intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

CHƯƠNG III. CẤP SỐ CỘNG - CẤP SỐ NHÂN

Chia sẻ: Abcdef_43 Abcdef_43 | Ngày: | Loại File: PDF | Số trang:11

142
lượt xem
12
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Học sinh nắm được: - Khái niệm cấp số cộng - Công thức số hạng tổng quát - Tính chất u k  u k 1  u k 1 2 - Tổng n số hạng đầu tiên của một cấp số cộng 2. Về kỹ năng: Tìm được các yếu tố còn lại khi biết 3 trong 5 yếu tố: u1, un, n, d và Sn. 3. Về tư duy và thái độ: - Xây dựng tư duy logic, linh hoạt, biết quy lạ về quen. - Cẩn thận, chính xác trong tính toán và lập luận.

Chủ đề:
Lưu

Nội dung Text: CHƯƠNG III. CẤP SỐ CỘNG - CẤP SỐ NHÂN

  1. CHƯƠNG III. CẤP SỐ CỘNG - CẤP SỐ NHÂN Bài 3: CẤP SỐ CỘNG (2tiết ) I. Mục tiêu bài học: 1. Về kiến thức: Học sinh nắm được: - Khái niệm cấp số cộng - Công thức số hạng tổng quát u k 1  u k 1 - Tính chất u k  2 - Tổng n số hạng đầu tiên của một cấp số cộng 2. Về kỹ năng: Tìm được các yếu tố còn lại khi biết 3 trong 5 yếu tố: u1, un, n, d và Sn. 3. Về tư duy và thái độ: - Xây dựng tư duy logic, linh hoạt, biết quy lạ về quen. - Cẩn thận, chính xác trong tính toán và lập luận. II. Chuẩn bị của giáo viên và học sinh 1. Chuẩn bị của giáo viên:
  2. - Các bảng phụ và các phiếu học tập - Giáo án, SGK và các tài liệu tham khảo. - Đồ dùng dạy học: thước kẻ, compa,… 2. Chuẩn bị của học sinh - Đồ dùng học tập. - Kiến thức đã học về hàm số đối với các số tự nhiên - Máy tính bỏ túi III. Phương pháp dạy học - Gợi mở - vấn đáp, phát hiện và giải quyết vấn đề - Tổ chức đan xen hoạt động học tập cá nhân và nhóm. IV. Tiến trình bài học và các hoạt động HĐ1: Hình thành khái niệm cấp số cộng Hoạt động của học sinh Hoạt động của giáo viên Ghi bảng TG - Thảo luận nhóm - Chia HS thành nhóm, yêu I. Định nghĩa cầu HS thực hiện HĐ1 - Đại diện nhóm trình bày VD1: -1; 3; 7; 11 (SGK) câu trả lời. Định nghĩa (SGK) HS có thể trả lời đây là dãy số tăng
  3. - TL: Kể từ số hạng thứ - Gợi ý về mối quan hệ giữa un+1=un+d, nN* hai, mỗi số hạng bằng số mỗi số hạng với số hạng hạng đứng trước nó cộng đứng trước nó. 4. - Tiếp thu và ghi nhớ kiến - Trình bày định nghĩa cấp thức mới. số cộng. - TL: Khi d=0, các số H: Khi d=0, nhận xét về các hạng của cấp số cộng đều số hạng của cấp số cộng? bằng nhau và bằng u1. HĐ2: Củng cố định nghĩa thông qua các VD. Hoạt động của học sinh Hoạt động của giáo viên Ghi bảng TG - Cá nhân HS hoạt động - Hướng dẫn HS chứng VD2: Chứng minh minh VD2 bằng cách sử dãy số hữu hạn sau - TL: dụng định nghĩa. là một cấp số cộng: 4=7-3; 1=4-3; -2=1-3; 7; 4; 1; -2; -5. -5=-2-3. Vậy theo định nghĩa dãy số 7; 4; 1; -2; -5 là một
  4. cấp số cộng với công sai d= -3. - Nhận xét. - Nhận xét, sửa chữa. - Thảo luận nhóm - Chia HS thành nhóm, thực VD3 (HĐ2 -SGK) - Đại diện nhóm trình bày hiện HĐ2 (SGK) Cho (un) là một cấp kết quả. - Hướng dẫn: Sử dụng công số cộng có 6 số thức un+1=un+d, nN*. Kết quả: 1 hạng với u1=  , 3 1 8 17 26 35 44 d=3. Viết dạng khai ;; ;;; 333333 triển của nó. - Nhận xét. - Nhận xét, sửa chữa. HĐ3: Hình thành công thức số hạng tổng quát Hoạt động của học sinh Hoạt động của giáo viên Ghi bảng TG - Thảo luận nhóm. - Chia HS thành nhóm, thực II. Số hạng tổng hiện HĐ3 (SGK) quát: Tầng đế của tháp có 1 tầng: 3 que. Tương tự, 2 - Hướng dẫn: Chú ý đến VD4 (HĐ3 -SGK) tầng: 7 que, 3 tầng: 11 que mối liên hệ giữa số que u1=3 diêm trên tầng đế khi số Ta có: 7=3+4; 11=7+4 tầng của tháp tăng lên. u2=u1+1.4 Vậy số que diêm trên tầng u3=u2+4=u1+2.4
