intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

CÁC MÔ HÌNH VÀ PHẦN MỀM TỐI ƯU - CHƯƠNG 5

Chia sẻ: Nguyen Nhi | Ngày: | Loại File: PDF | Số trang:21

125
lượt xem
26
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

MÔ HÌNH VÀ PHẦN MỀM TỐI ƯU PHI TUYẾN ĐA MỤC TIÊU 1. BÀI TOÁN TỐI ƯU PHI TUYẾN TRONG MÔI TRƯỜNG MỜ / NGẪU NHIÊN 1.1. Phát biểu bài toán và phương pháp mức ưu tiên Xét mô hình tối ưu đa mục tiêu: Min fj(X), X = (x1, x2, …, xn) j=1, 2,…, p (p ≥2) với: (i) gj(X) ≤ 0, j = 1, 2, …, k, (ii) gj(X) = 0, j = k+1, k+2, …, m, (iii) ai ≤ xi ≤ bi, i = 1, 2, …, n. Chúng ta nhắc lại rằng trong mô hình này, các...

Chủ đề:
Lưu

Nội dung Text: CÁC MÔ HÌNH VÀ PHẦN MỀM TỐI ƯU - CHƯƠNG 5

  1. Chương V MÔ HÌNH VÀ PHẦN MỀM TỐI ƯU PHI TUYẾN ĐA MỤC TIÊU 1. BÀI TOÁN TỐI ƯU PHI TUYẾN TRONG MÔI TRƯỜNG MỜ / NGẪU NHIÊN 1.1. Phát biểu bài toán và phương pháp mức ưu tiên Xét mô hình tối ưu đa mục tiêu: Min fj(X), X = (x1, x2, …, xn) j=1, 2,…, p (p ≥2) với: (i) gj(X) ≤ 0, j = 1, 2, …, k, (ii) gj(X) = 0, j = k+1, k+2, …, m, (iii) ai ≤ xi ≤ bi, i = 1, 2, …, n. Chúng ta nhắc lại rằng trong mô hình này, các hệ số của các hàm mục tiêu và ràng buộc nói chung được giả sử là các giá trị thực xác định (giá trị rõ). Nhưng trong các bài toán thực tiễn không phải lúc nào cũng như vậy. Các hệ số có thể thuộc loại mờ hay ngẫu nhiên tuỳ theo bản chất của chúng cũng như sự đánh giá chủ quan của con người. Vì vậy, cần tìm kiếm một phương pháp tổng quát hơn có khả năng giải quyết các bài toán tối ưu đa mục tiêu (với hệ số) mờ và ngẫu nhiên sau đây: với: (5.1) Ký pháp ~ được sử dụng để chỉ các tham số mờ, ký pháp ^ dùng để chỉ các tham số ngẫu nhiên, ký pháp được hiểu là phép cộng trong môi trường mờ (trong trường hợp không gây ra hiểu nhầm, có thể vẫn dùng ký pháp +). Trong bài toán trên yi(X), với i=1, 2, …, n, là các hàm tuyến tính hay phi tuyến của x1, x2, …, xp trong môi trường rõ và được xác định trong miền S = [a1,b1] × [a2,b2]× … × [ap,bp] Є Rp. Với n=p và yi=xi với mọi i=1, 2, …,n, thì bài toán trở thành bài toán tối ưu đa mục tiêu mờ/ngẫu nhiên tuyến tính (MultiObjective Mixed Fuzzy-Stochastic Linear Programming Problem-MOFSLPP). Đồng thời cũng giả sử rằng các tham số mờ tuân theo quy luật phân bố khả năng. Mỗi tham số mờ được viết dưới dạng bộ bốn số: điểm tham chiếu trái, điểm tham chiếu phải, độ căng trái và độ căng phải: (5.2) Để đơn giản, chúng ta giả sử các hàm tham chiếu L và R là các hàm tuyến tính, tuy nhiên các trường hợp khác cũng có thể được xem xét. Thông thường, điểm tham 71
  2. chiếu trái và phải trùng nhau và lúc đó, yếu tố mờ được biểu diễn bởi 3 điểm (dạng tam giác). Ngoài ra, chúng ta cũng giả sử các tham số ngẫu nhiên tuân theo các luật phân bố xác suất chuẩn và được coi là các biến ngẫu nhiên độc lập. Một trong các phương pháp giải bài toán quy hoạch đa mục tiêu trong môi trường hỗn hợp mờ/ngẫu nhiên là phương pháp tương tác dựa trên mức ưu tiên (Preference Level Interative Method) với các mức ưu tiên được người ra quyết định sửa chỉnh dần trong quá trình đối thoại / tương tác với máy tính. Như vậy, thông qua một quy trình tính toán được máy tính trợ giúp, người ra quyết định sửa chỉnh dần các quyết định trung gian để cuối cùng sẽ chọn ra trong các phương án tối ưu Pareto một phương án tốt nhất dựa trên cơ cấu ưu tiên của mình. Phương pháp này cho phép giải các bài toán tuyến tính và phi tuyến với các biến nguyên cũng như biến liên tục. Cần chú ý rằng, phương pháp này đã sử dụng hướng tiếp cận mờ hoá trong đó việc xử lý các mục