lượng OLS Các giả thiết OLS ▪ Giả thiết 1: Mẫu là ngẫu nhiên, độc lập (X2i ,…, Xki ,Yi), i = 1,2,…, k là độc lập ▪ Giả thiết 2: Kì vọng sai số ngẫu nhiên bằng 0 E(u | X2 ,…, Xk ) = 0 hay E(ui | X2i ,…, Xki) = 0 ▪ Giả thiết 3: Phương sai sai số ngẫu nhiên không đổi Var(u | X2,…, Xk) = 2 ▪ Giả thiết 4: Các biến độc lập không có quan hệ cộng tuyến hoàn hảo KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 43
  7. Chương 2. Mô hình hồi quy bội 2.2. Phương pháp ước lượng OLS Định lý Gauss – Markov ▪ Định lý: Khi các giả thiết 1 đến 4 được thỏa mãn thì các ước lượng OLS là các ước lượng tuyến tính, không chệch, tốt nhất (trong lớp các ước lượng tuyến tính không chệch) ▪ 𝛽መ𝑗𝑂𝐿𝑆 là BLUE: Best Linear Unbiased Estimator ▪ 𝛽መ𝑗𝑂𝐿𝑆 là ước lượng tuyến tính, không chệch, tốt nhất của βj (j = 1  k ) KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 44
  8. Chương 2. Mô hình hồi quy bội 2.2. Phương pháp ước lượng OLS Độ chính xác của ước lượng OLS ▪ Phương sai sai số ngẫu nhiên được ước lượng bởi 2 𝑅𝑆𝑆 𝜎ො = 𝑛−𝑘 ▪ Thay 𝜎ො 2 vào công thức 𝑉𝑎𝑟(𝛽መ𝑗 ), được 𝑉𝑎𝑟 ෢ 𝛽መ𝑗 ▪ Sai số chuẩn của ước lượng: 𝑆𝑒 𝛽መ𝑗 = ෢ 𝛽መ𝑗 𝑉𝑎𝑟 ▪ Tính được các hiệp phương sai của các cặp ước lượng hệ số: 𝐶𝑜𝑣 𝛽መ𝑗 , 𝛽መ𝑠 , 𝑗 ≠ 𝑠 KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 45
  9. Chương 2. Mô hình hồi quy bội 2.3. SỰ PHÙ HỢP CỦA HÀM HỒI QUY MẪU ▪ Hệ số xác định (bội) 𝟐 𝐸𝑆𝑆 𝑅𝑆𝑆 𝑹 = =1− 𝑇𝑆𝑆 𝑇𝑆𝑆 ▪ R2  [0,1] ▪ Cho biết tỉ lệ (%) sự biến động trong mẫu của biến phụ thuộc được giải thích bởi mô hình (bởi sự biến động của tất cả các biến độc lập). ▪ R2 = 0: tất cả các biến độc lập đều không giải thích 2 ▪ 𝑅2 = 𝑟 ෠ 𝑌,𝑌 KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 46
  10. Chương 2. Mô hình hồi quy bội 2.3. Sự phù hợp của hàm hồi quy mẫu Hệ số xác định (bội) điều chỉnh ▪ Thêm biến độc lập  R2 tăng lên ▪ Mô hình có R2 lớn hơn chưa chắc tốt hơn ▪ Hệ số xác định điều chỉnh (Adjuted R-squared) 2 RSS /(n  k ) 2 n1 R 1  1  (1  R ) TSS /(n  1) nk KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 47
  11. Chương 2. Mô hình hồi quy bội 2.4. MỘT SỐ DẠNG MÔ HÌNH HỒI QUY ▪ Xét các mô hình kinh tế đưa được về hồi quy tuyến tính theo hệ số ▪ Hàm tuyến tính (linear-linear) ▪ Hàm logarit (log-log) ▪ Hàm nửa logarit (lin-log và log-lin) ▪ Hàm đa thức theo biến độc lập KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 48
  12. Chương 2. Mô hình hồi quy bội 2.4. Một số dạng mô hình hồi quy Mô hình dạng tuyến tính theo biến ▪ Còn gọi là linear-linear ▪ Ví dụ: Hàm cầu tiêu dùng hàng hóa: 𝐷𝐴 = 𝛽1 + 𝛽2 𝑌𝑑 + 𝛽3 𝑃 + 𝛽4 𝑃𝑆 + 𝛽5 𝑃𝐶 + 𝑢 • Với DA là lượng cầu hàng hóa A, Yd là thu nhập khả dụng, PA là giá hàng hóa A, PS là giá hàng hóa thay thế, PC là giá hàng hóa bổ sung KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 49
  13. Chương 2. Mô hình hồi quy bội 2.4. Một số dạng mô hình hồi quy Mô hình dạng log-log ▪ Hàm sản xuất Cobb-Douglas: 𝑄 = 𝐴. 𝐾𝛽2 𝐿𝛽3 ▪ Thêm sai số: 𝑄 = 𝐴. 𝐾𝛽2 𝐿𝛽3 𝑒 𝑢 ▪ Logarit: ln 𝑄 = ln 𝐴 + 𝛽2 ln 𝐾 + 𝛽3 ln 𝐿 + 𝑢 ▪ Tổng quát: ln 𝑌 = 𝛽1 + 𝛽2 ln 𝑋2 + ⋯ + 𝛽𝑘 ln 𝑋𝑘 + 𝑢 KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 50
  14. Chương 2. Mô hình hồi quy bội 2.4. Một số dạng mô hình hồi quy Mô hình dạng lin-log và log-lin ▪ Mô hình lin-log: Y = β1 + β2 ln(X) + u • Khi X tăng 1% thì Y tăng (β2 / 100) đơn vị ▪ Mô hình log-lin còn gọi là mô hình tăng trưởng (growth) : ln(Y) = β1 + β2 X + u hay 𝑌 = 𝑒 𝛽1+𝛽2𝑋+𝑢 • Khi X tăng 1 đơn vị thì Y tăng 100β2% KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 51
  15. Chương 2. Mô hình hồi quy bội 2.4. Một số dạng mô hình hồi quy Mô hình hình dạng đa thức ▪ Mô hình dạng bậc 2: Y = β1 + β2X + β3X 2 + u ▪ Tác động của X: dY/dX = β2 + 2β3X ▪ Cực trị parabol tại X0 = –β2 / (2β3) β3 β2 Khi X tăng (Chỉ xét X > 0) (+) (+) Y tăng nhanh dần (+) (–) Y giảm về đáy rồi tăng (–) (+) Y giảm nhanh dần (–) (–) Y tăng đến đỉnh rồi giảm KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 52
  16. Chương 2. Mô hình hồi quy bội 2.4. Một số dạng mô hình hồi quy Mô hình dạng đa thức ▪ Mô hình dạng nghịch đảo của biến độc lập Y = β1 + β2 (1 / X) + u • Y tiệm cận β1 khi X rất lớn • X tăng: β2 > (
  17. Chương 2. Mô hình hồi quy bội Tóm tắt chương 2 ▪ Mô hình hồi quy k biến ▪ Ý nghĩa các hệ số ▪ Các giả thiết OLS và tính BLUE ▪ Hệ số xác định và hệ số xác định điều chỉnh ▪ Các dạng hàm: tuyến tính, logarit, nửa logarit, đa thức KINH TẾ LƯỢNG 1 – Bộ môn Toán kinh tế – NEU – www.mfe.edu.vn 54
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2