  5. đế của tháp lập thành một u4=u3+4=u1+3.4 cấp số cộng với u1=3; d=4  Số que diêm cần tìm là u100. - HD: u1=3 - HS gặp khó khăn trong việc tìm u100 u2=u1+1.4 u100 =? u3=u2+4=u1+2.4 u4=u3+4=u1+3.4 TL: u100=u1+99.4= H: Từ đó có thể suy ra công 3+99.4= thức tính u100 dựa vào quy luật trên. 399 que - Nhận xét, sửa chữa. - Nhận xét. - Hướng dẫn: Yêu cầu HS chứmg minh công thức - Cá nhân HS hoạt động tổng quát. Định lí 1: (SGK) - TL: Khi n=2 ta có: u2=u1+d un=u1+(n-1)d, n2 Giả sử công thức (2) đúng khi n=k2, tức là uk=u1+(k-1)d
  6. Ta cần CM công thức (2) cũng đúng khi n=k+1. Thật vậy, theo GT quy nạp ta có: uk+1=uk+d=[u1+(k-1)d]+d = u1+kd (Đpcm) - Nhận xét. - Nhận xét, sửa chữa. HĐ4: Củng cố công thức số hạng tổng quát và hình thành tính chất các số hạng của cấp số cộng. Hoạt động của học sinh Hoạt động của giáo viên Ghi bảng TG - Cá nhân HS hoạt động - Hướng dẫn HS tìm u15 VD5: bằng công thức số hạng Cho cấp số cộng - TL: tổng quát. (un) với u1=-5,d=3. a) u15=u1+d =-5+14.3=37 un=u1+(n-1)d, n2 a) Tìm u15. b) Theo CT số hạng tổng b) Số 100 là số quát:100=-5+(n-1)3  hạng thứ bao n=36 nhiêu? - Nhận xét, sửa chữa.
  7. - Nhận xét. Giải: a) u15=u1+d =-5+14.3=37 b) Theo CT số hạng tổng quát: 100 = -5+(n-1)3  n = 36 c) Biểu diễn u1, u2, c) - Cá nhân HS hoạt động - Hướng dẫn HS biểu diễn u3, u4, u5 trên trục u1, u2, u3, u4, u5 trên trục số số - TL: u3 là trung điểm của và nêu nhận xét mỗi điểm đoạn thẳng u2u4 hay: u2, u3, u4 so với hai điểm u  u4 u3  2 . liền kề. 2 - u2, u4 tương tự u3. III. Tính chất các số hạng của CSC.
  8. - Nhận xét. - Nhận xét, sửa chữa. Định lí 2: - Từ đó suy ra công thức u k 1  u k 1 uk  ,k  2 2 HĐ5: Hình thành công thức tổng n số hạng đầu của một cấp số cộng Hoạt động của học sinh Hoạt động của giáo viên Ghi bảng TG - Thảo luận nhóm. - Chia HS thành nhóm, thực IV. Tổng n số hạng hiện HĐ4(SGK) đầu của một cấp số - Đạidiện nhóm trình bày cộng. kết quả Nhận xét: -1 3 7 11 15 19 23 27
  9. 27 23 19 15 11 7 3 -1 a) Tổng các số hạng ở mỗi cột là 26 8.26 b) Tổng các số hạng của cấp số cộng là:  104 2 - Nhận xét kết quả của HS. Định lý 3: - Dự đoán công thức - Gợi ý để HS dự đoán công n(u1  u n ) Sn  2 thức số hạng tổng quát - Trình bày nội dung định - Tiếp thu và ghi nhớ kiến lý 3 thức mới. - Cá nhân HS hoạt động: - HD để HS tính un theo u1 un=u1+(n-1)d và d n(n  1) Do đó: S n  nu1  d 2 HĐ6: Củng cố công thức tổng n số hạng đầu của một cấp số cộng Hoạt động của học sinh Hoạt động của giáo viên Ghi bảng TG
  10. - Thảo luận nhóm VD6: Cho dãy số - HD: un=5-2n. a) Xét hiệu un+1- un a) un+1- un=5-2(n+1)-(5-2n)=- a) Chứng minh dãy 2 (un) là một cấp số  un+1= un-2. cộng. Tìm u1 và d. Vậy (un) là một cấp số cộng b) Tính S100. b) Tính S100 theo công với u1=3; d=-2 thức ở định lý 3 b) 100.99 (2) =-9600 S100  100.3  2 HĐ7: Củng cố toàn bài - Phát phiếu học tập: PHIẾU HỌC TẬP 1. Trong các dãy số sau, dãy nào không phải là cấp số cộng: A. 1, 2, 3, 4,… B. -1, -2, -3, -4,… C. 1, 1, 1, 1, … D. 2, 4, 8, 16, … 2. Cho cấp số cộng, biết u1=1, u2=5. Tính S10. A. 380 B. 190 C. 95 D. 195
  11. - HD HS giải các bài tập 1, 2, 4, 5 (SGK)
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2