intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Sáng kiến kinh nghiệm THPT: Hình học hóa bài toán số phức

Chia sẻ: Chubongungoc | Ngày: | Loại File: PDF | Số trang:39

33
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Mục tiêu nghiên cứu của sáng kiến kinh nghiệm là cung cấp lí thuyết về số phức: Khái niệm số phức, phần thực, phần ảo của số phức, hai số phức bằng nhau, số phức liên hợp, biểu diễn hình học của số phức và môđun của số phức, các phép toán cộng, trừ, nhân, chia trên tập số phức, căn bặc hai của số thực âm, căn bậc hai của số phức, giải phương trình bậc hai với hệ số thực, hệ số phức trên tập hợp số phức. Chia thành nhiều dạng bài tập, có những bài tập nâng cao. Ứng với mỗi dạng bài tập, chúng tôi hướng dẫn học sinh phương pháp giải, bài tập minh họa và cho bài tập tự luyện. Dạy học sinh sử dụng MTCT. Cung cấp cho học sinh những công thức giải nhanh và các thủ thuật tính toán Hướng dẫn cách sáng tạo ra bài tập mới.

Chủ đề:
Lưu

Nội dung Text: Sáng kiến kinh nghiệm THPT: Hình học hóa bài toán số phức

  1. CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự do - Hạnh phúc   ĐƠN YÊU CẦU CÔNG NHẬN SÁNG KIẾN    Kính gửi: - Trường THPT Yên Khánh A;   - Sở Giáo dục và Đào tạo tỉnh Ninh Bình.  Tôi (hoặc chúng tôi) ghi tên dưới đây:  Tỷ lệ (%) đóng Ngày tháng Chức Trình độ STT Họ và tên Nơi công tác góp vào việc tạo năm sinh vụ chuyên môn ra sáng kiến 1.  Nguyễn Hương Thơm  25/10/1979  THPT. YKA  GV  Cử nhân  40%  2.  Trịnh Đình Ngọc  29/11/1981  THPT.YKA  GV  Cử nhân  30%  3.  Đinh Thị Minh Tân  14/2/1980  THPT.YKA  GV  Cử nhân  30%  1. TÊN SÁNG KIẾN, LĨNH VỰC ÁP DỤNG  Tên sáng kiến: “Hình học hóa bài toán số phức”  Lĩnh vực áp dụng:Toán học.  2. NỘI DUNG a. Giải pháp cũ thường làm. Trước  đây  khi  chưa  có  hình  thức  thi  trắc  nghiệm  dạy  chuyên  đề  số  phức,  chúng  tôi  thường dạy như sau:    Dạy theo từng bài. Ứng với mỗi bài, chúng tôi cho bài tập áp dụng đơn giản, chỉ đảm bảo  kiến thức trong Sách giáo khoa không mở rộng, nâng cao.  Vì thế mà chúng tôi thấy rằng phương pháp đó có những hạn chế là:     1. Chưa khắc sâu được khái niệm nên học sinh hay nhầm lẫn giữa tập hợp số thực và tập  hợp số phức.    2. Vì hệ thống bài tập dễ nên học sinh chủ quan, không chịu rèn luyện kĩ năng nên tính  toán hay sai. Học sinh cảm  thấy bài tập đơn điệu, nhàm chán, không đáp ứng được nhu cầu học  của học sinh khá, giỏi.    3. Học sinh không thấy được mối liên hệ với các bài toán ở lớp dưới, không biết qui lạ về  quen, không được củng cố, ôn tập một số dạng toán cơ bản ở lớp 10.    4. Học sinh không biết xây dựng hệ thống bài tập từ một bài tập đã cho.  b. Giải pháp mới cải tiến.   Với giai đoạn hiện nay thi trắc nghiệm đòi hỏi học sinh phản xạ nhạnh với các kiểu câu  hỏi và bài tập, làm bài trong thời gian ngắn nhất nhưng hiệu quả nhất chế trên, chúng tôi đã cải  tiến phương pháp dạy chuyên đề số phức thông qua các giải pháp như sau:    1) Cung cấp lí thuyết về số phức: Khái niệm số phức, phần thực, phần ảo của số phức, hai  số phức bằng nhau, số phức liên hợp, biểu diễn hình học của số phức và môđun của số phức, các  phép toán cộng, trừ, nhân, chia trên tập số phức, căn bặc hai của số thực âm, căn bậc hai của số  phức, giải phương trình bậc hai với hệ số thực, hệ số phức  trên tập hợp số phức.    2) Chia thành nhiều dạng bài tập, có những bài tập nâng cao. Ứng với mỗi dạng bài tập,  chúng tôi hướng dẫn học sinh phương pháp giải, bài tập minh họa  và cho bài tập tự luyện.              3) Dạy học sinh sử dụng MTCT              4) Cung cấp cho học sinh những công thức giải nhanh và các thủ thuật tính toán  5) Hướng dẫn cách sáng tạo ra bài tập mới.  * Với đề tài này chúng tôi tập trung vào mảng kiến thức biểu diễn hình học của số phức  và cực trị số phức chúng tôi đã tiến hành   1) Cung cấp những dạng biểu diễn hình học cơ bản của số phức, cực trị cơ bản  1   
  2.   2) Chia thành nhiều dạng bài tập, có những bài tập nâng cao. Ứng với mỗi dạng bài tập,  chúng tôi hướng dẫn học  sinh phương pháp giải tự luận, trắc nghiệm, đặc biệt chúng tôi mô tả  đưa ra góc nhìn mới cho học sinh dưới dạng quy về bài toán hình học, bài tập minh họa  và cho  bài tập tự luyện.              3) Dạy học sinh sử dụng MTCT              4) Cung cấp cho học sinh những công thức giải nhanh và các thủ thuật tính toán  5) Hướng dẫn cách sáng tạo ra bài tập mới.    Ưu điểm của giải pháp mới:   1. Học sinh được củng cố, khắc sâu kiến thức cũ.    2. Ứng với mỗi dạng bài tập, học sinh đều được tiếp cận với các khái niệm liên quan đến  số phức, và các phép toán trên tập hợp số phức các em có góc nhìn mới về số phức tạo được sự  hứng thú say mê trong học tập. Qua các dạng bài, các em thấy được mối liên hệ của bài toán số  phức hình học giải tích trong mặt phẳng đã được học ở lớp 10.  Rèn luyện cho  học sinh tư duy  tổng hợp.  3. Cách sáng tạo ra bài toán mới, giúp học sinh biết qui lạ về quen. Học sinh không còn  bỡ ngỡ khi giải các bài toán khó về số phức. Học sinh còn cảm thấy hứng thú vì mình có thể tự  ra được bài tập. Khi các em tự ra được các đề toán các em sẽ nắm vấn đề của bài toán tốt hơn và  nhanh chóng đưa ra được lời giải.    4. Hướng dẫn sử dụng MTCT giúp các em xử lí bài toán nhanh chóng chính xác hơn   5.  Hệ  thống  các  công  thức  giải  nhanh  giúp  các em  áp dụng  trực  tiếp  không  mất  nhiều  thời gian giải tự luận , rút ngắn thời gian làm bài    6.  Hệ  thống  bài  tập  tự  luyện  sẽ  giúp  học  sinh  biết    phân  tích,  đánh  giá  để  lựa  chọn  phương  pháp  giải  thích  hợp  nhất  cho  từng  bài.  Rèn  luyện  cho  học  sinh  kĩ  năng  vận  dụng  linh  hoạt, sáng tạo.  3. HIỆU QUẢ KINH TẾ VÀ XÃ HỘI DỰ KIẾN ĐẠT ĐƯỢC a. Hiệu quả kinh tế Với sự nhiệt tình trong giảng dạy và hướng dẫn học sinh tự học, tự tìm tòi, cùng với sự  hỗ trợ của mạng internet đem lại hiệu quả rất lớn cho cả người dạy lẫn người học. Mỗi học sinh  không phải mất hàng triệu đồng thậm chí hàng chục triệu đồng để đi học thêm ở các trung tâm  luyện thi mà các em vẫn nắm được kiến thức một cách sâu sắc và vận dụng một cách sáng tạo  vào cuộc sống.   Những phẩm chất và  những trải  nghiệm mà  các  em học sinh lĩnh hội được sau bài học  giúp các em có thêm hiểu biết, tránh xa được các tai tệ nạn xã hội như nạn số đề, thậm chí các  em còn có thể giải thích cho những bạn đã và đang có ý định chơi số đề làm giàu từ số đề từ bỏ ý  định,  tu  chí  học  hành,  xây  dựng  tương lai.  Từ  đó  giúp  cho  gia  đình  và  xã  hội tránh  được  một  khoản tiền rất lớn do nạn số đề gây ra. Ngoài ra  những phẩm chất đó còn giúp cho các em khi  trưởng thành sẽ trở thành những công dân có ích cho đất nước, những chính trị gia, những nhà  khoa học, những nhà kinh tế…… phục vụ tổ quốc, làm giàu cho quê hương đất nước.   b. Hiệu quả xã hội Dạy học theo hướng đổi mới ở trên không chỉ giúp học sinh phát triển tư duy, phát triển  khả năng tự học, tự giác tích cực trong học tập mà còn giúp cho các em hình thành các năng lực,  phẩm chất cao quý, cần thiết cho xã hội hiện đại, xã hội của công nghệ thông tin, của số hóa, của  liên kết và hợp tác toàn cầu, cần thiết cho hội nhập và phát triển.  2   
  3. Ngoài  ra  giúp  học  sinh  hứng  thú  học  tập,  lôi  cuốn  vào  các  hoạt  động  học,  tạo  ra  môi  trường học tập lành mạnh, bạn học, tôi học từ đó các em không còn thời gian mà sa vào các tai tệ  nạn xã hội, tạo môi trường sống tốt đẹp hơn. Các em biết  yêu thương, quý trọng bản thân, cha  mẹ, ông bà, yêu thương gia đình, quê hương đát nước, sống có ý nghĩa, sống có trách nhiệm.  4. ĐIỀU KIỆN VÀ KHẢ NĂNG ÁP DỤNG Đề tài được áp dụng khi học sinh nắm tương đối tốt các bài toán đếm. Đề tài có tính khả  thi cao, có thể thực hiện ở nhiều trường THPT trong toàn tỉnh cũng như trong cả nước.   Đề tài cũng đã được chúng tôi áp dụng trong giảng dạy, kết quả cho thấy số lượng điểm  khá giỏi tăng lên, học sinh hào hứng, tích cực trong học tập. Từ đó càng tạo điều kiện cho chúng  tôi thêm hăng say nghiên cứu, tìm tòi, đổi mới các phương pháp dạy học, vận dụng các kĩ thuật  dạy học tích cực vào trong giảng dạy.  - Danh sách những người đã tham gia áp dụng thử hoặc áp dụng sáng kiến lần đầu (nếu  có):  Ngày tháng  Chức  Trình độ  Nội dung công việc hỗ  TT  Họ và tên  Nơi công tác  năm sinh  danh  chuyên môn  trợ   1.   Nguyễn Hương   25/10/1979 Yên khánh A  GV   Cử nhân   Âp dụng giảng dạy thử  Thơm  lớp 12B  3.   Trịnh Đình Ngọc  29/11/1981 Yên khánh A  GV  Cử nhân  Âp dụng giảng dạy thử  lớp 12K  4.   Đinh Thị Minh Tân  14/2/1980  Yên khánh A  GV  Cử nhân  Âp dụng giảng dạy thử  lớp 12N  Tôi (chúng tôi) xin cam đoan mọi thông tin nêu trong đơn là trung thực, đúng sự thật và  hoàn toàn chịu trách nhiệm trước pháp luật.   XÁC NHẬN CỦA LÃNH ĐẠO Yên Khánh, ngày 08 tháng 05 năm 2018 ĐƠN VỊ CƠ SỞ   Người nộp đơn Nguyễn Hương Thơm Trịnh Đình Ngọc Đinh Thị Minh Tân                  3   
  4. PHỤ LỤC 1 I CHUYÊN ĐỀ 1: BIỂU DIỄN HÌNH HỌC CỦA SỐ PHỨC. Dạng 1. Tìm tọa độ điểm M (biểu diễn M trên mặt phẳng tọa độ). A. Phương pháp  Từ  z  x  yi ( x, y  R)    M ( x; y )  biểu diễn cho số phức  z  trong  mặt phẳng toạ độ.  B. Bài tập minh họa. Đầu tiên tôi  cho học sinh làm các bài tập trắc nghiệm sau nhằm củng cố lại lý thuyết:  Câu 1:   Gọi  M  là điểm biểu  diễn  của số phức  z  a  bi a, b   trong mặt phẳng tọa độ.  mệnh đề nào sau đây đúng?  A. OM  z .     B. OM  a2  b2 .     C. OM  a  b .     D. OM  a 2  b 2 .   Câu 2: Gọi  M , N  lần lượt là hai điểm biểu diễn số phức  z1 , z2  trong mặt phẳng tọa độ. Mệnh đề  nào sau đây là đúng?     A. z1  z2  OM  ON .  B. z1  z2  MN .        C. z1  z2  OM  MN .  D. z1  z2  OM  MN .  Câu 3: Cho số phức  z  1  2i  . Điểm nào dưới đây  là điểm biểu diễn của số phức w  iz  trên  mặt phẳng tọa độ ? A. Q (1; 2).   B. N (2;1).   C. M (1; 2).   D. P( 2;1). Hướng dẫn giải:   w  iz  i 1  2i   2  i  điểm biểu diễn số phức  z có tọa độ   2;1   Hướng dẫn casio: w 2 U(1p2U)=2+U  N (2;1).    Câu 4: Số phức  z  thỏa mãn  z  4  3i 1  i . Hỏi điểm biểu diễn của số phức  z  là điểm nào  trong các điểm  M, N, P, Q sau?  A. M  7;1 .            B. N  7; 1 .    C. P 1; 7  .                D. Q  1; 7  .  Hướng dẫn giải:   z   4  3i 1  i   7  i  z  7  i   w 2 conjg  4  3i 1  i    7  i  N  7; 1   Câu 5: Số phức  z  thỏa mãn  (2  i ) z  7  i.  Hỏi điểm biểu diễn  của  z  là điểm nào trong các điểm M, N, P, Q ở hình dưới ?  A. Điểm P.            B. Điểm Q.      4   
  5. C. Điểm M.                D. Điểm N. Hướng dẫn giải:   7i (2  i ) z  7  i  z   3i  2i Do đó ta chọn đáp án C  Câu 6: Điểm  M  trong hình vẽ bên là điểm biểu diễn của số phức  z . Tìm phần thực và phần  ảo của số phức  z ?  y     A. Phần thực là 4 và phần ảo là  3 .  3 O x B. Phần thực là  3  và phần ảo là 4i .  C. Phần thực là  3  và phần ảo là  4 .  D. Phần thực là 4 và phần ảo là  3i .  4 Hướng dẫn giải:   M Chọn đáp án C  Câu 7: (đề minh họa của bộ GD –ĐT lần 2 năm 2017) Kí hiệu  z0 là nghiệm phức có phần  ảo  dương  của  phương  trình  4 z 2  16 z  17  0 .  Trên  mặt  phẳng  tọa  độ,  điểm  nào  dưới  đây  là  điểm biểu diễn số phức  w  iz0  ?  1   1   1  1  A. M  ; 2  .  B. M   ; 2    C. M   ;1 .  D. M  ;1    2   2   4  4  Hướng dẫn giải:   1 1 w 534=16=17=== được hai nghiệm  z1  2  i; z2  2  i   2 2  z0  z1    1  U(2+1a2$U)=p1a2$+2U  M   ; 2   2  Dạng 2. Tìm tập hợp điểm biểu diễn cho số phức z thoả mãn điều kiện cho trước. Tìm số phức z có hình biểu diễn cho trước.   A. Phương pháp  Tìm tập hợp điểm biểu diễn cho số phức z thoả mãn điều kiện cho trước  Gọi  z  x  yi ( x, y  R)    M ( x; y )  biểu diễn cho số phức  z  trong  mặt phẳng toạ độ.   Dựa vào dữ kiện bài toán, thiết lập mối liên hệ giữa  x  và  y    Dựa vào mối liên hệ đó, để kết luận tập hợp điểm trong mặt phẳng biểu diễn cho số phức  z.  Tìm số phức z có hình biểu diễn cho trước.   Tìm toạ độ điểm M (phụ thuộc tham số) biểu diễn cho số phức  z  trên mặt phẳng toạ độ.  5   
  6.  Cho M thuộc và hình biểu diễn của  z , ta tìm được giá trị của tham số.   Kết luận số phức  z  cần tìm.    B. Bài tập minh họa Dạng 2.1. Tập hợp điểm biểu diễn của số phức là đường tròn. Bài toán 1: Trên mặt phẳng toạ độ, tìm tập  hợp điểm biểu diễn số phức z thoả mãn điều kiện  sau:                 a)   z  1                  b)   z  4i  3  2                  c)   z  1  i  3.z  2  3i                  d)  1  i  z  1  7i  2     Lời giải: Gọi  z  x  yi ( x, y  R)    M ( x; y )  biểu diễn cho số phức  z  trong  mặt phẳng toạ độ.  a) Ta có  z  1  x 2  y 2  1  x 2  y 2  1  Vậy tập hợp các điểm M là đường tròn tâm  O  0;0    và bán kính  R  1 .  Giáo viên hướng dẫn khai thác: Sau khi học sinh hoàn thiện bài tập này, chúng tôi thay đổi giả thiết và hướng dẫn các em cách làm tương ứng. a1 ) z  1  x 2  y 2  1 . Vậy tập hợp các điểm M là hình tròn tâm O, bán kính R  1 .   a2 ) z  1  x 2  y 2  1 . Vậy tập hợp các điểm M là miền trong hình tròn tâm O, bán kính R  1.      a3 )   z  1  x 2  y 2  1 .Vậy tập hợp các điểm M là những điểm không thuộc miền trong hình tròn tâm O, bán kính R  1 .   a4 ) z  1  x 2  y 2  1 . Vậy tập hợp các điểm M là miền ngoài hình tròn tâm O, bán kính R  1 .     a5 ) 1  z  2  1  x 2  y 2  4 . Tập hợp những điểm M là những điểm nằm ngoài hình tròn tâm O  0;0    và bán kính R  1 đồng thời nằm trong hình tròn tâm O  0;0    và bán kính R  2. Từ đó học sinh có thể tự trình bày lời giải cho bài tập:   6   
  7. 2 2 b) z  4i  3  2   x  3   y  4   4   Vậy tập hợp các điểm M là đường tròn tâm  I  3; 4   và bán kính  R  2    Ngoài ra còn có thể giàng buộc thêm điều kiện ( ví dụ phần thực không âm…)  c)    z  1  i  3.z  2  3i  x  1   y  1 i  3 x  2   3 y  3  i   2 2 2 2   x  1   y  1   3 x  2    3 y  3  8x 2  8 y 2  14 x  20 y  11  0                                               7 5 11  x2  y 2  x  y   0 4 2 8 7 5 61 Vậy tập hợp các điểm M là đường tròn tâm  I  ;    và bán kính  R     8 4 8 2 2  d) Ta có  1  i  z  1  7i  2  z  3  4i  1   x  3   y  4   1         .   Tập hợp M là đường tròn(C) tâm  I  3; 4    và bán kính  R  1   Tôi đưa ra dạng tổng quát của quỹ tích điểm biểu diễn là đường tròn: Tổng quát 1:  Tập hợp các điểm M biểu diễn cho số phức z thỏa mãn:  z   a  bi   R với R  0 : Là đường tròn tâm I  a; b  , bán kính R  z   a  bi   R với R  0 : Là miền trong của hình tròn tâm I  a; b  , bán kính R  z   a  bi   R với R  0 : Là hình tròn tâm I  a; b  , bán kính R .  Mở rộng ta chứng minh cho học sinh thấy rằng tập hợp các điểm M biểu diễn cho số phức z thỏa mãn: 1) z1 .z  z2  c (với c  0 ) thì quỹ tích các điểm biểu diễn số phức z là một đường tròn.  mz  a  bi  m ' z  a ' b ' i  2)  m.z  a  bi  m '.z  a ' b ' i (với m  m ', m  m ' ) thì quỹ tích các điểm biểu diễn số   m.z  a  bi  m '.z  a ' b ' i  phức z là một đường tròn. Ngược lại nếu cho tập hợp các điểm  M  biểu diễn số phức  z thuộc đường tròn có phương trình  cho trước ta có tìm được số phức  z hay không. Tôi cho học sinh làm bài 2.  Bài toán 2.  Số phức  z  a  bi  a, b     Hỏi  a , b  thỏa mãn điều kiện gì để :  7   
  8. a) Có  tập  hợp  các  điểm  biểu  diễn  của  nó  trên  mặt  phẳng  tọa  độ  là  đường tròn tâm  I  0;1  bán kính  R  2 .  b) Biết tập hợp các điểm  M  biểu diễn  số phức  z  là phần tô đậm ở  hình bên (không kể biên).       Lời giải: 2 a) Đường tròn   C  tâm  I  0;1  bán kính  R  2 có phương trình: x 2   y  1  4   2 M  a; b  biểu diến số phức  z thuộc đường tròn    C   nên  a 2   b  1  4   b) tập hợp các điểm  M  biểu diễn số phức  z  nằm giữa hai đường tròn nên tọa độ thỏa mãn:  1  a 2  b2  2   Giáo viên hướng dẫn khai thác: Sau khi học sinh hoàn thiện bài tập này, chúng tôi hương dẫn học sinh viết hệ điều kiện tương đương 2  a 2   b  1  4  z  i  2    1  a 2  b2  2  1  z  2   Sau đó tôi đưa ra một số bài tập trắc nghiệm theo chiều xuôi (tìm tập hợp các điểm biểu diễn số  phức  z  thỏa mãn), chiều ngược (cho tập hợp các điểm  M biểu diễn số phức  z , tìm điều kiện mà  z  thỏa mãn) được xây dựng từ bài 1b.  Cho học sinh làm các câu hỏi trắc nghiệm như sau:  Câu 1: Cho  số phức  z thỏa mãn điều  kiện  z  4i  3  2 . Tập  hợp  các điểm  M biểu diễn số  phức   z là đường tròn:  A. Tâm  I  3; 4 , bán kính  R  2 .  B. Tâm  I  3; 4  , bán kính  R  2   C. Tâm  I  3; 4  , bán kính  R  2 .  D. Tâm  I  3; 4 , bán kính  R  4 .  Câu 2: Cho số phức  z thỏa mãn điều kiện  z  4i  3  2 . Biết tập hợp các điểm biểu diễn số  phức  z là hình tròn, tính diện tích hình tròn đó?  A. S  4 .  B. S  8   C. S  2 .  D. S  16 .  Hướng dẫn giải:   Như câu 1. Ta tìm được bán kính đường tròn là  R  2  S   .R 2  4   Câu 3: Số phức  z thỏa mãn điều kiện  nào thì có tập hợp các điểm biểu diễn của nó trên mặt  phẳng tọa độ là đường tròn tâm  I  3; 4  , bán kính  R  2 .  A. z  4i  3  2 .  B. z  4i  3  4   C. z  3  4i  2 .  D. z  3  4i  2 .  8   
  9. Câu 4: Gọi  M  là điểm biểu diễn của số phức  z , biết  tập hợp các điểm  M là phần tô đậm ở hình bên (không  kể biên). Mệnh đề nào sau đây đúng?  A. z  4i  3  2 .  B. z  4i  3  2 .  C. z  4i  3  2 .  D. z  3  4i  2 .  Các bài toán trên là các bài toán không khó đối với học  sinh khá, giỏi; nhưng với học sinh trung bình và yếu thì  nếu biến đổi theo kiểu tự luận một cách nhanh và chính xác cũng mất vài ba phút, chưa kể nhầm  lẫn. Bằng cách sử dụng máy tính cầm tay, thì kể cả các học sinh yếu kém cũng có thể giải quyết  bài toán trong vòng dưới 20 giây.  Tôi hướng dẫn học sinh dùng máy tính casio để làm bài 1c  Bài 1c. Trên mặt phẳng toạ độ, tìm tập hợp điểm biểu diễn số phức z thoả mãn điều kiện sau:  c) z  1  i  3.z  2  3i   Cách 1. Giải tự luận.  Cách 2. Sử dụng máy tính cầm tay:  Dự  đoán  quỹ  tích  điểm  M là  đường  tròn  có dạng  x 2  y 2  ax  by  c  0 .  Ta  tìm  a, b, c   như  sau:  Chuyển môi trường tính toán sang hệ số phức: w 2   11 11  X 1 i 2  3co njg  X   2  3i 2  : 1   3   X 2 2 2  r [0= 8 c   8 7 7 r [1=  a   4 4 5 5 r [U= b   2 2 7 5 11 vậy quỹ tích điểm  M là đường tròn   C  : x 2  y 2  x y 0 4 2 8   Dạng 2.2. Tập hợp điểm biểu diễn của số phức là đường thẳng. Bài toán 1. Trên mặt phẳng toạ độ, tìm tập hợp điểm biểu diễn số phức  z  thoả mãn điều kiện  sau:             a)   z 2 là số ảo.  9   
  10. z i             b)   là số thực. z i             c)   z  2  4i  z  2i   3z  1  i             d)   1  3 z  2  3i Lời giải: Gọi  z  x  yi ( x, y  R)    M ( x; y )  biểu diễn cho số phức  z  trong  mặt phẳng toạ độ.  y  x a) Ta có  z 2  x 2  y 2  2 xyi    nên  z 2 là số ảo  x 2  y 2  0      y  x Tập hợp M là hai đường phân giác  y  x  và  y   x   z  i x 2  ( y  1)2 2 xy b) Ta có   2 2  2 i  z  i x  ( y  1) x  ( y  1) 2    x  0 zi  xy  0  Nên   là số thực       y  0   z i  x  (1  y )i  0 ( x; y )  (0;1)  Vậy tập hợp điểm  M  là hai trục toạ độ bỏ đi điểm  M  0;1   c) Ta có                  z  2  4i  z  2i (*)  ( x  2)  ( y  4)i  x  ( y  2)i               ( x  2) 2  (4  y ) 2  x 2  ( y  2) 2  y   x  4   Tập hợp  M  là đường thẳng có phương trình  y   x  4   3z  1  i d)  1  3 z  1  i  3 z  2  3i   3 z  2  3i   3 x  1   3 y  1 i   3 x  2    3 y  3 i 2 2 2 2   3 x  1   3 y  1   3 x  2    3 y  3    18 x  24 y  11  0 Sau khi học sinh làm xong bài 1c, d  như trên tôi hướng dẫn học sinh làm theo cách 2: sử dụng  hình học, cách sử dụng máy tính casio.  10   
  11. Cách 2. Phương pháp hình học c)  z  2  4i  z  2i   Gọi  A, B lần lượt là hai điểm biểu diễn các số  z1  2  4i, z2  2i  . Khi đó  A  2; 4  , B  0; 2    Ta  có  z  2  4i  z  2i  MA  MB .  Vậy  M   nằm  trên  đường  trung  trực  của    tức  là  M   nằm trên đường thẳng y   x  4 .  Bài 1d cũng làm được theo phương pháp hình học nhưng khó hơn.  Cách 3. Sử dụng máy tính casio Dự đoán: quỹ tích các điểm là đường thẳng có dạng  ax  by  c  0 . Ta tìm  a, b, c như sau:  c) Chuyển sang hệ số phức: w 2   2 2 nhập máy:  X  2  4i  X  2i      r0=16  c  16   2 2        X  2  4i  X  2i  16 r1=p4  a  4                                                      rU=p4  b  4   Vậy quỹ tích điểm  M là đường thẳng:  4 x  4 y  16  0  y   x  4   d) Chuyển sang hệ số phức: w 2   2 2 nhập máy:  3 X  1  i  3conjg  X   2  3i       r0=p11  c  11   2 2          3 X  1  i  3conjg  X   2  3i  11 r1=18  a  18                   rU=p24  b  24   Vậy quỹ tích điểm  M là đường thẳng:  18 x  24 y  11  0   Để có được dự đoán trên tôi cho học sinh về nhà chứng minh các bài toán tổng quát sau: Tổng quát 2: Nếu số phức z thỏa mãn một trong các điều kiện sau:  mz  a  bi  m ' z  a ' b ' i   mz  a  bi  m ' z  a ' b ' i (với m  m '  m   m ' )   mz  a  bi  m ' z  a ' b ' i  Thì quỹ tích điểm biểu diễn số phức z là một đường thẳng. Bài toán 2. Cho số phức  z  a  bi, (a, b  R) . Hỏi  a, b phải thoả mãn điều kiện gì để:  11   
