Chương 5: Bất đẳng thức
lượt xem 53
download
Tài liệu tham khảo rất hữu ích cho các bạn học sinh phổ thông, ôn thi đại học, củng cố nâng cao kiến thức vể môn toán, các bất đẳng thức là hành trang giúp ban hoàn thành môn thật tốt. Chúc các bạn thành công
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Chương 5: Bất đẳng thức
- BAÁT ÑAÚNG THÖÙC Chuyeân ñeà 5: TOÙM TAÉT GIAÙO KHOA I. Soá thöïc döông, soá thöïc aâm: • Neáu x laø soá thöïc döông, ta kyù hieäu x > 0 • Neáu x laø soá thöïc aâm, ta kyù hieäu x < 0 • Neáu x laø soá thöïc döông hoaëc x= 0, ta noùi x laø soá thöïc khoâng aâm, kyù hieäu x ≥ 0 • Neáu x laø soá thöïc aâm hoaëc x= 0, ta noùi x laø soá thöïc khoâng döông, kyù hieäu x ≤ 0 Chuù yù: • Phuû ñònh cuûa meänh ñeà "a > 0" laø meänh ñeà " a ≤ 0 " • Phuû ñònh cuûa meänh ñeà "a < 0" laø meänh ñeà " a ≥ 0 " II. Khaùi nieäm baát ñaúng thöùc: 1. Ñònh nghóa 1: Soá thöïc a goïi laø lôùn hôn soá thöïc b, kyù hieäu a > b neáu a-b laø moät soá döông, töùc laø a-b > 0. Khi ñoù ta cuõng kyù hieäu b < a a > b ⇔ a−b > 0 Ta coù: • Neáu a>b hoaëc a=b, ta vieát a ≥ b . Ta coù: a ≥ b ⇔ a-b ≥ 0 2. Ñònh nghóa 2: Giaû söû A, B laø hai bieåu thöùc baèng soá Meänh ñeà : " A lôùn hôn B ", kyù hieäu : A > B " A nhoû hôn B ", kyù hieäu :A < B " A lôùn hôn hay baèng B " kyù hieäu A ≥ B " A nhoû hôn hay baèng B " kyù hieäu A ≤ B ñöôïc goïi laø moät baát ñaúng thöùc Quy öôùc : • Khi noùi veà moät baát ñaúng thöùc maø khoâng chæ roõ gì hôn thì ta hieåu raèng ñoù laø moät baát ñaúng thöùc ñuùng. • Chöùng minh moät baát ñaúng thöùc laø chöùng minh baát ñaúng thöùc ñoù ñuùng III. Caùc tính chaát cô baûn cuûa baát ñaúng thöùc : ⎧a > b 1. Tính chaát 1: ⇒a>c ⎨ ⎩b > c 2. Tính chaát 2: a > b ⇔ a+c > b+c Heä quaû 1: a > b ⇔ a−c > b−c Heä quaû 2: a+c > b ⇔ a > b−c ⎧a > b 3. Tính chaát 3: ⇒ a+c > b+d ⎨ ⎩c > d ⎧ac > bc neáu c > 0 4. Tính chaát 4: a>b⇔⎨ ⎩ac < bc neáu c < 0 Heä quaû 3: a > b ⇔ −a < − b ⎧a b ⎪ c > c neáu c > 0 ⎪ Heä quaû 4: a>b⇔⎨ ⎪ a < b neáu c < 0 ⎪c c ⎩ 19