tiêu ngẫu nhiên dựa trên cơ sở của mô hình kỳ vọng suy rộng E (Extended E- model) và các ràng buộc ngẫu nhiên được mờ hoá. Do đó, người ra quyết định (decision maker)/ người giải bài toán tạo được sự cân bằng giữa mục tiêu/ràng buộc ngẫu nhiên và mục tiêu/ràng buộc mờ trong quá trình lặp để tìm phương án tối ưu thoả dụng. Phương pháp tương tác dựa trên mức ưu tiên giải bài toán bao gồm ba thành phần cơ bản: i) Diễn giải và xử lý các ràng buộc và mục tiêu mờ / ngẫu nhiên, sau đó kết hợp các mục tiêu phát sinh thành một hàm mục tiêu duy nhất. ii) Các pha lặp trợ giúp người ra quyết định lựa chọn các mức ưu tiên và sửa chỉnh dần chúng trong quá trình tìm kiếm một phương án thoả dụng có tính chất tối ưu Pateto theo một nghĩa nào đó. iii) Một thuật toán tối ưu toàn cục cho phép giải bài toán tối ưu đơn mục tiêu được hình thành trong môi trường rõ tại mỗi pha lặp. 1.2. Xử lý các ràng buộc Các ràng buộc ngẫu nhiên (1(iv)) có thể được biểu diễn trong môi trường mờ dựa trên ràng buộc khả năng được mờ hoá (fuzzified chance constraints). Giả sử người ra quyết định đã xác định mức mong đợi mờ của xác xuất là ~ k ' mà tại đó ràng buộc p ngẫu nhiên thứ k’ phải được thoả dụng: (5.3) Bất đẳng thức (5.3) có thể được giải thích như sau: Xác suất vế trái phải thật sự ( ) lớn hơn ~ k ' , với ~ k ' được xác định bởi số mờ dạng tam giác ~ k ' = pk ' , p k ' , p k ' p p p với LK p k ' , p k ' và pk ' là giá trị trung bình, độ căng trái và độ căng phải ( các hàm tham chiếu L và R được coi là tuyến tính). Để xác định mức mong đợi mờ ~ k ' , người ra quyết định chỉ cần xác định giá trị p trung bình p k ' và độ căng trái bởi vì độ căng phải không có ý nghĩa trong (5.3). So với phương pháp ràng buộc khả năng thông thường trong quy hoạch ngẫu nhiên, phương 72
  3. pháp tiếp cận ràng buộc khả năng mờ cho phép sự linh động trong việc xác định mức xác suất cực tiểu của ràng buộc ngẫu nhiên. Sử dụng ký hiệu: , bất đẳng thức (5.3) được xử lý bởi: (5.4) (5.5) Điều kiện (5.4) có nghĩa là các ràng buộc ngẫu nhiên phải được thoả mãn tối ~ thiểu tại mức p k ' – p k ' . Trong (5), C ks' là mục tiêu mờ tương ứng với ràng buộc ngẫu μ C (.) ˆ là hàm thuộc (membership function) của Pr ob[a k ' (Y ) − bk ' ≤ 0] ˆ nhiên thứ k’, ~ s k' biểu diễn đánh giá chủ quan (của người ra quyết định) về xác suất ứng với ~ k ' . Sử p μ C (.) ˆ dụng ký hiệu: Pr obk ' = Pr ob[a k ' (Y ) − bk ' ≤ 0] , ˆ được định nghĩa như sau: ~ s k' (5.6) a với p k ' là mức ưu tiên về xác suất / mức xác suất chốt tương ứng với độ thoả dụng chốt mong muốn đạt được λ* xác định bởi người ra quyết định cho Probk’ mà tại μ C (.) đó ràng buộc ngẫu nhiên thứ k thoả mãn. Đồ thị của cho trên hình sau: ~ s k' μC (.) ~s k' 1 λ* Pr ob k ' 0p − p pa pk' k' k' k' Do: với Φ là hàm phân phối của biến chuẩn N(0,1) nên bất đẳng thức (5.4) được viết lại như sau: 73
  4. (5.7) Xử lý các ràng buộc mờ (1(iv)) cũng giống như các mục tiêu mờ, có thể chuyển chúng sang các dạng tất định sau: (5.8) (5.9) Bất đẳng thức (5.8) có nghĩa là bất cứ giá trị nào của số mờ ở vế trái trong (1(iii)) có mức hàm thuộc lớn hơn ε phải không vượt quá bj’ + bj’(1-ε), với ε Є [0,1] là mức tin cậy xác định bởi người ra quyết định. Hàm thuộc μ C s (.) có thể được giải ~ k' ~ ∑ n a R'i y i tương ứng với số mờ b j ' ở vế phải. Nó thích như sự đánh giá chủ quan về j i =1 có thể được biểu diễn bởi một hàm tuyến tính phân hai đoạn như sau: (5.10) ∑ n trong đó, b a' là mức xác suất ưu tiên / chốt của a R'i y i tương ứng với độ thoả j j i =1 dụng chốt mong muốn đạt được λ* và có thể được thay đổi trong quá trình tương tác lặp. Giá trị của nó được xác định bởi người ra quyết định và nằm trong khoảng bj’ và bj’ + bj’ (1 - ε). Vì thế μ C (b a' ) = λ* . ~ j s k' 1.3. Xử lý các mục tiêu Các mục tiêu ngẫu nhiên (1(ii)) có thể được giải thích dựa trên mô hình kỳ vọng suy rộng và được xử lý trong môi trường mờ một cách thích hợp. Trước hết, với mỗi mục tiêu ngẫu nhiên, giá trị kỳ vọng / mong đợi lớn nhất ( ký hiệu là ek) được tính 74
  5. toán dựa trên các ràng buộc (5.7) và (5.8). Nói cách khác, chúng ta thu được ek từ bài toán tối ưu đơn mục tiêu sau: Ở đây, E là ký hiệu của kỳ vọng toán (mathematical expectation). Ký hiệu e k là độ trượt cho phép (do người ra quyết định lựa chọn) ứng với mục tiêu ngẫu nhiên, ∑ n e k − e k có thể được coi như là ngưỡng tối thiểu cho ˆ c yi . Áp dụng phương pháp i =1 ki tiếp cận rủi ro tối thiểu (minimum-risk) cho ngưỡng này, mục tiêu ngẫu nhiên thứ k có thể được diễn giải bởi: Xử lý mục tiêu này như mục tiêu mờ trong quy hoạch mờ, ta có: (5.11) ~ với hk là mức độ mong muốn mờ xác định bởi người ra quyết định cho xác suất ~ vế trái. Ký hiệu hk = (hk, hk)LL và xử lý (5.11) giống như đã làm với (5.3), ta được: (5.12) (5.13) ~ với G ks là mục tiêu mờ tương ứng với mục tiêu ngẫu nhiên thứ k. Ký hiệu Pr obk = Pr ob[∑ i =1 c ki − (e k − e k ) ≥ 0] , hàm thuộc biểu diễn đánh giá chủ quan về n ˆ ~ xác suất Pr obk , được định nghĩa như sau: (5.14) 75
  6. c Trong (5.14), h k ∈ ( hk − h k ' , hk ) là giá trị xác định bởi người ra quyết định và có ~ nghĩa tương tự như p k ' . Đồ thị của μ Gks (.) như trên hình II.23. Chú ý rằng Pr obk là a ~ xác suất mà với nó, mục tiêu ngẫu nhiên thứ k có thể nhận giá trị không nhỏ hơn c e k − e k , và h k là mức xác suất ưu tiên / chốt cho ràng buộc này. μG (.) ~s k 1 λ* ~ P r ob k 0 h −h hc hk k k k Theo định nghĩa ta có: trong đó φ là hàm phân phối của biến chuẩn N(0,1). Do đó, bất đẳng thức (5.12) có thể viết lại thành: hoặc là: (5.15) ~ Xử lý các mục tiêu mờ (1(i)) tương tự như các ràng buộc mờ. Ký hi ệu d j = (dj, dj)LL là mức độ mong đợi xác định bởi người ra quyết định cho mục tiêu mờ thứ j, chúng ta có: 76
  7. Bất đẳng thức mờ này tương đương với hệ điều kiện sau: (5.16) (5.17) Bất đẳng thức (5.16) có nghĩa là bất cứ giá trị có thể nào của mục tiêu thứ j c j1 1 ~ j 2 2 ~ y + c y + ... + c y với mức hàm thuộc lớn hơn ε đều không được nhỏ hơn d d ~ j– j jn n ∑ n μ G (.) (được diễn giải như sự đánh giá chủ quan về c L yi (1 – ε). Hàm thuộc ~ f ji i =1 j ~ tương ứng với d j ) được định nghĩa như sau: (5.18) c trong đó, d j được xác định bởi người ra quyết định và có thể được chỉnh sửa c trong quá trình tương tác lặp. Rõ ràng là d j là một kiểu mức ưu tiên / chốt của ∑ n c L y i tương ứng với độ thoả dụng chốt mong muốn đạt được λ*. ji i =1 ~ 1.4. Sử dụng thông tin pay-off để đoán nhận e k , d j Với mục đích trợ giúp quá trình xác định mức ưu tiên / chốt cho độ trượt e k từ ek của mục tiêu ngẫu nhiên thứ k, thông tin dạng pay-off ẩn chứa trong cấu trúc của bài toán có thể đóng vai trò khá quan trọng. Ký hiệu Xs* (s = 1, 2,…, m+q) các phương án tối ưu của m+q bài toán tối ưu đơn mục tiêu tương ứng với m mục tiêu mờ và q mục tiêu ngẫu nhiên sau đây: (5.19) (5.20) Cận dưới của tất cả các giá trị kỳ vọng của mục tiêu ngẫu nhiên thứ k đạt được * tại Xs (s = 1, 2,…, m+q) được tính như sau: 77
  8. với giá trị nhỏ nhất được chọn trong tập {Ys* = Y(Xs*), s = 1,2,…,m+q}. Giá trị ( e k − e k ) có thể coi như là độ trượt lớn nhất của e k , và vì thế người ra quyết định xác định giá trị của e k trong đoạn [0, e k − e k ]. ~ Để tính toán mức độ mong đợi mờ d j = (dj, dj)LL, dj và dj có thể được xác định như sau: với X* là phương án tối ưu của bài toán: (5.21) và dj có thể được tính ra từ: (5.22) trong đó, giá trị min được tính ra trên tập {Ys* = Y(Xs*), s = 1, 2,…, 2m+q} với Xs* (s = 1, 2,…, 2m+q) là các phương án tối ưu của 2m+q bài toán sau: (5.23) (5. 24) (5.25) ~ Cần chú ý rằng việc xây dựng các mức mong đợi mờ d j cho các mục tiêu mờ cũng như các độ trượt e k cho các mục tiêu ngẫu nhiên, thực chất, là dựa trên thông tin 78
  9. dạng pay-off ẩn chứa trong bài toán. Tuy nhiên, người ra quyết định có thể chủ động xác định các mức ưu tiên trên kết hợp với / hay không kết hợp với thông tin pay-off. 1.5. Mô hình tất định tương đương của bài toán Với cách biểu diễn và xử lý các mục tiêu và ràng buộc như trên, MOFSPP được viết lại thành: (5.26) Sử dụng toán tử min (Bellman-Zadeh min-operator) làm toán tử kết hợp (aggregation operator), (5.26) được đưa về dạng bài toán max-min tối ưu đơn mục tiêu tất định sau: (5.27) 1.6. Khái niệm tối ưu hoá PL-Pareto Khái niệm sau đây về phương án tối ưu PL-Pareto (Preference Level - PL) được định nghĩa cho các bài toán dạng (5.1): Định nghĩa 1. Phương án X của (5.26) được gọi là tối ưu PL-Pareto yếu với bài toán (5.1) tại mức độ tin cậy ε và các độ trượt e k với mọi k, nếu không tồn tại một phương án khác X’ của (5.26) mà tại đó tất cả các mức xác suất của mục tiêu ngẫu ~ ~ nhiên và ràng buộc ngẫu nhiên ( Pr obk với mọi k, Pr obk với mọi k’) và tất cả các giá ∑ n c L y i , ∀j và trị với độ thực hiện cao nhất (các điểm chốt trái của các mục tiêu mờ ji i =1 ∑ n a R'i y i , ∀j' ), đều tốt hơn các các điểm chốt phải của vế trái của các ràng buộc mờ j i =1 giá trị tương ứng đạt được tại X. Định nghĩa 2. Phương án X của (5.26) được gọi là tối ưu PL-Pareto với bài toán (5.1) tại mức độ tin cậy ε và các độ trượt e k với mọi k, nếu không tồn tại một phương án khác X’ của (5.26) mà tại đó tất cả các mức xác suất của mục tiêu ngẫu nhiên và ràng ~ ~ buộc ngẫu nhiên ( Pr obk với mọi k, Pr obk với mọi k’) và tất cả các giá trị với độ thực hiện cao nhất (các điểm chốt trái của các mục tiêu mờ và các điểm chốt phải của vế trái 79
  10. của các ràng buộc mờ), lần lượt, đều không tồi hơn các giá trị tương ứng đạt được tại X, và ít nhất một trong số các giá trị đó là tốt thực sự. Định lý 1. (i) Nếu X là phương án tối ưu toàn cục của (5.27) (λ là giá trị tối ưu của hàm mục tiêu của (5.27) đạt được tại X với 0
  11. (iii) Giá trị của các điểm tham chiếu phải của vế trái của các ràng buộc mờ ∑ n a R'i y i , j’ = 1,2,…,m’, giá trị kỳ vọng của vế trái của các ràng buộc ngẫu nhiên j i =1 ∑ m (a k 'i ) y i và xác suất tương ứng Pr obk ' , k = 1,2,…,q’ mà các ràng buộc được thoả mãn. n ˆ i =1 Bước 2: (i) Nếu |λ1 - λ*| < δ (với δ là một số dương nhỏ được người sử dụng chọn trước), quá trình lặp có thể dừng với phương án thoả dụng Xl. (ii) Nếu λ1 > λ* + δ và người sử dụng thoả mãn với Xl, quá trình lặp cũng có thể kết thúc với phương án thoả mãn Xl. Tuy nhiên, nếu như người sử dụng muốn tiếp tục tìm kiếm các phương án thoả dụng khác, thì có thể tăng ít nhất một trong các đại lượng a c c sau đây: d j , j=1,2…,m; h k , k = 1,2,…,q; p k ' , k’ = 1,2,…,q’ và / hoặc giảm ít nhất một trong số các đại lượng: b a' , j’= 1 ,2,…,m’; e k , k=1,2,…,q để cải thiện kết quả. j (iii) Nếu λ1 < λ* + δ thì Xl không phải là phương án thoả mãn. Cần phải tăng ít nhất một trong các đại lượng: b a' , j’= 1 ,2,…,m’; e k , k=1,2,…,q và / hoặc giảm ít nhất j a c c một trong số các đại lượng: d j , j=1,2…,m; h k , k = 1,2,…,q; p k ' , k’ = 1,2,…,q’ (iv) Tăng l lên 1 đơn vị rồi quay lại bước 1. 2.2. Bài toán Chakraborty Một xí nghiệp sản xuất ba loại sản phẩm 1, 2, và 3. Các dữ liệu về giá cả, chi phí, lợi nhuận,… của các loại sản phẩm và mức dự trữ hiện có được cho trong bảng sau. Bài toán đặt ra là xác định số lượng các loại sản phẩm (sản xuất trong một ngày) sao cho: i) Tổng lợi nhuận thu được là lớn nhất. ii) Tổng mức độ mong muốn sử dụng sản phẩm của khách hàng là lớn nhất. Tiêu hao / đơn vị Sản phẩm 1 Sản phẩm 2 Sản phẩm 3 Mức dự trữ sản phẩm hiện có Điện và thiết bị 0,5 4 2 130 Thời gian N(2,1) N(3,1) N(1, 0,4) N(102, 2) Nguyên liệu (7, 7, 2, 2)LR (10, 10, 1, 1)LR (9, 9, 2, 2)LR (420, 20)RR Lợi nhuận N(11,1) N(14, 2) N(5, 0,5) Độ thỏa mãn của người tiêu dùng (2, 2, 1, 1)LR (7, 7, 2, 2)LR (5, 5, 1,1)LR Ví dụ trên dẫn đến việc giải bài toán sau: với các ràng buộc 81
  12. Sử dụng phần mềm PRELIME, cần soạn Thủ tục tính các hàm mục tiêu và các ràng buộc void ren(int index) { int i; switch(index) { case 0: for(i=0;i
  13. .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224 .2258 .2291 .2324 .2357 .2389 .2422 .2524 .2486 .2518 .2549 .2580 .2612 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852 .2881 .2910 .2939 .2967 .2996 .3023 .3051 .3078 .3106 .3133 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319 .4332 .4345 .4357 .4370 .4328 .4394 .4406 .4418 .4429 .4441 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890 .4893 .4896 .4898 .4901 .4904 .4904 .4909 .4911 .4913 .4916 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981 .4981 .4982 .4982 .4983 .4984 .4894 .4985 .4985 .4986 .4986 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990 .4990 .4991 .4991 .4991 .4992 .4992 .4992 .4992 .4993 .4993 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4995 .4995 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 Cuối cùng ta thu được file kết quả đầu ra như sau: File MP1.OUT n=3,n2=3,m1=1,m2=2,q1=1,q2=1,m3=1,nint=3 cf[0][0]=~(2.000000,1.000000,1.000000) 83
  14. cf[0][0]=~(2.000000e+00,1.000000e+00,1.000000e+00) cf[0][1]=~(7.000000,2.000000,2.000000) cf[0][1]=~(7.000000e+00,2.000000e+00,2.000000e+00) cf[0][2]=~(5.000000,1.000000,1.000000) cf[0][2]=~(5.000000e+00,1.000000e+00,1.000000e+00) cs[0][0]=^(11.000000,1.000000) cs[0][1]=^(14.000000,2.000000) cs[0][2]=^(5.000000,0.500000) af[0][0]=~(0.500000,0.000000,0.000000) af[0][1]=~(4.000000,0.000000,0.000000) af[0][2]=~(2.000000,0.000000,0.000000) af[1][0]=~(7.000000,2.000000,2.000000) af[1][1]=~(10.000000,1.000000,1.000000) af[1][2]=~(9.000000,2.000000,2.000000) as[0][0]=^(2.000000,1.000000) as[0][1]=^(3.000000,1.000000) as[0][2]=^(1.000000,0.400000) bf[0]=~(130.000000,0.000000,0.000000) bf[1]=~(450.000000,0.000000,20.000000) bs[0]=^(102.000000,2.000000) xmin[0]=0.000000,xmax[0]=30.000000 xmin[1]=0.000000,xmax[1]=30.000000 xmin[2]=0.000000,xmax[2]=30.000000 noninteger variables are: x[0]x[1]x[2]Parameters for crs() are: 0.001000,0.001000,0.010000 8000,2000,0,2000,3,2 0,0,1,1 Phi[200]=0.477200 epsilon=0.100000,lamda=0.500000 /* nhập ε =0.1, λ = 0.5 */ anpha[0]=0.600000,denanpha[0]=0.200000 c /* nhập h1 = 0.6, h1 = 0.45, h1 = 0.2 */ gama[0]=0.000000 /* luôn đặt γ = 0*/ ps[0]=0.550000,beta1[0]=0.570000,beta[0]=0.650000 a /* nhập p1 = 0.65, p1 = 0.57, p1 = 0.1 */ THE Uj OBJECTIVE VALUES ARE: *, s*,f=-498.436768,fm=-497.952515,iter=587,ifun=5470 *, s*,f=-500.923218,fm=-500.425415,iter=1186,ifun=11124 *, s*,f=-495.241272,fm=-494.746765,iter=898,ifun=7685 *, s*,f=-509.498840,fm=-508.989868,iter=740,ifun=6299 t*, f= 509.498840,iter2=3411 ifun2=30578 u[0]=509.498840,x[0]=29.806744,x[1]=10.353548,x[2]=7.335000, /* Vậy hàm mục tiêu ngẫu nhiên có kỳ vọng cực đại là : e1 = 509.498840 */ FUZZY ASPIRATION ARE: 84
  15. *, s*,f=-250.603195,fm=-250.353546,iter=646,ifun=5565 *, s*,f=-256.724731,fm=-256.472076,iter=1188,ifun=9069 *, s*,f=-255.401428,fm=-255.147598,iter=892,ifun=7188 *, s*,f=-255.560532,fm=-255.308609,iter=894,ifun=7025 t*, f= 256.724731,iter2=3620 ifun2=28847 *, s*,f=-194.656174,fm=-194.461990,iter=805,ifun=6380 *, s*,f=-200.524338,fm=-200.324539,iter=1113,ifun=8682 *, s*,f=-196.544815,fm=-196.350510,iter=1151,ifun=8989 *, s*,f=-196.538406,fm=-196.344437,iter=694,ifun=5682 t*, f= 200.524338,iter2=3763 ifun2=29733 /* Vậy hàm mục tiêu mờ có giá trị lớn nhất là d1 = 256.724737 */ PARAMETERS ARE: d[0]=(116.699371,150.000000,256.724731) bf[1]=(450.000000,465.000000,468.000000) U[0]=509.498840,U[0]-DenU[0]=479.498840 U[0]-DenUl[0]=445.414215 anpha[0]~(0.400000,0.450000,0.600000) c /* Đặt d1 = 150 , e1 = 30 */ ***ITERATION 1 *, s*,f=-0.720325,fm=-0.719616,iter=1445,ifun=11385 *, s*,f=-0.713683,fm=-0.712970,iter=1202,ifun=10567 *, s*,f=-0.676134,fm=-0.675460,iter=2067,ifun=15409 *, s*,f=-0.725293,fm=-0.724583,iter=1670,ifun=14131 t*, f= 0.725293,iter2=6384 ifun2=-14044 (lamda[1],X)=(0.725293,19.960680,14.773745,10.951034,) Zf[0]=198.092743 Zs[0]=481.155060 0-stoch-objective probability=~0.518305 Zcf[0]=90.977386 Zcf[1]=386.021515 Zcs[0]=95.193627 0-stoch-cons hold with probability=0.606047 NEW PARAMETERS ARE: d[0]=(116.699371,160.000000,256.724731) bf[1]=(450.000000,455.000000,468.000000) U[0]=509.498840,U[0]-DenU[0]=491.498840 anpha[0]=0.600000 anpha[0]~(0.400000,0.480000,0.600000) gama[0]=0.000000 beta[0]=0.650000 beta[0]~(0.550000,0.590000,0.650000) ***ITERATION 2 *,cs*,f=-0.226025,fm=-0.000000,iter=2001,ifun=13657 *,cs*,f=-0.187145,fm=-0.000000,iter=2001,ifun=13836 *,cs*,f=-0.000000,fm=-0.000000,iter=0,ifun=1562 *,cs*,f=-0.559870,fm=-0.000000,iter=2001,ifun=13782 t*, f= 0.559870,iter2=6003 ifun2=-22699 (lamda[2],X)=(0.559870,28.427076,9.145482,10.274362,) 85
  16. Zf[0]=172.244339 Zs[0]=492.106384 0-stoch-objective probability=~0.507108 Zcf[0]=71.344193 Zcf[1]=382.913635 Zcs[0]=94.564961 0-stoch-cons hold with probability=0.597184 NEW PARAMETERS ARE: d[0]=(116.699371,174.000000,256.724731) bf[1]=(450.000000,455.000000,468.000000) U[0]=509.498840,U[0]-DenU[0]=491.498840 anpha[0]=0.600000 anpha[0]~(0.400000,0.500000,0.600000) gama[0]=0.000000 beta[0]=0.650000 beta[0]~(0.550000,0.600000,0.650000) ***ITERATION 3 *,cs*,f=-0.471844,fm=-0.000000,iter=2001,ifun=13734 *,cs*,f=-0.149716,fm=-0.000000,iter=2001,ifun=13836 *,cs*,f=-0.000000,fm=-0.000000,iter=0,ifun=1562 *,cs*,f=-0.064333,fm=-0.000000,iter=2001,ifun=13654 st*, f= 0.471844,iter2=6003 ifun2=-22750 (lamda[3],X)=(0.471844,28.427076,9.145482,10.274362,) Zf[0]=172.244339 Zs[0]=492.106384 0-stoch-objective probability=~0.507108 Zcf[0]=71.344193 Zcf[1]=382.913635 Zcs[0]=94.564961 0-stoch-cons hold with probability=0.597184 Giải thích kí hiệu epsilon = ε = 0.1 là 10% đáy số mờ bỏ qua, lamda =λ = 0.5 là mức mong muốn 50% của tất cả các hàm thoả dụng, anpha[0] = h1 = 0.60 là mức xác suất cao nhất cho mục tiêu ngẫu nhiên, denanpha[0]= h1 = 0.20 là lượng cho phép giảm tối đa của h1, c anpha1[0] = h1 = 0.45 là mức xác suất thoả mãn 50%, anpha[0]~(0.400000,0.450000,0.600000) là mức xác suất mờ cho mục tiêu mờ, gama[0] = 0, luôn đặt γ = 0, ps[0] = p1 − p1 = 0.55 là mức xác suất thoả mãn 0% của ràng buộc xác suất, a beta1[0] = p1 = 0.570000 là mức xác suất thoả mãn 50% của ràng buộc xác suất, beta[0] = p1 = 0.650000 là mức xác suất thoả mãn 100% của ràng buộc xác suất, ps(0) = p1 = 0.1 là lượng cho phép giảm tối đa của mức xác suất từ p1, c Da[0]= d1 = 150 = là mức thoả mãn 50% đối với hàm mục tiêu mờ, d[0]=(116.699371,150.000000,256.724731) là mức mong muốn mờ của mục tiêu, 86
  17. a Ga[1] = b2 = 465 là mức thoả mãn 50% đối với ràng buộc mờ, bf[1] = (450.000000,465.000000,468.000000) là hệ số vế phải của ràng buộc mờ, U[0] = e1 = 509.498840 là giá trị kỳ vọng cực đại của mục tiêu ngẫu nhiên U[0]-DenUl[0] = Min1 = 445.414215 là giá trị chặn dưới của hàm ngẫu nhiên DenU[0]= e1 = 30 là mức giảm cho phép của kỳ vọng hàm ngẫu nhiên, U[0]-DenU[0]=479.498840 U[0]-DenUl[0]=445.414215. 2.3. Bài toán xác định cơ cấu đầu tư cho các hộ chăn nuôi cá Thủ tục tính giá trị hàm mục tiêu và các ràng buộc void ren(int index) { int i; switch(index) { case 0: y[0]=pow(x[0],0.236)*pow(x[1],0.104)*pow(x[2],0.096)*pow(x[3],0.056); y[0]=y[0]*pow(x[4],0.056)*exp(0.168*x[5])*exp(0.066*x[6]); y[1]=x[1]; y[2]=x[2]; y[3]=x[3]; y[4]=x[4]; break; case 1: y[0]=pow(x[0],0.236)*pow(x[1],0.104)*pow(x[2],0.096)*pow(x[3],0.056); y[0]=y[0]*pow(x[4],0.056)*exp(0.168*x[5])*exp(0.066*x[6]); y[1]=x[0]+x[1]+x[2]+x[3]+x[4]; y[2]=x[2]; y[3]=x[3]; y[4]=x[4]; break; case 2: y[0]=pow(x[0],0.236)*pow(x[1],0.104)*pow(x[2],0.096)*pow(x[3],0.056); y[0]=y[0]*pow(x[4],0.056)*exp(0.168*x[5])*exp(0.066*x[6]); y[1]=x[0]+x[1]+x[3]+x[4]; y[2]=x[2]; y[3]=x[3]; y[4]=x[4]; break; case 3: y[0]=x[0]; y[1]=x[1]; y[2]=x[2]; y[3]=x[3]; y[4]=x[4]; break; case 4: y[0]=x[5]; y[1]=x[6]; break; } 87
  18. return; } File dữ liệu đầu vào test1.in 75532002 19.375 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19.375 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 19.375 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 000 000 000 75 0 0 1.001 0 0 0 40 0 30 0 20 0 15 0 15 0 1 0 1 01234 0.001 0.001 0.01 8000 2000 0 2000 320011 Chú ý: Còn có thêm bảng tra xác xuất chuẩn. 2.4. Bài toán quy hoạch sử dụng đất trên địa bàn huyện Trùng Khánh Kết quả điều tra nông hộ và kết quả xử lý số liệu cho thấy: số liệu điều tra là biến động và có tính ngẫu nhiên. Do đó một số hệ số của mô hình là các biến ngẫu nhiên (tuân theo luật chuẩn) nên mô hình được áp dụng là mô hình quy hoạch tuyến tính ngẫu nhiên. Trên cơ sở các biến số, hệ số, các ràng buộc và hàm mục tiêu được xây dựng một cách phù hợp, ta có mô hình quy hoạch tuyến tính ngẫu nhiên đa mục tiêu được phát biểu như sau: Hãy tìm giá trị không âm của các biến số Xj (j = 1,..., 12) thoả mãn các điều kiện ràng buộc sao cho các hàm mục tiêu Z1, Z2, Z3 đạt giá trị lớn nhất. Z1 = (6847,12 ; 1227,36) (X1 + X2 + X3) + (5011,45 ; 1096,94) (X4 + X5 + X6) + (3801,45 ; 1325,61) (X7 + X8 + X9) + (3651,74 ; 703,21) (X10 + X11) + (17604,65 ; 3161,43) X12 → Max Z2 = (4411,75 ; 978,77) (X1 + X2 + X3) + (3135,63 ; 1087,87) (X4 + X5 + X6) + (2906,75 ; 1153,83) (X7 + X8 + X9) + (2253,17 ; 655,69) (X10 + X11) + (6516,88 ; 2138,27) X12 → Max Z3 = (2,15 ; 1,21) (X1 + X2 + X3) + (1,94 ; 1,13) (X4 + X5 + X6) + (3,45 ; 1,27) (X7 + X8 + X9) + (1,63 ; 0,53) (X10 + X11) + (0,60 ; 0,21) X12 → Max. Với các ràng buộc: X1 = 1400,00; X2 = 1400,00; X3 = 2820,00; X4 + X7 + X10 = 2820,00; X5 + X8 + X11 + X12 = 2511,65; X8 + X9 ≤ 2511,65; X6 + X9 + X12 = 2511,65; ~ (3,78; 0,76)(X1 + X2 + X3) + (3,00; 0,71)(X4 + X5 + X6) ≥ Q (22000,0 ; 1000,0); Xj ≥ 0 (j= 1,...,12). Trong đó: 88
  19. - Xj (j = 1, 2, ..., 12) là các biến số quyết định của bài toán (diện tích 5 loại cây trồng trên 3 loại hình sử dụng đất). - Zi là các hàm mục tiêu: Z1 là tổng giá trị sản xuất (GO) tối đa (Z1 = ~ 12 ~ ∑Pi Xi → Max) với Pi là giá trị sản xuất đạt được trên một đơn vị diện tích cây trồng, i=1 ~ 12 ~ Pi là hệ số ngẫu nhiên. Z2 là tổng thu nhập hỗn hợp (MI) tối đa (Z2 = ∑CiXi → Max ) với i =1 ~ ~ Ci là thu nhập hỗn hợp đạt được trên một đơn vị diện tích cây trồng, Ci là hệ số ngẫu 12 ~ ~ ∑ RiXi → Max ) với nhiên. Z3 là tổng tỷ suất lợi nhuận tối đa (Z3 = R i là tỷ suất lợi i =1 ~ nhuận thu được trên một đơn vị diện tích cây trồng, R i là hệ số ngẫu nhiên. ~ - Q (22000,0 ; 1000,0) là tổng sản lượng lương thực (có hạt) trong giai đoạn tới. Đây là một giá trị ngẫu nhiên có kỳ vọng 22000,0 tấn và độ lệch chuẩn là 1000,0 tấn. Sau khi xây dựng được mô hình, ta giải mô hình bằng phần mềm PRELIME (C. Mohan và Nguyễn Hải Thanh, 2001). Kết quả giải mô hình được tổng hợp trong bảng V.1 với ba phương án tối ưu thoả dụng có thể được lựa chọn. Bảng V.1. Kết quả chạy bài toán tối ưu Từng mục tiêu Kết hợp cả ba mục tiêu Giá trị Z1 → Max Z2 → Max Z3 → Max Giá trị 1 Giá trị 2 Giá trị 3 X1(ha) 1400,00 1400,00 1400,00 1400,00 1400,00 1400,00 X2(ha) 1400,00 1400,00 1400,00 1400,00 1400,00 1400,00 X3(ha) 2820,00 2820,00 2820,00 2820,00 2820,00 2820,00 X4(ha) 2653,83 2815,62 10,86 2270,08 2289,50 2495,94 X5(ha) 0,00 422,25 1453,26 1306,54 1241,00 1021,24 X6(ha) 0,00 1186,07 839,19 1712,76 1492,14 1293,04 X7(ha) 0,00 0,00 2808,67 549,61 528,54 324,03 X8(ha) 0,00 784,34 837,59 419,15 255,33 303,87 X9(ha) 0,00 35,41 1671,40 14,01 4,28 32,96 X10(ha) 166,17 4,38 0,47 0,31 1,96 0,03 X10(ha) 0,00 14,90 219,75 1,08 0,09 0,90 X10(ha) 2511,65 1290,17 1,05 784,88 1015,23 1185,64 82546840,0 84527912,0 85975488,0 Z1 96603880,0 (1000đ) * 73,56% * 85,31% * 71,41% 49354340,0 49454884,0 49426864,0 Z2 49499980,0 (1000đ) * 54,14% * 56,16% * 57,29% 26208,16 25158,50 24407,70 Z3 35256,97 * 54,14% * 62,76% *5 7,49% λ 0,805 0,899 0,676 37111,74 36311,54 35674,27 SLLT (tấn) * 99,56% * 99,43% * 99,31% Ghi chú:- λ : Độ thoả dụng tổng hợp của các mục tiêu. - Zi: Giá trị kỳ vọng của các mục tiêu. - *: Xác suất để giá trị mục tiêu Zi hay sản lượng lương thực (SLLT) đạt hơn mức chốt đề ra. 89
  20. Đối với từng mục tiêu và hàm liên hợp 3 mục tiêu, các cây trồng được đề nghị khuyến khích trồng là lúa (được khuyến khích trên tất cả các diện tích có khả năng trồng lúa), ngô, đậu tương và mía, không khuyến khích trồng khoai lang. Điều này là dễ hiểu, bởi khoai lang thường cho hiệu quả thấp hơn so với các cây trồng trên. Từ các kết quả thu được, có thể đưa ra nhận xét: Vấn đề có tính chiến lược hiện nay trên địa bàn huyện Trùng Khánh là phát triển các cây lương thực như lúa, ngô và chuyển đổi cơ cấu theo hướng sản xuất hàng hoá có giá trị hiệu quả cao, dành một tỷ lệ đất màu khoảng 40 - 45% cho phát triển cây mía Thủ tục tính giá trị hàm mục tiêu và các ràng buộc void ren(int index) { int i; switch(index) { case 0: x[0]=1400.0; x[1]=1400;x[2]=2820; y[0]=x[0]+x[1]+x[2]; y[1]=x[3]+x[4]+x[5]; y[2]=x[6]+x[7]+x[8]; y[3]=x[9]+x[10]; y[4]=x[11]; break; case 1: x[0]=1400.0; x[1]=1400;x[2]=2820; y[0]=x[0]+x[1]+x[2]; y[1]=x[3]+x[4]+x[5]; y[2]=x[6]+x[7]+x[8]; y[3]=x[9]+x[10]; y[4]=x[11]; break; case 2: x[9]=2820-x[3]-x[6]; if(x[9]
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2