  12. a) Điểm biểu diễn chúng nằm trong giải giữa 2 đường thẳng  x  2  và  x  2  ?  b) Điểm biểu diễn chúng nằm trong giải giữa 2 đường thẳng  y  3  và  y  3 ?  c) Điểm biểu diễn của số phức nằm trên đường phân giác thứ hai y   x .  Lời giải: a) Để điểm biểu diễn chúng nằm trong giải giữa 2 đường thẳng  x  2  và  x  2  thì   2  a  2   b) Để điểm biểu diễn chúng nằm trong giải giữa 2 đường thẳng  y  3  và  y  3 thì   3  b  3   c) Để  M  (điểm biểu diễn số phức  z ) nằm trên đường phân giác thứ hai  y   x  thì  b   a . Khi đó  z  a  ai  a      Tôi đưa ra một số bài tập trắc nghiệm để củng cố:  Câu 1: (THPT Lê Qúy Đôn, Vũng Tàu 2017) Cho  số  phức  z thỏa  mãn  điều  kiện  z  3  2i  z . Tập hợp các điểm  M biểu diễn số phức   z là đường thẳng:  3 5 3 5 A. y  x  .  B. y   x  .  2 4 2 4 3 5 3 5 C. y   x  .  D. y  x  .  2 4 2 4 Hướng dẫn giải:   Dự đoán : quỹ tích điểm  M biểu diễn số phức   z là đường thẳng dạng  ax  by  c  0 .  Chuyển sạng môi trường số phức w 2   2 2 nhập máy:  X  3  2i  X      r0=5  c  5   2 2        X  3  2i  X  5 r1=6  a  6                                                      rU=4  b  4   3 5 Vậy phương trình đường thẳng là:  6 x  4 y  5  0  y   x    2 4 Câu 2: (Sở GD-ĐT Bình Thuận) Cho số phức  z thỏa mãn điều kiện  z  2i  z  1 . Tập hợp  các điểm  M biểu diễn số phức   z là đường thẳng:  A. 2 x  4 y  3  0 .  B. 2 x  4 y  3  0   C. 2 x  4 y  3  0 .  D. 2 x  4 y  3  0 .  Hướng dẫn giải:   Dự đoán : quỹ tích điểm  M biểu diễn số phức   z là đường thẳng dạng  ax  by  c  0 .  Chuyển sạng môi trường số phức w 2   12   
  13. 2 2 nhập máy:  X  2i  conjg  X   1      r0=3  c  3   2 2        X  2i  conjg  X   1  3 r1=p2  a  2                                                      rU=4  b  4   Vậy quỹ tích cần tìm là:  2 x  4 y  3  0     Câu 3: (THPT Mỹ Đức A, Hà Nội - 2017) Tìm tập hợp các điểm biểu diễn số phức  z sao cho  1 là số thuần ảo.  z 4 A. Đường thẳng  y  4 , bỏ đi điểm   0; 4  .  B. Đường thẳng  y  4.   C. Đường thẳng  x  4 bỏ đi điểm   4; 0  .  D. Đường thẳng  x  4 .     Hướng dẫn giải:   Đặt:  z  x  yi ( x, y  R)    z  có điểm biểu diễn trên mặt phẳng phức là  M  x;  y  .   1  1   x  4   yi  x  4  y i  2 2 2 z  4  x  4   yi  x  4   y 2  x  4  y  x  4  y2 2 x  4 1 x4  là số thuần ảo khi   0  x  4 z 4 2  x  4  y 2   y  0  Dạng 2.3. Tập hợp điểm biểu diễn của số phức là đường elip. Bài 1. Trên mặt phẳng toạ độ, tìm tập  hợp điểm biểu diễn số phức  z  thoả mãn điều kiện sau:   z i  z i  4  Lời giải: Đặt:  z  x  yi ( x, y  R)    z  có điểm biểu diễn trên mặt phẳng phức là  M  x;  y  .   z  i  z  i  4  x 2  ( y  1)2  x 2  ( y  1) 2  4 (*)   Đặt  F1 (0; 1) ; F2 (0;1)   (*)  MF1  MF2  4  F1 F2  2   Suy ra tập hợp  M  là elíp (E) có 2 tiêu điểm là  F1 , F2 .  x2 y2 Gọi (E) có phương trình  2  2  1 (0  a  b; b 2  a 2  c 2 )   a b 13   
  14.  MF1  MF2  2 a a  2 Ta có     b2  a2  c 2  5   F F  1 2  2 c c  1 x2 y 2 Vậy (E) có phương trình    1  4 5 Bài 2. Trên mặt phẳng toạ độ. Chứng minh rằng  tập  hợp điểm biểu  diễn  số phức  z  thoả mãn  2 2 điều kiện sau:   iz   iz   4 nằm trên một đường elip.  1 i i 1   Lời giải: Đặt:  z  x  yi ( x, y  R)    z  có điểm biểu diễn trên mặt phẳng phức là  M  x;  y  . 2 2 2 2 2 2 iz   iz   4  z 1 i  z 1 i  4   x  1   y 1   x  1   y  1 4 1 i i 1   Đặt F1  1;1 , F2 1; 1 . Khi đó:  MF1  MF2  4 , F1F2  2 2  MF1  MF2   Do đó tập hợp các điểm  M nằm trên   E   nhận  F1 , F2 làm hai tiêu điểm .  Để có thể nhận dạng được dễ dàng quỹ tích các điểm biểu diễn số phức  z tôi cho học sinh về nhà  chứng minh các bài toán tổng quát sau:  Tổng quát 3: Cho số phức z thỏa mãn: z   a  bi   z   a ' b ' i   2a Với F1  a; b  , F2  a ', b '   Nếu F1 F2  2a thì quỹ tích là đoạn thẳng F1 F2  Nếu F1 F2  2a thì quỹ tích là một elip nhận F1 , F2 là hai tiêu điểm với độ dài trục lớn là 2a .  Đặc biệt:  z  c  z  c  2a  c  , 2c  2a  thì quỹ tích là một elip có phương trình chính x2 y 2 tắc  a 2 b2   1 b  a 2  c2   z  ci  z  ci  2a  c  , 2c  2a  thì quỹ tích là một elip có phương trình x2 y 2 b 2 a   2  1 b  a2  c2  Tôi đưa ra một số bài tập trắc nghiệm để củng cố:  Câu 1: (Sở GD – ĐT Bình Phước)Cho số phức  z thỏa mãn điều kiện  z  2  z  2  8 . Tập  hợp các điểm  M biểu diễn số phức   z là:  14   
  15. x2 y 2 x2 y 2 A.  E  :   1 .  B.  E  :   1.   16 12 12 16 2 2 2 2 C.  C  :  x  2    y  2   64 .  D.  C  :  x  2    y  2   8 .  Hướng dẫn giải:   Đặt:  z  x  yi ( x, y  R)    z  có điểm biểu diễn trên mặt phẳng phức là  M  x;  y  .   2 2 z  2  z  2  8  x 2   y  2   x 2   y  2  8   F1  2; 0  , F2  2; 0   MF1  MF2  8   Suy ra  M  nằm trên elip có  2a  8  a  4, c  2  b 2  12   x2 y 2 Vậy phương trình elip là:   E  :   1  16 12 Làm trắc nghiệm:   Nhận  dạng  được  phương  trình  đường  biểu  diến  quỹ  tích  điểm  biểu  diến  số  phức  thỏa  mãn z  2  z  2  8    loại C, D, B.  Câu 2: Tập hợp các điểm  M  biểu diễn số phức  z  thỏa mãn:  z  i  z  i  4  là:  x 2 y2 x 2 y2 A. Elip  E  :   1 .   B. Elip  E  :   1  4 3 3 4 x2 y2 C. Hình tròn tâm I(0;-1), bán kính R=4.  D. Elip  E  :   4 .  4 3 Hướng dẫn giải:   Đặt:  z  x  yi ( x, y  R)    z  có điểm biểu diễn trên mặt phẳng phức là  M  x;  y  .   2 2 z  i  z  i  4  x 2   y  1  x 2   y  1  4   F1  0; 1 , F2  0;1  MF1  MF2  4   Suy ra  M  nằm trên elip (nhận  Oy làm trục lớn) có  2a  4  a  2, c  1  b 2  4  1  3   x2 y 2 Vậy phương trình elip là:   E  :  1  3 4 Câu 3: Biết số phức z có tập hợp các điểm biểu diễn trong mặt phẳng tọa độ là đường elip như  hình vẽ. Số phức  z thỏa mãn điều kiện nào sau đây:  A. z  3  z  3  4 .   B. z  3  z  3  2   C. z  3  z  3  4 .  D. z  3i  z  3i  4 .  Hướng dẫn giải:   Đặt:  z  x  yi ( x, y  R)    z  có điểm biểu diễn trên mặt phẳng phức là  M  x;  y  .   15   
  16. x2 y 2 M E : 2  2  1 a  b  0, a 2  b2  c 2    a b Từ hình vẽ ta có  a  2, b  1  c  2 2  12  3   Vậy  MF1  MF2  2.2  4; F1  3; 0 , F2     3; 0  z  3  z  3  4     V. CHUYÊN ĐỀ 2: CỰC TRỊ CỦA SỐ PHỨC. Bài toán mở đầu. Cho số phức  z  thỏa mãn điều kiện  z  2  4i  5 .   Tìm giá trị lớn nhất, giá trị nhỏ nhất của mô đun số phức  z ?  Lời giải: Giả  sử  điểm  M  x; y  là  điểm  biểu  diễn  số  phức  z  x  yi . Khi  đó tập  hợp điểm  M là  đường  2 2 tròn   C   tâm  I  2; 4 , bán kính  R  5 ;   C  :  x  2    y  4   5   Cách 1. Sử dụng bất đẳng thức 2 2 2 z  x 2  y 2   x  2    y  4   4 x  8 y  20  4 x  8 y  15  4  x  2   2  y  4    25 1   Áp dụng bất đẳng thức Bunhiacopxki ta có:   2 2  x  2  2  y  4  1 2  22   x  2    y  4    5      5   x  2   2  y  4   5  2    Từ (1) và (2) ta có:  5  z  3 5   x  1 x  3 Vậy  z min  5    z  1  2i ;  z max  3 5    z  3  6i   y  2 y  6 Cách 2. Sử dụng hình học. z  OM  z min  OM min ; z max  OM max   Ta có  OI  2 5  R  O nằm ngoài đường tròn   C                                                OM min  M  A; OM max  M  B     OA    z min  OA  OI  R  5  OM  OA  .OI  OM  1; 2   z  1  2i   OI   OB        z m ax  OB  OI  R  3 5  OM  OB  .OI  OM   3; 6   z  3  6i .  OI 16   
  17. Giáo viên hướng dẫn khai thác: Nếu bài toán yêu cầu tìm số phức  z  sao cho  z  lớn nhất (nhỏ  nhất). Ta làm như sau: OM min  M  A     OA    z min  OA  5  OM  OA  .OI  OM  1; 2   z  1  2i   OI     OB   OM max  M  B  z m ax  OB  3 5  OM  OB  .OI  OM   3; 6   z  3  6i OI   Như vậy để giải quyết bài toán trên chúng tôi hướng dẫn học sinh thực hiện theo 2 phương pháp: sử dụng bất đẳng thức và bài toán cực trị hình học. Và chúng tôi thấy rằng Hầu hết các bài toán cực trị của số phức đều được xây dựng trên các bài toán cực trị hình học. Trong phần V của sáng kiến này tôi muốn gợi ý cho học sinh một lối tư duy linh hoạt các phương pháp chuyển đổi từ đại số sang hình học và ta có thể dựa trên các bài toán cực trị hình học để ra một loạt các đề toán. Trước khi đưa ra các bài tập cho học sinh luyện tập chúng tôi nhắc lại một số bài toán cực trị trong hình học như sau: Bài toán xuất phát 1. Trong mặt phẳng cho đường thẳng   và điểm  A .  a) Tìm điểm  M  thuộc    sao cho  AM  là ngắn nhất.   b) Tìm giá trị nhỏ nhất của  AM (với  M là điểm bất kì thuộc   ):   Lời giải:   a) Ta có:  AM  AH (Với  H là hình chiếu vuông góc của  A trên   )  Nên  AM min  AH  M  H hay  M là hình chiếu vuông góc của  A trên     b)  AM min  AH  d  M ,     Bài toán 1.1: Biết  các  số  phức  z   có  tập  hợp  các  điểm  biểu  diễn  trong  mặt  phẳng  tọa  độ  là  đường thẳng  như hình vẽ bên. Tìm giá trị nhỏ nhất của  z ?    A. z  2 .    min B. z  1.   min C. z  2 .    min 1 D. z  . min 2   Bài toán 1.2: Biết  số  phức  z thỏa  mãn  z  2  4i  z  2i   ,  mô  đun  nhỏ  nhất  của  số  phức  z bằng:  A. 2 2 .  B. 2 .  C. 2 .  D. 4 .  Hướng dẫn giải:   Đặt:  z  x  yi ( x, y  R)    z  có điểm biểu diễn trên mặt phẳng phức là  M  x;  y  .   17   
  18. 2 2 2 Ta có:  z  2  4i  z  2i   x  2    y  4   x 2   y  2   x  y  4  0    M  : x  y  4  0  z  OM . Nên  z  nhỏ nhất   OM nhỏ nhất  M là hình chiếu vuông góc của  O trên    (*).  4  z min  d  O,    2 2  2 Bài toán 1.3: Biết số phức  z  x  yi  x, y    thỏa mãn  z  2  4i  z  2i và đồng thời có mô    2 2 đun nhỏ nhất. Tính giá trị của biểu thức  P  x  y ?  A. P  8 .  B. P  10 .  C. P  16 .  D. P  26 .  Hướng dẫn giải:   Ta giải như bài toán 1.2 đến bước (*) rồi tìm tọa độ điểm  M Ta được  M  2; 2   z  2  2i nên  x  2, y  2  P  8 .  Trong khi làm bài toán 1.2 và 1.3 chúng tôi nhấn mạnh cho học sinh thấy rằng:  Khi bài toán yêu cầu tìm z nhỏ nhất ta chỉ cần tính d  O,    Khi bài toán yêu cầu tìm z hoặc biểu thức liên quan đến phần thực, phần ảo của z thì ta phải tìm rõ tọa độ điểm M biểu diễn z . Sau đó suy ra z Bài toán 1.4: Tìm  modul  nhỏ  nhất  của  số  phức  z  3  2i .  Biết  số  phức  z thỏa  mãn:  z  2  4i  z  2i   3 2 2 A. .  B. .  C. 2 2 .  D. 2 .  2 2 Hướng dẫn giải:   Đặt:  z  x  yi ( x, y  R)    z  có điểm biểu diễn trên mặt phẳng phức là  M  x;  y  .    M  : x  y  4  0  Gọi A  3; 2 . Ta có:  z  3  2i  MA   3 2  4 3 2 Khi đó  z  3  2i min  MA  nhỏ nhất  MA  d  A,       2 2   Giáo viên chú ý cho học sinh: Nếu bài toán yêu cầu tìm số phức z thỏa mãn bài toán 1.4 ta làm như sau:   M là hình chiếu vuông góc của  A  trên   .      MA.u  0    ( với  u  1;1  là véctơ chỉ phương của   ,  MA  3  x; 2  y  )   x  y  4  0  9  1 3  x   1.  2  y   0  x  2 9 1    z   i   x  y  4  0 y   1 2 2  2 18   
  19. Như vậy sau khi làm xong các bài tập trắc nghiệm chúng tôi tổng quát lại kiến thức cho học sinh  như sau:  Tổng quát 1: Qũy tích các điểm biểu diễn số phức thuộc đường thẳng Cho số phức z thỏa mãn điều kiện: z  z1  z  z2 . Gọi M , A, B lần lượt là các điểm biểu diễn số phức z , z1 , z2 Tổng quát 1.1: Tìm giá trị nhỏ nhất của z ?  Khi đó M  x; y  thuộc đường trung trực của AB  z min  M là hình chiếu vuông góc của O trên AB  z min  d  O, AB   Nhận xét: Nếu đầu bài yêu cầu tìm số phức z ta đi tìm tọa độ điểm M là hình chiếu vuông góc của O trên AB . Từ đó suy ra z Tổng quát 1.2: Tìm giá trị nhỏ nhất của z  z0  Gọi N là điểm biểu diễn số phức z0 . Khi đó z  z0  MN  z  z0 min  M là hình chiếu vuông góc của N trên AB  z  z0 min  d  N , AB   Nhận xét:  Nếu đầu bài yêu cầu tìm số phức z ta đi tìm tọa độ điểm M là hình chiếu vuông góc của N trên AB . Từ đó suy ra z  Đề bài có thể suy biến thành 1 số dạng sau, khi đó ta cần thực hiện các phép biến đổi để đưa về dạng cơ bản.  mz  a  bi  m ' z  a ' b ' i   mz  a  bi  m ' z  a ' b ' i (với m  m '  m   m ' )   mz  a  bi  m ' z  a ' b ' i   z  c  di  z  c ' d ' i          z  c  di  z  c ' d ' i  (chia cả hai vế cho  m )    z  c  di  z  c ' d ' i   z  c  di  z  c ' d ' i          z  c  di  z  c ' d ' i   z  c  di  z  c ' d ' i Bài toán xuất phát 2. Trong mặt phẳng cho 3 điểm  A, B, C  cố định.  M  là điểm di động thuộc  đoạn  AB   a) Tìm giá trị nhỏ nhất (lớn nhất) của  MC .   b) Tìm  M để  MC  nhỏ nhất (lớn nhất).  Lời giải:   19   
  20. Trường hợp 1. Nếu hình chiếu vuông góc của  C  là điểm  H thuộc đoạn  AB   MCmin  min CH ; CA; CB   MCm ax  m ax CH ; CA; CB   Trường hợp 2. Nếu hình chiếu vuông góc của  C  là điểm  H không thuộc đoạn  AB   MCmin  min CA; CB   MCm ax  m ax CA; CB   Bài toán 2.1: Cho số phức  z  a  bi  a , b     thỏa mãn:  z  1  2i  z  2  2i  5   1.Tìm giá trị nhỏ nhất của  P  z  3  5i A. 10 .  B. 65 .  C. 1 .  D. 10 .  2.Tìm giá trị lớn nhất của  P  z  3  5i   A. 65 .  B. 65 .  C. 10 .  D. 10 .  3.Khi  P  z  3  5i  đạt giá trị lớn nhất, tính  2a  b   A. 0 .  B. 4 .  C. 3 .  D.  2 .  Hướng dẫn giải:   Đặt:  z  x  yi ( x, y  R)    z  có điểm biểu diễn trên mặt phẳng phức là  M  x;  y  .   Gọi  A, B, C  lần lượt là điểm biểu diễn các số phức  z1  1  2i, z2  2  2i, z3  3  5i   Ta  có:  z  1  2i  z  2  2i  5  MA  MB  5   mà  AB  5   nên  M thuộc đoạn  thẳng  AB  lại  có:  P  MC   Nên bài toán chuyển về tìm  M thuộc đoạn  AB sao cho  MC đạt giá trị  lớn nhất, giá trị nhỏ nhất.  Vẽ phác họa hình trên mặt phẳng tọa độ ta dễ dàng thấy:  Pmin  CB  10   Pmax  CA  65 3.  Pmax  CA  65  M  A  z  1  2i  a  1, b  2   Nên  2a  b  2  2  0   Bài toán 2.2: Cho số phức  z  a  bi  a , b     thỏa mãn:  z  1  2i  z  2  2i  5 . Tìm giá trị  nhỏ nhất của  P  z  1  2i   12 12 A. .  B. 3 .  C. 4 .  D. .  5 7 Hướng dẫn giải:   Đặt:  z  x  yi ( x, y  R)    z  có điểm biểu diễn trên mặt phẳng phức là  M  x;  y  .   Gọi  A, B, C  lần lượt là điểm biểu diễn các số phức  z1  1  2i, z2  2  2i, z3  1  2i   20   
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
6=>0