intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Chuyên đề IV: Hình học không gian (tổng hợp).

Chia sẻ: Paradise2 Paradise2 | Ngày: | Loại File: PDF | Số trang:3

114
lượt xem
12
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'chuyên đề iv: hình học không gian (tổng hợp).', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Chuyên đề IV: Hình học không gian (tổng hợp).

  1. Chuyên đề IV: Hình học không gian (tổng hợp). . Tính diện tích, Tính thể tích. Lý huyết 1 Thể tích hình chóp V  .S®¸y .h (h là chiều cao) 3 4 Thể tích khối cầu bán kính R: VcÇu   .R 3 3 Thể tích khối lăng trụ VL/trô  S®¸y .h Thể tích khối nón tròn xoay : Vnãn  1 3  R 2 .h Thể tích khối trụ tròn xoay: Vtrô   R 2 .h .  Diện tích xung quanh của hình nón tròn xoay: S Xq-nãn   R.l Diện tích xung quanh của hình trụ tròn xoay: S Xq-trô  2 R.l Một số hình cần chú ý: - Hình chóp đều có đáy là tam giác, hình vuông - Hình chóp có một cạnh vuông góc với đáy (hình chữ nhật, hình vuông, tam giác vuông) - Hình nón tròn xoay, biết chiều cao, hoặc đường sinh, bán kính đường tròn đáy, góc phẳng ở đỉnh.
  2. - Hình nón bị cắt bởi mặt phẳng qua đỉnh giao với đường tròn đáy tại hai điểm A, B, biết AB và giả thiết khác. Yêu cầu: Giải lại các bài toán trong SGK HH12 có dạng trên, ghi nhớ cách tính các yếu tố cần thiết và mối quan hệ giữa các yếu tố dựa vào hình vẽ, tính chất của hình. Bài tập: Câu 1 (Đề TN 2006, Phân ban) : Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy, cạnh bên SB bằng a 3 . 1. Tính thể tích của khối chóp S.ABCD. 2. Chứng minh trung điểm của cạnh SC là tâm mặt cầu ngoại tiếp hình chóp S.ABCD. Câu 2 (Đề TN 2007, Lần 2, Phân ban): Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng a, cạnh bên SA vuông góc với đáy và SA =AC. Tính thể tích của khối chóp S.ABCD. Câu 3 (Đề TN 2008, Lần 1, Phân ban): Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, cạnh bên bằng 2a. Gọi I là trung điểm của cạnh BC. 1) Chứng minh SA vuông góc với BC. 2) Tính thể tích khối chóp S.ABI theo a.
  3. Câu 4 (Đề TN 2008, L2, Phân ban): Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B, đường thẳng SA vuông góc với mặt phẳng (ABC). Biết AB=a, BC= a 3 và SA=3a. 1. Tính thể tích khối chóp S.ABC theo a. 2. Gọi I là trung điểm của cạnh SC, tính độ dài đoạn thẳng BI theo a.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
7=>1