intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề cương ôn tập học kì 1 môn Toán lớp 12 năm 2021-2022 - Trường THPT Phúc Thọ

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:25

11
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

‘Đề cương ôn tập học kì 1 môn Toán lớp 12 năm 2021-2022 - Trường THPT Phúc Thọ’ sau đây sẽ giúp bạn đọc nắm bắt được cấu trúc đề thi, từ đó có kế hoạch ôn tập và củng cố kiến thức một cách bài bản hơn, chuẩn bị tốt cho kỳ thi sắp. Mời các bạn cùng tham khảo nội dung chi tiết.

Chủ đề:
Lưu

Nội dung Text: Đề cương ôn tập học kì 1 môn Toán lớp 12 năm 2021-2022 - Trường THPT Phúc Thọ

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI ĐỀ CƯƠNG ÔN THI HỌC KỲ I TRƯỜNG THPT PHÚC THỌ NĂM HỌC 2021 - 2022 MÔN: TOÁN 12 A. TÓM TẮT LÝ THUYẾT I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ 1. Đơn điệu của hàm số. 2. Cực trị của hàm số. 3. GTLN và GTNN của hs. 4. Tìm các đường tiệm cận. 5. Đồ thị hàm số và các bài toán liên quan. II. HÀM LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LOGARIT 1. Lũy thừa. 3. Hàm số lũy thừa. 4. Logarit. 5. Phương trình mũ và phương trình logarit. 6. Bất phương trình mũ và bất phương trình logarit. III. HÌNH HỌC 1. Khái niệm về hình đa diện và khối đa diện. 2. Thể tích khối đa diện. 3. Khối nón, khối trụ và khối cầu. B. HỆ THỐNG BÀI TẬP ĐẠI SỐ PHẦN 1. PHẦN HÀM SỐ ĐỒNG BIẾN, HÀM SỐ NGHỊCH BIẾN Câu 1: Cho hàm số y  f  x  có bảng biến thiên như hình dưới đây. Mệnh đề nào sau đây là đúng? A. Hàm số đã cho đồng biến trên các khoảng  2;   và  ; 2  . B. Hàm số đã cho đồng biến trên  ; 1   1;2  . C. Hàm số đã cho đồng biến trên khoảng  0;2  .
  2. D. Hàm số đã cho đồng biến trên  2;2  . x2 Câu 2: Khẳng định nào sau đây đúng về tính đơn điệu của hàm số y  ? x 1 A. Hàm số nghịch biến trên các khoảng  ;1 và 1;   . B. Hàm số đồng biến trên các khoảng  ;1  1;   . C. Hàm số đồng biến trên các khoảng  ;1 và 1;   . D. Hàm số nghịch biến trên các khoảng  ; 1 và  1;   . Câu 3: Hỏi hàm số y  2 x 4  1 đồng biến trên khoảng nào?  1  1  A.  ;   B.  0;  C.   ;  D.  ;0  2  2  Câu 4: Hàm số nào sau đây đồng biến trên R. x 1 A. y  B. y  x3  4 x  1 C. y   x3  4 x  1 D. y  x 4 x2 Câu 5: Hàm số: y  x3  3x 2  4 nghịch biến khi x thuộc khoảng nào sau đây: A. (2;0) B. (3;0) C. (; 2) D. (0; ) Câu 6: Cho hàm số y f x liên tục trên và có bảng biến thiên như sau: x 3 2 y' 0 0 5 y 0 Trong các mệnh đề sau, có bao nhiêu mệnh đề sai ? I. Hàm số đã cho đồng biến trên các khoảng ; 5 và 3; 2 . II. Hàm số đã cho đồng biến trên khoảng ;5 . III. Hàm số đã cho nghịch biến trên khoảng 2; . IV. Hàm số đã cho đồng biến trên khoảng ; 2 . A. 1 . B. 2 . C. 3 . D. 4 . Câu 7: Cho hàm số y x3 mx 2 4m 9 x 5 với m là tham số. Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng ; ? A. 4. B. 6. C. 7. D. 5. Câu 8: Cho hàm số y  x 4  2 x 2  1 . Tìm các khoảng đơn điệu của hàm số
  3. A. Hàm số đồng biến trên khoảng ( ; 0) và nghịch biến trên khoảng (0 ;  ) . B. Hàm số nghịch biến trên khoảng ( ;  ) . C. Hàm số nghịch biến trên khoảng ( ; 0) và đồng biến trên khoảng (0 ;  ) . D. Hàm số đồng biến trên khoảng ( ;  ) . Câu 9: Hàm số nào sau đây nghịch biến trên khoảng (; 1) x2 A. y  x3  3x  4 B. y  x3  3x  4 C. y  D. y   x 4  2 x 2  1 x 1 Câu 10: Cho hàm số y  x 4  2 x 2  5 . Kết luận nào sau đây đúng ? A. Hàm số đồng biến với mọi x B. Hàm số nghịch biến với mọi x C. Hàm số đồng biến trên khoảng  ; 1 D. Hàm số ĐB trên khoảng  1;0  và 1;   Câu 11: Hàm số nào sau đây nghịch biến trên khoảng  0;   ? x6 1 A. y  x 4 B. y  x 2 C. y  D. y  x 6 x Câu 12: Hàm số nào sau đây đồng biến trên từng khoảng xác định của nó 2x  1 x 1 A. y  B. y  x2 2 x 1 C. y  2  x  x D. y   x 3  2 x 2  3x  2 3 Câu 13: Trong các hàm số sau, hàm số nào đồng biến trên từng khoảng xác định của nó? 2x  1 x 1 2x  1 x3 A. y  B. y  C. y  D. y=  3x 2  5 x  2 x 1 2x 1 x 1 3 Câu 14: Hàm số y  x3  3x 2  9 x  1 đồng biến trên mỗi khoảng: A.  1;3 và  3;   . B.  ; 1 và 1;3 . C.  ;3 và  3;   . D.  ; 1 và  3;   . Câu 15: Trong các hàm số sau, hàm số nào nghịch biến trên các khoảng xác định của chúng x2 2x  3 A. y  x3  3x . B. y  . C. y  . D. y   x 4  2 x 2  3 . x 1 3x  5 Câu 16: Cho hàm số y  x 4  8 x 2  5 . Phát biểu nào sau đây là đúng? A. Hàm số nghịch biến trên khoảng (-  ; -2) B. Hàm số nghịch biến trên khoảng (-2; 0) C. Hàm số nghịch biến trên khoảng (0,+  ) D. Hàm số nghịch biến trên R Câu 17: Cho hàm số y  x 4  2 x 2  1 . Mệnh đề nào sau đây đúng? A. Hàm số đồng biến trên  0;   B. Hàm số đồng biến trên  1;1 C. Hàm số nghịch biến trên (1,+  ) D. Hàm số ĐB trên (-1;0) và (1,+  )  x3 Câu 18: Hàm số y   mx 2  4 x nghịch biến trên khi? 3  m  2 A. 2  m  2 B.  C. 2  m  2 D. m  2 m  2
  4. Câu 19: Hàm số y  mx  m  2 nghịch biến trên từng khoảng xác định khi: xm A. 2  m  1 B. m  2  m  1 C. 0  m  1 D. Đáp số khác Câu 20: Số các giá trị nguyên của tham số m trong đoạn  100;100 để hàm số y  mx3  mx 2   m  1 x  3 nghịch biến trên là: A. 200 . B. 100 C. 201 D. 99 . Câu 21: Cho y  mx  4 . Tìm tất cả các giá trị của m để hàm số nghịch biến trên từng khoảng xác định xm A. 2  m  2 B. m  1 C. 2  m  1 D. Đáp số khác 1 3 Câu 22: Cho hàm số y  x  x 2   3m  2  x  2 . Tìm m để hàm số nghịch biến trên đoạn có độ 3 dài bằng 4. 1 A. m  1 B. m  3 C. m  D. m  5 3 PHẦN 2. CỰC TRỊ CỦA HÀM SỐ. Câu 23: Các điểm cực tiểu của hàm số y= x4 – 2x2 +10 là A. x= 0 B. x= -1,x=1 C. x=-1 D. x=1 Câu 24: Giá trị cực đại của hàm số y = -x3 + x2 +x -2 là A. -2 B. 1 C. 10 D. -1 Câu 25: Số điểm cực đại của đồ thị hàm số y   x 4  6 x 2  9 là: A. 0 B. 1 C. 2 D. 3 Câu 26: Đồ thị hàm số y  x3  3x 2  9x  5 có điểm cực tiểu là: A.  3; 32  . B.  1;0  . C. x  1 . D. x  3 . x 1 Câu 27: Hàm số y  có giá trị cực tiểu là x2  8 1 1 A. B. 2 C.  D. -4 4 8 Câu 28: Hàm số y=x3-3x +5 có yct + ycđbằng: A. 10 B. 12 C. 21 D. 4 Câu 29: Cho hàm số y  2 x3  3x 2  12 x  12 . Gọi x1 , x2 lần lượt là hoành độ hai điểm cực đại và cực tiểu của đồ thị hàm số. Kết luận nào sau đây là đúng? A.  x1  x2   8 . 2 B. x1.x2  2 . C. x2  x1  3 . D. x12  x22  6 . Câu 30: Cho hàm số y  f  x  có bảng biến thiên sau:
  5. Hàm số y  f  x  có bao nhiêu điểm cực trị? A. 5. B. 3. C. 4. D. 2. Câu 31: Cho hàm số f  x  liên tục trên và có bảng xét dấu của f   x  như sau: Số điểm cực tiểu của hàm số đã cho là: A. 4. B. 1. C. 2. D. 3. x 3 mx 2 1 Câu 32: Hàm số y    đạt cực tiểu tại x= 2 khi 3 2 3 A. m = 1 B. m= 2 C. m= 3 D. m=0 Câu 33: Tìm tất cả các giá trị thực của tham số m để hàm số y  1 3 3   x  mx 2  m 2  m  1 x  1 đạt cực đại tại x  1 ? A. m  2. B. m  1. C. m  2. D. m=0 Câu 34: Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y  mx  2  m  1 x  6m  5 có 4 2 đúng 1 cực trị. m  0 m  0 A. 0  m  1 . B. 0  m  1 . C.  . D.  . m 1 m 1  x3 Câu 35: Hàm số y = + mx2 +(2m +1)x -1 có cực đại và cực tiểu khi 3 A. m ≠ - 1 B. m  (-∞,+∞) C. m= -1 D. không có m Câu 36: Hàm số y = x3 –(2m-1)x2 +(2-m)x +2 có cực trị với hoành độ dương khi A m= -2 B -1
  6. Câu 42: Cho hàm số f ( x) liên tục trên và có đạo hàm là f '( x)  x( x  1)2 ( x  2)3 ( x  3) 4 . Số điểm cực đại của hàm số f ( x) là: A. 1. B. 2. C. 0. D. 3. Câu 43: Cho hàm số f ( x) liên tục trên và có đạo hàm là f '( x)  x( x 2  9)( x  3) . Số điểm cực tiểu của hàm số f ( x) là: A. 1. B. 2. C. 0. D. 3. Câu 44: Cho hàm số f ( x) liên tục trên và có đạo hàm là f '( x)  x( x 2  2 x)( x  2) . Số điểm cực trị của hàm số f ( x) là: A. 1. B. 2. C. 0. D. 3. PHẦN 3. GTLN-GTNN CỦA HÀM SỐ. Câu 45: Xét hàm số y  f ( x) với x   1;5 có bảng biến thiên như sau: x -1 0 2 5 y + 0- 0+ y 4  3 0 Khẳng định nào sau đây là đúng A. Hàm số đã cho đạt GTNN tại x  1 và đạt GTLN tại x  5 trên đoạn  1;5 B. Hàm số đã cho không tồn taị GTLN trên đoạn  1;5 C. Hàm số đã cho đạt GTNN tại x  1 và x  2 trên đoạn  1;5 D. Hàm số đã cho đạt GTNN tại x  0 trên đoạn  1;5 1  Câu 46: Tính giá trị lớn nhất của hàm số y  x  ln x trên  ; e  . 2  1 A. max y  e  1 . B. max y  1 . C. max y  e . D. max y   ln 2 . 1  1  1  1  2 x ;e x ;e  x ;e  x ;e  2  2  2  2  Câu 47: Xét hàm số f x x3 x cos x 4 trên nửa khoảng 0; . Mệnh đề nào sau đây là đúng? A. Hàm số có giá trị lớn nhất là 5 nhưng không có giá trị nhỏ nhất. B. Hàm số không có giá trị lớn nhất nhưng có giá trị nhỏ nhất là 5 . C. Hàm số có giá trị lớn nhất là 5 và có giá trị nhỏ nhất là 5 . D. Hàm số không có giá trị lớn nhất và không có giá trị nhỏ nhất. x  m2 Câu 48: Giá trị nhỏ nhất của hàm số y  trên  1;0 bằng: x 1 m2  1 1  m2 A. . B. m2 . C. . D. m2 2 2 Câu 49: Cho hàm số y  x 4  2 x 2  3 . Chọn phương án đúng trong các phương án sau A. max y  3, min y  2 B. max y  11, min y  2 0;2 0;2 0;2 0;2
  7. C. max y  2, min y  0 D. max y  11, min y  3 0;1 0;1  2;0  2;0 x 1 Câu 50: Cho hàm số y  . Chọn phương án đúng trong các phương án sau x 1 A. max y  1 B. min y  0 C. max y  3 D. min y  1 0;1 0;1  2;0 0;1 Câu 51: Giá trị lớn nhất của hàm số y  x3  3x  1000 trên  1;0 A. 1001 B. 1000 C. 1002 D. -996 Câu 52: Giá trị lớn nhất của hàm số y  x3  3x trên  2;0 A. 0 B. 2 C. -2 D. 3 x  m2  m Câu 53: Tìm các giá trị của tham số m để giá trị nhỏ nhất của hàm số y  trên đoạn  0;1 x 1 bằng 2 .  m  1 m 1  m 1  m  1 A.  . B.  . C.  . D.  .  m  2 m  2  m  2 m2 x2  x  2 y Câu 54: Giá trị nhỏ nhất của hàm số x  1 trên đoạn [0;2] là: 2 4 Min y  Min y  Miny  1 Min y  7 0;2 A. 0;2 3 B. 0;2 3 C. 0;2 D. 1  Giá trị nhỏ nhất của hàm số y  x 2  2ln x trên đoạn  ; e  là: Câu 55: 2  7 A. e2  2 . B. 1. C. . D. 0. 4 Câu 56: y  x 2  3x  2 Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên đoạn [-10;10] là: A. max y  132, min y  0 B. max y  0, min y  132  10;10  10;10  10;10  10;10 C. max y  13, min y  0 D. max y  132, min y  23  10;10  10;10  10;10  10;10  3  y  2sin x  sin 2x 0;  Câu 57: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên đoạn  2  là: 3 3 3 3 A. max y  , min y  2 B. max y  , min y  2  3  2 0; 3   3  2 0; 3  0; 2   2  0; 2   2        C. max y  3 3, min y  2 D. max y  0, min y  2  3   3   3   3  0; 2  0; 2  0; 2  0; 2          Câu 58: Giá trị nhỏ nhất của hàm số y  x 1  x 2 là: 1 A. 2. B. 1. C.  . D. -1. 2
  8. Câu 59: Diện tích lớn nhất của tam giác vuông có tổng số đo của 1 cạnh huyền và 1 cạnh góc vuông bằng 1 số không đổi a là: a2 a2 a2 a2 A. 6 3 B. 2 3 C. 6 D. 3 3 Câu 60: Một chất điểm chuyển đông theo quy luật s = 6t2-t3 thời điểm t (giây) mà tại đó vận tốc v(m/s) của chuyển động đạt giá trị lớn nhất là: A. 2 B. 1 C. 0 D. 3 PHẦN 4. ĐƯỜNG TIỆM CẬN 3x  2 Câu 61: Đồ thị hàm số y  có tiệm cận ngang là x2 3 A. y =2 B. y= 3 C. x = -2 D. y= 2 3x  1 Câu 62: Số các đường tiệm cận của đồ thị hàm số y  là x  5x  4 2 A. 1 B. 2 C. 3 D. 4 x2  2 x  16  2  x Câu 63: Tìm tất cả các tiệm cận đứng của đồ thị hàm số y  . x2  3x  10 A. y  2; y  5 . B. x  2 . C. x  2; x  5 D. x  2, x  5 . 2x  3 Câu 64: Phương trình các đường tiệm cận của đồ thị hàm số y  là: x 1 1 1 A. y  1, x  2 B. y  2, x  1 C. y  , x  1 D. y  1, x  2 2 x2  2 x  6 x2  4x  3 Câu 65: Cho hàm số y  và y  . Tổng số đường tiệm cận của hai đồ thị là x 1 x2  9 A. 3 B. 4 C. 5 D. 6 x Câu 66: Số đường tiệm cân của đồ thị hàm số y  là x 1 3 A. 2 B. 1 C. 3 D. 4 2x  5 Câu 67: Tìm m để đồ thị hàm số y  có tiệm cận đứng luôn đi qua điểm có tọa độ (-1,2) 3x  m A. m= 2 B. m= -4 C. m= -6 D. m= 3 Câu 68: Cho hàm số y  f  x  có bảng biến thiên như sau: Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
  9. A. 4. B. 1. C. 3. D. 2. 2x  1 Câu 69: Cho hàm số y  có tiệm ngang và tiệm cận đứng lần lượt là: 3  2x 2 2 3 2 3 A. y  ;x 1 B. y  1; x  C. y  1; x  D. y  ; x  3 3 2 3 2 2 x 2  3x  m Câu 70: Tìm các giá trị của m để đồ thị hàm số y  không có tiệm cân đứng xm A. m= 0 B. m=0, m= 1 C. m>-1 D. m> 0 x 2  2mx  m 2  9 Câu 71: Tìm m để đồ thị hàm số y  có tiệm cận đứng ? x2 m  1 m  1 A.  . B. m  1. C. m  1. D.  .  m  5  m   5 PHẦN 4. ĐỒ THỊ HÀM SỐ VÀ BÀI TOÁN LIÊN QUAN. Câu 72: Cho biết đồ thị sau là đồ thị của 1 trong 4 hàm số ở các phương án A,B,C,D. Đó là đồ thị của hàm số nào? B. y   x +3x-1 3 A. y  2x 3  6x  1 y  2x 3  3x 2  1 y  x 3  3x  1 C. D. Câu 73: Cho hàm số y  f ( x) có đồ thị (C ) như hình vẽ. Hỏi (C ) là đồ thị của hàm số nào? y A O 1 x 1 A. y  ( x  1)3 . B. y  x3  1 . C. y  x3  1 . D. y  ( x  1)3 . Câu 74: Cho biết đồ thị sau là đồ thị của 1 trong 4 hàm số ở các phương án A, B, C, D. Đó là đồ thị của hàm số nào?
  10. A. y  x 4  2x 2 B. y  x 4  2x 2 C. y  2x 2 D. y  2x 2 Câu 75: Cho biết đồ thị sau là đồ thị của 1 trong 4 hàm số ở các phương án A, B, C, D. Đó là đồ thị của hàm số nào? A. y  2x 4  x 2  3 B. y  x 4  2x 2 C. y  2x  x  1 4 2 D. y   x  2x 4 2 Câu 76: Cho biết đồ thị sau là đồ thị của 1 trong 4 hàm số ở các phương án A, B, C, D. Đó là đồ thị của hàm số nào? A. y  3x 4  2x 2  4 B. y  3x 4  2x 2 C. y  2x  x  1 4 2 D. y  2x  x  3 4 2 Câu 77: Hình vẽ dưới đây là đồ thị của hàm số nào: x 1 x 1 x 1 x 1 A. y  B. y  y y 1  2x 1  2x C. 2x  1 D. 1  2x Câu 78: Hình vẽ dưới đây là đồ thị của hàm số nào:
  11. 2x 1 2x 1 2x  1 2x  1 A. y  B. y  C. y  D. y  x x -x -x Câu 79: Đường cong hình bên dưới là đồ thị hàm số nào trong 4 hàm số sau: 3x  1 3x  1 3x  1 3x  2 A. y  . B. y  . C. y  . D. y  . 1 x 1 2x 1  2 x 1 x Câu 80: Cho đường cong (  ) được vẽ bởi nét liền trong hình vẽ: Hỏi (  ) là dạng đồ thị của hàm số nào? A. y   x  3 x . C. y  x3  3x . 3 B. y  x3  3x . D. y  x3  3 x . Câu 81: Cho hàm số y  2 x  3m  1   m  2  x có đồ thi là (Cm). Hỏi (Cm) có thể là đồ thị nào sau 4 2 2 đây
  12. A. B. C. D. 1 2 Câu 82: Hàm số y  x 4  x  1 có đồ thị (C). Số tiếp tuyến của (C) tại điểm có tung độ bằng 1 là: 2 A. 1 B. 2 C. 3 D. 0 Câu 83: Cho hàm số y  x 4  5 x 2  4 . Tìm m để đồ thị hàm số cắt đường thẳng d: y = m tại bốn điểm phân biệt 9 9 9 9 A. m   B. m   C. 4  m   D. 4  m   4 4 4 4 Câu 84: Đồ thị hàm số y  a.x 4  b.x 2  c(a  0) có các tính chất nào sau đây là đúng: A. Luôn có tâm đối xứng B. Luôn có trục đối xứng B. Luôn có điểm cực đại và điểm cực tiểu D. Luôn nằm phía bên trên trục hoành 1 3 Câu 85: Cho hàm số y  x  x 2  2. đồ thị (C). Phương trình tiếp tuyến của (C) tại điểm có hoành 3 độ là nghiệm của phương trình y  0 là: 7 7 7 7 A. y   x  . B. y  x  . C. y   x  . D. y  x. 3 3 3 3 2x  1 Câu 86: Đường thẳng d: y = -x + m cắt đồ thị (C ) : y  tại hai điểm phân biệt thì tất cả giá trị của x 1 m là: A. -1 < m
  13. A. m=0 hoặc m> 2 B. m =2 hoặc m> -1 C. m > - 1 D. m > 2 2x  3 Câu 90: Cho hàm số y  có đồ thị (C) và đường thẳng d: y = x + m với giá trị nào của m thì d x2 cắt (C) tại hai điểm phân biệt. A. m< 2 B. m > 6 C. 2 6 Câu 91: Tìm m để phương trình x3 +3x2 -2 = m có 3 nghiệm phân biệt A. m< -2 B. m > 2 C. – 2
  14. Câu 98: Giả sử với các điều kiện của a, b để biểu thức A có nghĩa, giá trị của biểu thức  32 3   a  b2 ab  a  b A  1 . là:  ab 1   2  a b  ab  2 A. 1. B. 1. C. 2. D. 3.  ab    2 Câu 99: Rút gọn biểu thức T   3  3 ab  : 3 a3b  a b 3  A. 2 B. 1 C. 3 D. 1 3 Câu 100: Tập xác định D của hàm số y   2x  3  4  9  x2 3 3  3  A. 3;   B.  3;3 \   C.  ;3 D.  ;3 2 2  2  Câu 101: Khẳng định nào đúng: A. log 32 a 2  2 log 23 a B. log32 a 2  4log 23 a C. log 32 a 2  4 log 23 a D. log32 a 2  2log 23 a 1 1 1 Câu 102: Cho: M    ...  . M thỏa mãn biểu thức nào trong các biểu thức sau: log a x log a 2 x log a k x k(k  1) 4k(k  1) k(k  1) k(k  1) A. M  B. M  C. M  D. M  log a x log a x 2log a x 3log a x Câu 103: Tìm m để hàm số y  2x  2017  ln  x 2  2mx  4  có tập xác định D  :  m  2 A. m  2 B. m  2 C.  D. 2  m  2 m  2 1   5 Câu 104: Hàm số y   x  3 x  4 2  có tập xác định là: x 3 A. D   3;   \ 1 . B. D   1;   . C. D   3;   \ 4 D.  3;   \ 1; 4   4 Câu 105: Hàm số y  x 2  3x  3  2 x  1 có tập xác định là: A. D   ; 4   1;   . B. D   1;   .  3  21  C. D   ; 4   1;   \ 4 D.  1;   \    2  PHẦN 7. MŨ VÀ LOGARIT Câu 106: Biểu diễn nếu biết =a 4a  1 4a  1 A. 4a-1 B. 4a+1 C. D. 2 2 Câu 107: Đơn giản biểu thức sau + +
  15. A. B. C. D. a4 3 b Câu 108: Tính biết = 3, = -2 với x  3 (a, b, c>0) c A. 11 B. 10 C. 8 D. -6 Câu 109: Rút gọn biểu thức P = 3 -2 là A. 8 B. 16 C. 8log a b D. - 8log a b   2 x y Câu 110: Cho a  0, b  0 , Nếu viết log 3 5 3 ab 3  log 3 a  log 3 b thì x  y bằng bao nhiêu? 5 15 A. 4. B. 5. C. 2. D. 3. Câu 111: Cho hai số thực a và b , với 1 a b . Khẳng định nào dưới đây là khẳng định đúng? A. log a b 1 log b a . B. 1 log a b log b a . C. log b a log a b 1 . D. log b a 1 log a b . Câu 112: Tập xác định của hàm số y = là A (-1,2) B. (-∞, -2)  (1, +∞) C. (-∞,-1)  (2,+∞) D. R\{-1,2} Câu 113: Đạo hàm của hàm số y= là A. 10. .ln3 B. 10x .ln3 C. .ln3 D. 5x .ln3 Câu 114: Hàm số nào sau đây đồng biến trên khoảng 0; ? A. y log 2 x. B. y log e x . C. y log e x . D. y log x . 2 3 2 4 Câu 115: Đạo hàm của hàm số y = ln(x+ ) A. 1+ B. C. D.   2 m 2 Câu 116: Nếu 3 2  3  2 thì 3 1 1 3 A. m  . B. m  . C. m  . D. m  . 2 2 2 2 Câu 117: Cho ( - 1)x> ( - 1)y Chọn đáp án đúng A. x>y B. x< y C.x≥ y D.x≤ y Câu 118: Nghiệm của phương trình 4.25x  20x  5.16x  0 là: A. 1 B. 3 C. -1 D. 0 Câu 119: Phương trình log 2  x  3  log 2  x  1  3 có nghiệm là: A. x  5 B. x  5 C. x  1 D. x  1 2  x 8 Câu 120: Giả sử a là nghiệm dương của phương trình 2x  44 x . Khi đó, giá trị của M  a 2  2a  1 là: A. 18 B. 3 C. 16 D. 13 Câu 121: Nghiệm của phương trình log22 x  2log2 2x  5  0 là: 1 1 A. B. -1 và -2 C. và 2 D. 2 8 8
  16. Câu 122: Cho phương trình log3 x  2log 2 x  log x  2. Gọi x1 , x2 , x3  x1  x2  x3  là ba nghiệm của phương trình đã cho. Tính giá trị của M  1000 x1  10 x2  x3 ? A. 100. B. 300. C. 1000. D. 3000. Câu 123: Nghiệm của bất phương trình 9x 1  36.3x 3  3  0 là: A. 1  x  2 B. (;1]  [2; ) C. (;1)  (2; ) D. x>2 Câu 124: Tập nghiệm của bất phương trình 25x 1  9x 1  34.15x là: A.  2;0 . B.  0;   . C.  ; 2. D.  ; 2   0;   . Câu 125: Bất phương trình: log2  3x  2   log2  6  5x  có tập nghiệm là:  6 1  A. (0; +) B.  1;  C.  ;3  D.  3;1  5 2  Câu 126: Bất phương trình sau log 1 (3x  5)  log 1 ( x  1) có nghiệm là: 5 5 5 5 5 A.  x3 B. x2 C.  x2 D. x  1 3 3 3 Câu 127: Tập nghiệm của bất phương trình 4 log24 x  6 log2 x  8  0 là: A. 4  x  16 B. 0  x  16 C. 0  x  4 D. x4 hoặc x  16 Câu 128: Tập nghiệm của bất phương trình log 1  x2  5x  6   3 là: 2 A. S   6;7  B. S   2;1 C. S   2;1   6;7  D. S   2; 1   6;7  x  Câu 129: Cho hàm số f  x   ln 2018  ln   . Tính S  f ' 1  f '  2   f '  3   f '  2017  .  x 1  4035 2017 2016 A. S  B. S  C. S  D. S  2017 2018 2018 2017 Câu 130: Ông A muốn xây một ngôi nhà trị giá khoảng 500 triệu đồng sau năm năm nữa. Biết rằng lãi suất hàng năm vẫn không đổi là 5% một năm. Vậy ngay từ bây giờ số tiền ít nhất ông A phải gửi tiết kiệm vào ngân hàng là bao nhiêu (kết quả làm tròn đến hàng triệu)? Biết rằng ông A sẽ không rút lãi về mà hàng năm số tiền lãi sẽ được nhập vào tiền gửi của ông. A. 392 triệu đồng. B. 393 triệu đồng. C. 391 triệu đồng. D. 390 triệu đồng. Câu 131: Anh Thắng gửi ngân hàng 100 triệu đồng với lãi suất ban đầu là 4%/năm và lãi hàng năm được nhập vào vốn. Cứ sau một năm lãi suất tăng 0,3%. Hỏi sau bốn năm tổng số tiền anh Thắng có là bao nhiêu? A. 119 triệu. B. 119,5 triệu. C. 120 triệu. D. 120,5 triệu
  17. HÌNH HỌC Chương I: KHỐI ĐA DIỆN Câu 1: Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất A. hai mặt B. ba mặt C. Bốn mặt D. năm mặt Câu 2: Hình đa diện trong hình vẽ bên có bao nhiêu mặt? A. 6. B. 10. C. 11. D. 12. Câu 3: Cho một hình đa diện. Tìm khẳng định sai trong các khẳng định sau: A. Mỗi đỉnh là đỉnh chung của ít nhất ba cạnh B. Mỗi đỉnh là đỉnh chung của ít nhất ba mặt C. Mỗi cạnh là cạnh chung của ít nhất ba mặt D. Mỗi mặt có ít nhất ba cạnh Câu 4: Chọn mệnh đề đúng: A. Số đỉnh và số mặt của một hình đa diện luôn bằng nhau B. Số cạnh và số đỉnh của một hình đa diện luôn bằng nhau C. Số đỉnh của bất kỳ hình đa diện nào cũng lớn hơn bằng 4 D. Số cạnh của bất kỳ hình đa diện nào cũng lớn hơn bằng 4. Câu 5: Trong các mệnh đề sau, mệnh đề nào sai? A. Hình lập phương là đa điện lồi B. tứ diện là đa diện lồi C. Hình hộp là đa diện lồi D. Hình tạo bởi hai tứ diện đều ghép với nhau là một đa diện lồi Câu 6: Phát biểu của mệnh đề nào sau đây là sai? 1. Hình chóp đều là hình chóp có tất cả các cạnh bằng nhau. 2. Hình hộp đứng là hình lăng trụ có mặt đáy và các mặt bên đều là các hình chữ nhật. 3. Hình lăng trụ đứng có các mặt bên đều là hình vuông là một hình lập phương. 4. Mỗi đỉnh của đa diện lồi đều là đỉnh chung của ít nhất hai mặt của đa diện. A. 1, 2 B. 1, 2, 3 C. 3 D. 1, 2, 3, 4 Câu 7: Trong tất cả các hình đa diện đều, hình nào có số mặt nhiều nhất? A. Hình nhị thập diện đều. B. Hình thập nhị diện đều. C. Hình bát diện đều. D. Hình lập phương. Câu 8: Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng? A. 4. B. 1. C. 2. D. 3. Câu 9: Cho khối đa diện đều. Khẳng định nào sau đây là sai? A. Số đỉnh của khối lập phương bằng 8 B. Số mặt của khối tứ diện đều bằng 4 C. Khối bát diện đều là loại {4;3} D. Số cạnh của khối bát diện đều bằng 12 Câu 10: Trong các mệnh đề sau mệnh đề nào sai ?
  18. A. Khối lăng trụ tứ giác đều là khối đa diện đều B. Khối bát diện đều có 8 mặt là 8 tam giác đều bằng nhau C. Khối chóp đều không phải là khối đa diện đều D. Khối chóp là một khối đa diện lồi Câu 11: Dùng 1 mặt phẳng có thể chia một khối lập phương thành bao nhiêu lăng trụ tam giác? A. 2 B. 3 C. 4 D. 5 Câu 12: Tổng diện tích các mặt xung quanh của một bát diện đều có cạnh bằng a là: 3 3 a3 3 A. 2a 3 B. 8a 3 C. D. 4a 3 3 4 Câu 13: Thể tích khối chóp có diện tích đáy là B , chiều cao h được tính bằng công thức: B 1 1 A. V  B.h B. V  C. B  Bh D. V  B.h h 3 2 Câu 14: Thể tích khối lăng trụ có diện tích đáy là B , chiều cao h được tính bằng công thức: B 1 1 A. V  B.h B. V  C. B  Bh D. V  B.h h 3 2 Câu 15: Thể tích khối hộp chữ nhật có chiều rộng bằng 2cm, chiều dài bằng 3cm và chiều cao bằng 4cm là: A. 48cm3 B. 24cm3 C. 8cm3 D. 12cm3 Câu 16: Nếu các kích thước dài, rộng, cao của 1 khối hộp chữ nhật tăng lên 3 lần thì thể tích của nó tăng lên bao nhiêu lần? A. 27 B. 18 C. 9 D. 6 Câu 17: Tính thể tích khối lập phương ABCD. ABCD biết BD  3a . A. a 3 . B. 27a3 . C. 3a 3 3 . D. 9a 3 . Câu 18: Tổng diện tích các mặt của hình lập phương là 150. Khi đó thể tích khối lập phương đó là: A. 64 B. 125 C. 91 D. 84 Câu 19: Thể tích khối lăng trụ có diện tích đáy bằng 3a 2 , chiều cao bằng a là: a3 2a 3 A. V  . B. V  3a3 . C. V  a3 . D. V  . 3 3 Câu 20: Thể tích của khối lăng trụ tam giác đều có tất cả các cạnh bằng 4. A. 4 3 B. 24 3 C. 8 3 D. 16 3 Câu 21: Thể tích lăng trụ đứng tam giác đều có cạnh đáy bằng a và chiều cao bằng 2a là: a3 3 a3 3 a3 3 A. B. C. D. a3 3 2 6 4 Câu 22: Cho lăng trụ đứng ABC. ABC có đáy là tam giác vuông cân tại B, AB  AA  a . Thể tích của khối lăng trụ là: a3 a3 a3 a3 A. B. C. D. 3 4 2 6 Câu 23: Khối lăng trụ đứng ABC. ABC có đáy ABC là tam giác vuông cân tại A , BC  a 2 . Tính thể tích khối lăng trụ ABC. ABC biết AB  3a .
  19. a3 2 A. . B. 6a3 . C. a 3 2 . D. 2a3 . 3 Câu 24: Lăng trụ đứng ABC. ABC có đáy ABC là tam giác vuông tại B, AB  2a, BC  a, AA  2a 3 . Tính theo a thể tích khối lăng trụ ABC. ABC . 2a 3 3 a3 3 A. B. C. 4a 3 3 D. 2a 3 3 3 3 Câu 25: Cho lăng trụ đứng ABC. ABC có đáy ABC là tam giác đều cạnh 4a . Góc giữa đường thẳng AB và mặt đáy là 30 . Tính theo a thể tích khối lăng trụ ABC. ABC . 4a 3 16a 3 A. . B. 4a3 . C. 16a3 . D. . 3 3 Câu 26: Cho khối lăng trụ ABC. ABC có đáy là tam giác đều cạnh bằng a , hình chiếu của A lên  ABC  trùng với trung điểm của AB, AA tạo với đáy góc bằng 450. Tính thể tích V của khối lăng trụ ABC. ABC . a3 3 a3 3 a3 3 a3 3 A. V  B. V  C. V  D. V  6 8 2 12 Câu 27: Cho lăng trụ xiên ABC. ABC đáy là tam giác đều cạnh a , cạnh bên bằng a 3 và hình chiếu vuông góc của A lên  ABC  trùng với trung điểm của BC . Thể tích của khối trụ bằng: 3a 3 3 a3 3 3a 3 3 A. 3a 3 6 B. C. D. 6 2 8 Câu 28: Khối lăng trụ ABC. ABC có ABC là tam giác đều cạnh bằng a, AB  AC , hình chiếu của A lên  ABC  trùng với trung điểm của BC , góc giữa AA và mp  ABC  bằng 600. Thể tích của khối trụ bằng: a3 3 a3 3 a3 3 a3 3 A. V  B. V  C. V  D. V  6 8 4 3 Câu 29: Cho lập phương ABCD. ABCD có cạnh bằng a , lấy M trên AB sao cho MB  2MA . Tính thể tích V của hình chóp M .BCD . a3 a3 a3 a3 A. V  B. V  C. V  D. V  3 8 9 4 Câu 30: Tính thể tích V của hình hộp đứng ABCD. ABCD có AB  a, AC  2a, BC  a 3 ,  ABC  tạo với đáy góc 600. A. V  a3 B. V  3a3 C. V  2a3 D. V  8a3 Câu 31: Tính thể tích V của hình hộp ABCD. ABCD , có đáy là hình chữ nhật AAB là tam giác đều, hình chiếu của A lên mp  ABCD  trùng với trung điểm AC, BC  a, AB  a 3 . 3a 3 6 a3 6 3a 3 A. V  B. V  C. V  D. V  6a 3 2 3 3 Câu 32: Cho hình chóp có diện tích đáy bằng 3a 2 và chiều cao bằng 2a . Thể tích khối chóp tính theo a là:
  20. 2a 3 3a 3 A. 6a3 B. C. D. 2a3 3 2 Câu 33: Cho hình chóp tứ giác đều S. ABCD có cạnh đáy bằng 2a , cạnh bên bằng 3a , Thể tích khối chóp S. ABCD là: 4a 3 7 a3 3 2a 3 4a 3 7 A. B. C. D. 2 3 3 3 Câu 34: Cho khối chóp tứ giác đều S. ABCD có cạnh đáy bằng a , cạnh bên bằng 2a . Tính thể tích khối chóp S. ABCD . a3 5 a3 2 a 3 14 A. B. C. D. a 3 6 3 6 6 a 6 Câu 35: Tính thể tích V của hình chóp S. ABCD đều có cạnh đáy bằng a , cạnh bên bằng . 2 a3 a3 a3 a3 A. V  B. V  C. V  D. V  3 8 9 4 Câu 36: Cho hình chóp đều S. ABCD có chiều cao bằng a 2 và độ dài cạnh bên bằng a 6 . Thể tích khối chóp S. ABCD bằng: 10a3 3 8a 3 3 8a 3 2 10a 3 2 A. . B. . C. . D. . 3 3 3 3 Câu 37: Cho hình chóp S. ABC , có đáy ABC là tam giác đều cạnh a , cạnh SA vuông góc với đáy. Góc giữa đường thẳng SB và đáy bằng 600. Thể tích khối chóp S. ABC tính theo a là: a3 a3 3 a3 a3 A. B. C. D. 4 12 2 8 Câu 38: Cho khối chóp S . ABC có đáy là tam giác đều, SA   ABC  , SC  a 3 và SC hợp với đáy một góc 30 . Tính theo a thể tích của khối chóp S . ABC . a3 7 9a 3 2a 3 5 a3 2 A. . B. . C. D. . 4 32 3 2 Câu 39: Tính thể tích V của hình chóp S. ABCD có đáy là hình bình hành, SA vuông góc với đáy, AB  a, AC  2a, BC  a 3 , SC tạo với đáy góc 450. a3 3 a3 3 2 6a 3 2 3a3 A. V  B. V  C. V  D. V  2 3 3 3 Câu 40: Cho hình chóp tứ giác đều S. ABCD có cạnh đáy bằng 2a . Góc giữa mặt bên và mặt đáy bằng 600. Tính theo a thể tích khối chóp S. ABCD . 4a 3 3 a3 3 2a 3 3 2a 3 6 A. B. C. D. 3 3 3 3 Câu 41: Cho hình chóp S. ABCD có đáy ABCD là hình vuông, SD  3a , SB   ABCD  và mặt phẳng  SAD  tạo với đáy một góc 60 . Tính thể tích V của khối chóp S. ABCD 3a 3 3 a3 3 3a 3 15 9a 3 15 A. V  . B. V  . C. V  . D. V  . 4 4 25 25
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2