- ⎧a > b > 0 5. Tính chaát 5: ⇒ ac > bd ⎨ ⎩c > d > 0 11 6. Tính chaát 6: a>b>0⇔0< < ab 7. Tính chaát 7: a > b > 0, n ∈ N ⇒ a > b n * n 8. Tính chaát 8: n a > b > 0, n ∈ N * ⇒ a >nb Heä quaû 5: Neáu a vaø b laø hai soá döông thì : a > b ⇔ a2 > b2 Neáu a vaø b laø hai soá khoâng aâm thì : a ≥ b ⇔ a2 ≥ b2 IV. Baát ñaúng thöùc lieân quan ñeán giaù trò tuyeät ñoái : ⎧ x neáu x ≥ 0 1. Ñònh nghóa: x = ⎨ ( x ∈ R) ⎩− x neáu x < 0 2 2. Tính chaát : x ≥ 0 , x = x 2 , x ≤ x , -x ≤ x 3. Vôùi moïi a, b ∈ R ta coù : a+b ≤ a + b • a−b ≤ a + b • a + b = a + b ⇔ a.b ≥ 0 • a − b = a + b ⇔ a.b ≤ 0 • V. Baát ñaúng thöùc trong tam giaùc : Neáu a, b, c laø ba caïnh cuûa moät tam giaùc thì : • a > 0, b > 0, c > 0 • b−c < a < b+c c−a < b< c+a • a−b < c < a+b • • a>b>c⇔ A> B >C VI. Caùc baát ñaúng thöùc cô baûn : a. Baát ñaúng thöùc Cauchy: a+b Cho hai soá khoâng aâm a; b ta coù : ≥ ab 2 Daáu "=" xaûy ra khi vaø chæ khi a=b a+b+c 3 Cho ba soá khoâng aâm a; b; c ta coù : ≥ abc 3 Daáu "=" xaûy ra khi vaø chæ khi a=b=c Toång quaùt : Cho n soá khoâng aâm a1,a2,...an ta coù : a1 + a2 + ... + an n ≥ a1 .a2 ...an n 20
- Daáu "=" xaûy ra khi vaø chæ khi a1 = a2 =...= an Caùc phöông phaùp cô baûn chöùng minh baát ñaúng thöùc : Ta thöôøng söû duïng caùc phöông phaùp sau 1. Phöông phaùp 1: Phöông phaùp bieán ñoåi töông ñöông Bieán ñoåi töông ñöông baát ñaúng thöùc caàn chöùng minh ñeán moät baát ñaúng thöùc ñaõ bieát raèng ñuùng . Ví duï: Chöùng minh caùc baát ñaúng thöùc sau: 1. a 2 + b 2 + c 2 ≥ ab + bc + ca vôùi moïi soá thöïc a,b,c 2. a 2 + b 2 + 1 ≥ ab + a + b vôùi moïi a,b 2. Phöông phaùp 2: Phöông phaùp toång hôïp Xuaát phaùt töø caùc baát ñaúng thöùc ñuùng ñaõ bieát duøng suy luaän toaùn hoïc ñeå suy ra ñieàu phaûi chöùng minh. 1 Ví duï 1: a) Cho hai soá döông a vaø b thoaû maõn 3a + 2b = 1 . Chöùng minh: ab ≤ 24 b) Cho hai soá döông a vaø b thoaû maõn ab = 1 . Chöùng minh: 4a + 9b ≥ 12 5 41 Ví duï 2: Cho x, y laø caùc soá thöïc döông thoûa maõn ñieàu kieän x + y = . Chöùng minh raèng: + ≥5 4 x 4x ⎛ x y ⎞⎛ y z ⎞⎛ z x ⎞ Ví duï 3: Cho x,y,z laø caùc soá döông. Chöùng minh raèng: ⎜ + ⎟ ⎜ + ⎟ ⎜ + ⎟ ≥ 8 ⎝ y z ⎠⎝ z x ⎠⎝ x y ⎠ a+b+c a+b+c a+b+c Ví duï 4: Cho ba soá döông a, b, c . Chöùng minh raèng : + + ≥9 a b c b+c c+a a+b Ví duï 5: Cho a,b,c >0 vaø abc=1. Chöùng minh raèng : ≥ a + b + c +3 + + a b c ÖÙNG DUÏNG BAÁT ÑAÚNG THÖÙC TÌM GTLN & GTNN CUÛA MOÄT HAØM SOÁ Ví duï 1: Tìm giaù trò lôùn nhaát cuûa haøm soá : y = (x + 2)(3 − x) vôùi −2 ≤ x ≤ 3 Ví duï 2: Cho ba soá döông x, y, z thoûa maõn xyz = 1 . Tìm GTNN cuûa bieåu thöùc P = (x + 1)(y + 1)(z + 1) Ví duï 3: Tìm GTNN cuûa caùc haøm soá a) y = x + 5 + x − 3 b) y = x + 1 + x − 2 + 2x − 5 Ví duï 4: Tìm giaù trò nhoû nhaát cuûa bieåu thöùc S = 10x 2 + 5y 2 − 10xy − 10x + 14 vôùi x , y ∈ ------------------------------------Heát----------------------------------- 21
- TRAÉC NGHIEÄM KHAÙCH QUAN ÑEÀ SOÁ 1: 1 Caâu 1: Giaùtrò nhoû nhaát cuûa haøm soá y = 2x + , x > 0 laø x2 (A) 3 (B) 1 (C) 2 2 (D) 3 3 3 1 Caâu 2: Giaù trò nhoû nhaát cuûa haøm soá y = 3x + , x > 0 laø x3 (A) 2 2 (B) 1 (C) 4 (D) 3 3 4 5 Caâu 3: Giaù trò nhoû nhaát cuûa haøm soá y = x + , x > 2 laø x−2 (A) 2 + 1 (B) 2 − 1 (C) 5 − 2 2 (D) 5 + 2 x+3 Caâu 4: Giaù trò nhoû nhaát cuûa haøm soá y = x + , x > −1 laø x +1 (A) 2 2 + 5 (B) 2 2 − 5 (C) 2 2 (D) −2 2 Caâu 5: Giaù trò lôùn nhaát cuûa bieåu thöùc S = 4 − 5x − 2y + 2xy + 8x + 2y vôùi x , y ∈ laø 2 2 1 1 (A) −9 (B) (C) − (D) 9 9 9 ---------------------------Heát------------------------- 22
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo trình Ăn mòn và bảo vệ kim loại - Th.S Lê Ngọc Trung
125 p | 1795 | 972
-
Lời giải và hướng dẫn bài tập đại số sơ cấp - Chương 5
70 p | 343 | 140
-
Giáo trình thí nghiệm công nghệ thực phẩm - Chương 2 - Bài 5 & 6
0 p | 355 | 127
-
Bài tập đại số sơ cấp - Chương 5
14 p | 318 | 106
-
Giáo trình Hệ thực vật và đa dạng loài: Phần 2
69 p | 96 | 19
-
Bài giảng Mapinfo: Bài 5 - ThS. Nguyễn Thị Huyền
18 p | 81 | 18
-
Bài giảng Lý thuyết xác suất và thống kê toán: Chương 5 - Phạm Thị Hồng Thắm
26 p | 159 | 17
-
Bài giảng Chương 5: Phản ứng của thực vật và các tác động của hormon thực vật
34 p | 137 | 15
-
Bài giảng Xác suất thống kê - Chương 5: Các định lý giới hạn ứng dụng
17 p | 231 | 10
-
Bài giảng Tối ưu hóa trong thiết kế cơ khí: Chương 5 - ĐH Công nghiệp TP.HCM
36 p | 49 | 8
-
Viện Khoa học Thống kê: Tầm nhìn đến năm 2030
4 p | 67 | 4
-
Bài giảng Nhiệt động hoá học: Chương 5 - Hồ Thị Cẩm Hoài
22 p | 12 | 3
-
Đề cương chi tiết học phần: Đại số tuyến tính - ĐH Kinh tế-Kỹ thuật Công nghiệp
10 p | 48 | 2
-
Giáo trình Đại số sơ cấp và thực hành giải toán: Phần 2
190 p | 21 | 2
-
Giải tích I: Bài tập và bài giải - Phần 2
147 p | 8 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn