BÀI TẬP NÂNG CAO HÌNH HỌC 8 TẬP I
lượt xem 33
download
1.Cho góc vuông xOy, điểm A thuộc cạnh Ox. Một điểm M chạy trên Oy . Dựng tam giác AMN vuông cân ở A .Tìm tập hợp các đỉnh N. 2. Cho đoạn thẳng AB và một điểm C chuyển động trên đoạn thẳng đó. Trên cùng một nửa mặt phẳng bờ AB , vẽ hai tam giác đều ACE, BCD. Tìm tập hợp trung điểm M của đoạn DE
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: BÀI TẬP NÂNG CAO HÌNH HỌC 8 TẬP I
- BÀI TẬP NÂNG CAO HÌNH HỌC 8 TẬP I GV Tôn Nữ Bích Vân ĐƯỜNG THẲNG SONG SONG VỚI MỘT ĐƯỜNG THẲNG CHO TRƯỚC 1 .Cho góc vuông xOy, điểm A thuộc cạnh Ox. Một điểm M chạy trên O y . Dựng tam giác AMN vuông cân ở A .Tìm tập hợp các đỉnh N. 2 . Cho đo ạn thẳng AB và một điểm C chuyển động trên đoạn thẳng đó. Trên cùng một nửa mặt phẳng bờ AB , vẽ hai tam giác đều ACE, BCD. Tìm tập hợp trung điểm M của đoạn DE HÌNH THOI 1. Hình thoi ABCD có A = 60o. Trên AD và CD lấy các điểm M, N sao cho AM + CN = AD. Gọi P là điểm đối xứng của N qua BC, MP cắt BC tại Q . Tứ giác MDCQ là hình gì ? Vì sao ? 2. Cho P là một điểm chuyển động trong tam giác ABC sao cho PBA = PCA . Hạ PM AB; PN AC (M AB; N AC). G ọi K, S là hai đỉnh khác của hình thoi KMSN. Chứng minh KS đi qua một đ iểm cố định. 3. Cho hình bình hành ABCD, hai đường chéo cắt nhau ở O. Hai đường thẳng d1 và d2 cùng đi qua O và vuông góc với nhau. Đ ường thẳng d1 cắt các cạnh AB và CD ở M và P. Đường thẳng d2 cắt các cạnh BC và AD ở N và Q. Chứng minh tứ giác MNPQ là hình thoi. HÌNH VUÔNG 1. Cho tam giác ABC. Dựng ra phía ngoài tam giác các hình vuông ABCD và ACEF. Gọi Q, N lần lượt là giao điểm các đường chéo của 1
- BÀI TẬP NÂNG CAO HÌNH HỌC 8 TẬP I GV Tôn Nữ Bích Vân ABCD và ACEF; M, P lần lượt là trung điểm BC và DF. Chứng minh rằng tứ giác MNPQ là hình vuông. 2. Cho tam giác ABC, dựng ra phía ngoài tam giác các hình vuông ABCD và ACEF. Vẽ đ ường cao AH kéo dài HA gặp DF tại E. Chứng minh rằng DI = IF 3.Cho hình vuông ABCD. Trên CD lấy M. Tia phân giác của ABM cắt AD ở I. Chứng minh rằng BI 2 MI. 4. Cho hình vuông ABCD. Lấy E thuộc đường chéo AC. Kẻ EF AD; EG CD a. Chứng minh rằng EB = FG ; và EB FG b. Chứng minh rằng: Các đường thẳng BE, AG, CF đồng qui. 5. Vẽ ra phía ngo ài tam giác ABC các hình vuông ABDE và ACFG, vẽ hình bình hành EAGH. Chứng minh rằng: a. AK = BC b . AH BC c. Các đường thẳng KA, BF, CD đồng qui ĐA GIÁC. ĐA GIÁC ĐỀU 1. Tính số cạnh của một đa giác biết rằng tất cả các góc của đa giác bằng nhau và tổng của tất cả các góc ngoài với một trong các góc của đa giác có số đo bằng 468o. 2
- BÀI TẬP NÂNG CAO HÌNH HỌC 8 TẬP I GV Tôn Nữ Bích Vân 2. Cho ngũ giác lồi ABCDE. Gọi H, K lần lượt là trung điểm của MN và AE PQ. Chứng minh rằng HK // AE và HK = (M, N, P, Q thứ tự là trung 4 điểm AB, CD, BC, ED) 3. Cho lục giác đều ABCDEF. Gọi M, N theo thứ tự là trung điểm của CD, DE và I là giao điểm của AM và BN. a. Tính AIB b . Tính OID (O là tâm của lục giác đều) DIỆN TÍCH HÌNH CHỮ NHẬT 1.Cho hình chữ nhật ABCD có AB = 5cm, BC = 4cm. Trên cạnh AD dựng tam giác ADE sao cho AE và DE cắt cạnh BC lần lượt tại M và N và M là trung điểm của đoạn thẳng AE. Tính diện tích tam giác ADE 2.Tính diện tích hình chữ nhật biết rằng trong hình chữ nhật có một diểm M các 3.Cho hình chữ nhật ABCD, E là điểm tuỳ ý trên AB. Chứng minh rằng: SABCD = 2 SECD. DIỆN TÍCH TAM GIÁC 3
- BÀI TẬP NÂNG CAO HÌNH HỌC 8 TẬP I GV Tôn Nữ Bích Vân 1. Cho hình chữ nhật ABCD có AB = 4cm, BC = 3cm. Trên DC lấy điểm M sao cho MC = 2cm, điểm N thuộc cạnh AB. Tính diện tích tam giác CMN 2. Cho tam giác ABC. Các đường trung tuyến BE và CF cắt nhau tại G. So sánh diện tích tam giác GEC và tam giác ABC 3. Một điểm D thuộc cạnh AB của tam giác ABC. Dựng qua D một đường thẳng chia tam giác thành hai phần có diện tích bằng nhau. S MCD S ABCD 4. Cho hình chữ nhật ABCD và điểm M thuộc cạnh AB. Tìm tỉ số 5. a/ Chứng minh rằng các đường trung tuyến của tam giác chia tam giác thành 6 phần có diện tích bằng nhau. b/ G ọi G là trọng tâm của tam giác ABC thì SGAB = SGAC = SGBC. 6. Cho tam giác vuông ABC vuông tại A. Trên cạnh AB, AC, BC và ở phía ngoài của tam giác dựng các hình vuông ABED, ACPQ và BCMN. Đường cao AH thuộc cạnh huyền của tam giác vuông ABC cắt MN tại F. Chứng minh: a/ SBHFN = SABED, từ đó suy ra AB2 = BC.BH b/ SHCMF = SACPQ, từ đó suy ra AC2 = BC.HC 7. Cho tam giác ABC có ba góc nhọn, các đường cao BH, CK. Gọi B', C' là hình chiếu của B, C trên đường thẳng HK. Chứng minh rằng: a. B'K = C'H b . SBKC + SBHC = SBB'C’C 4
- BÀI TẬP NÂNG CAO HÌNH HỌC 8 TẬP I GV Tôn Nữ Bích Vân DIỆN TÍCH HÌNH THANG 1. a/Tính diện tích hình thang cân có đường cao h và các đường chéo vuông góc với nhau. b/ Hai đường chéo của hình thang cân vuông góc với nhau còn tổng hai cạnh đáy bằng 2a. Tính diện tích của hình thang. 2. Cho hình bình hành ABCD, trên tia đối của tia BA lấy điểm E, trên tia đối của tia DA lấy điểm K. Đường thẳng ED cắt KB tại O. Chứng minh rằng diện tích tứ giác ABOD và CEOK bằng nhau. DIỆN TÍCH HÌNH THOI 1. Đường chéo của hình thoi bằng 18 cm; 24cm. Tính chu vi hình thoi và khoảng cách giữa các cạnh song song. 2. Diện tích của một hình thoi là 540dm2. Một trong những đ ường chéo của nó bằng 4,5dm. Tính khoảng cách giao điểm của các đường chéo đến các cạnh. 3.Chứng minh rằng diện tích của một tam giác nội tiếp trong hình bình hành (tức là tam giác có 3 đỉnh nằm trên các cạnh của tam giác) không lớn hơn nửa diện tích hình bình hành. 4.Cho hình bình hành ABCD và điểm M cố định trên cạnh BC.N là điểm tuỳ ý trên cạnh AD. Gọi R là giao điểm của AM, BN; S là giao điểm của MD và NC. Xác địnhvị trí của N để SMRNS đ ạt giá trị lớn nhất. 5
- BÀI TẬP NÂNG CAO HÌNH HỌC 8 TẬP I GV Tôn Nữ Bích Vân 5. Cho hình bình hành ABCD, trên tia đối của tia BA lấy điểm E, trên tia đối của tia DA lấy điểm K. Đường thẳng ED cắt KB tại O. Chứng minh rằng diện tích tứ giác ABOD và CEOK bằng nhau. DIỆN TÍCH ĐA GIÁC 1.Cho hình bình hành ABCD. Từ B kẻ đường thẳng cắt cạnh CD tại M (M nằm giữa C và D). Từ D kẻ đường thẳng cắt cạnh CB tại điểm N (N nằm giữa B và C); BM và DN cắt nhau tại I. Biết BM = ND a/ Chứng minh diện tích tam giác ABM bằng diện tích tam giác AND b/ Chứng minh IA là phân giác của góc BID 2. Cho hình bình hành ABCD. Gọi P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Nối AQ và RB cắt nhau ở điểm I, nối AQ và DP cắt nhau ở K, CS cắt DP ở N và CS cắt RB ở M. a/ Chứng minh tứ giác MNIK là hình bình hành. 2 2 b/ Chứng minh KI AQ và KN DP 5 5 1 c/ Chứng minh diện tích hình bình hành MNKI b ằng diện tích 5 hình bình hành ABCD. 6
- BÀI TẬP NÂNG CAO HÌNH HỌC 8 TẬP I GV Tôn Nữ Bích Vân ÔN TẬP HỌC KỲ I Bài 1: Cho tam giác ABC cân tại A, đường trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng với M qua I. a/ Tứ giác AMCK là hình gì? Vì sao? b/ Tứ giác AKMB là hình gì? Vì sao? c/ Tìm đ iều kiện của ABC để tứ giác AMCK là hình vuông. Bài 2: Cho hình vuông ABCD có diện tích bằng 225cm2. Lấy điểm E trên cạnh AD sao cho DE=10cm. Nối EC. Qua C, dựng CF EC (F thuộc AB). a/ Tính SABCE b/Tính SBCF Bài 3: Cho hình bình hành ABCD. K ẻ AE và AF lần lượt vuông góc với BC và CD tại E và F. AE AB a/ Chứng minh AF BC b/ Gọi M và N lần lượt là trung điểm của AB và CD. Chứng minh SABCD =2SAMCN Bài 4: Cho hình thoi ABCD, gọi O là giao điểm của hai đường chéo. Vẽ đường thẳng qua B và song song với AC, vẽ đường thẳng qua C và song song với BD, hai đường thẳng đó cắt nhau ở K. a/ Tứ giác OBKC là hình gì? Vì sao? 7
- BÀI TẬP NÂNG CAO HÌNH HỌC 8 TẬP I GV Tôn Nữ Bích Vân b/ Chứng minh rằng AB = OK c/ Tìm điều kiện của hình thoi ABCD để tứ giác OBKC là hình vuông. Bài 5: Cho hình bình hành ABCD có BC = 2AB và Â = 60 0. Gọi E, F theo thứ tự là trung điểm của BC, AD. a/ Tứ giác ECDF là hình gì? Vì sao? b/ Tứ giác ABED là hình gì? Vì sao? c/ Tính số đo của AÊD. Bài 6: Cho hình bình hành ABCD, kẻ CM AB tại M và DN BC ở N . Biết BC = 12cm, CM = 9cm, DN = 15cm. Tính DC. Bài 7: Cho hình chữ nhật ABCD có cạnh AB = 4cm, BC = 3cm. Kẻ các tia phân giác của các góc trong, chúng cắt nhau ở M, N, P, Q. a/ Chứng minh tứ giác MNPQ là hình vuông. b/ Tính diện tích hình vuông MNPQ. Bài 8: Cho tam giác đều ABC a/ Chứng minh 3 đường cao của tam giác đó bằng nhau b/ Chứng minh rằng tổng các khoảng cách từ điểm D bất kỳ thuộc miền trong của tam giác đều đó đến các cạnh của tam giác không phụ thuộc vào vị trí của D. 8
- BÀI TẬP NÂNG CAO HÌNH HỌC 8 TẬP I GV Tôn Nữ Bích Vân Bài 9: Cho tam giác cân ABC (AB = AC), đường cao AH, O là trung điểm của AH. Tia BO cắt AC tại D, tia CO cắt AB ở E. Tính tỉ số diện tích tứ giác ADOE và diện tích tam giác ABC. Bài 10: Cho hình bình hành ABCD. Từ B kẻ đường thẳng cắt cạnh CD tại M (M nằm giữa C và D). Từ D kẻ đường thẳng cắt cạnh CB tại điểm N (N nằm giữa B và C); BM và DN cắt nhau tại I. Biết BM = ND a/ Chứng minh diện tích tam giác ABM bằng diện tích tam giác AND b/ Chứng minh IA là phân giác của góc BID Bài 11: Cho hình bình hành ABCD. Gọi P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Nối AQ và RB cắt nhau ở điểm I, nối AQ và DP cắt nhau ở K, CS cắt DP ở N và CS cắt RB ở M. a/ Chứng minh tứ giác MNIK là hình bình hành. 2 2 AQ và KN DP b/ Chứng minh KI 5 5 1 c/ Chứng minh diện tích hình bình hành MNKI bằng diện tích 5 hình bình hành ABCD. Bài 12: Cho hình bình hành ABCD và điểm O tùy ý thuộc miền trong của hình bình hành. Nối OA, OB, OC, OD. Chứng minh: SOAB+ SOCD = SOAD+ SOBC 9
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài tập nâng cao và một số chuyên đề hình học 10
322 p | 1856 | 555
-
Bài tập nâng cao và một sô chuyên đề hình học 10 P1
80 p | 1118 | 484
-
Bài tập nâng cao và một sô chuyên đề hình học 10 P2
80 p | 777 | 381
-
BÀI TẬP NÂNG CAO HÌNH HỌC LỚP 6 - TẬP II
4 p | 2307 | 256
-
Bài tập nâng cao và một sô chuyên đề hình học 10 P3
80 p | 536 | 242
-
Bài tập nâng cao và một sô chuyên đề hình học 10 P4
82 p | 412 | 219
-
phương pháp giải bài tập trắc nghiệm hình học 11 (chương trình nâng cao): phần 1
103 p | 296 | 107
-
phương pháp giải bài tập trắc nghiệm hình học 11 (chương trình nâng cao): phần 2
88 p | 208 | 83
-
Tuyển chọn một số bài toán nâng cao lớp 7
5 p | 703 | 71
-
toán nâng cao cho học sinh - hình học 10: phần 1
178 p | 188 | 48
-
tổng ôn tập toán thcs thi vào lớp 10: phần 1
113 p | 118 | 13
-
Tổng hợp kiến thức cơ bản và nâng cao Hình học 12 (Tái bản lần thứ nhất): Phần 2
71 p | 100 | 12
-
tổng ôn tập toán thcs thi vào lớp 10: phần 2
80 p | 77 | 9
-
Tổng hợp kiến thức cơ bản và nâng cao Hình học 12 (Tái bản lần thứ nhất): Phần 1
17 p | 113 | 6
-
Bài tập trắc nghiệm Hình học 12 từ cơ bản đến nâng cao - Nguyễn Hoàng Việt
283 p | 16 | 6
-
Bài tập cơ bản và nâng cao Hình học lớp 6 - ThS. Bùi Đức Phương
154 p | 27 | 4
-
Toán nâng cao 12
164 p | 35 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn