intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề cường ôn tập học kì 2 môn toán khối 10

Chia sẻ: Phạm Huỳ | Ngày: | Loại File: PDF | Số trang:8

444
lượt xem
117
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu ôn tập toán học kì 2 lớp 10 trường THPT Nguyễn đình chiểu thừa thiên huế

Chủ đề:
Lưu

Nội dung Text: Đề cường ôn tập học kì 2 môn toán khối 10

  1. Toå Toaùn – Tröôøng THPT Nguyeãn Ñình Chieåu – Thöøa Thieân Hueá MathVn.Com ĐỀ CƯƠNG ÔN TẬP HỌC KÌ II – NĂM HỌC 2009 – 2010 MÔN: TOÁN – KHỐI 10 A – ĐẠI SỐ Bài 1. Giải các bất phương trình sau: a) ( x + 2)( x 2 - 4) £ 0 b) x(9 x 2 - 1)(3 x + 1) £ 0 c) (2 x + 5)(2 x 2 - 1) £ 0 d) (1 - 3x)(-6 x 2 + 5 x + 1) ³ 0 e) 9 x 2 - 4 x £ 0 f) x( x - 3) 2 - (3 - x) £ 0 g) ( x - 3) ( ) 2 - x >0 h) x 2 + 4 x + 3 £ 0 i) -6 x 2 + x + 1 ³ 0 Bài 2. Giải các bất phương trình sau: 4x - 3 2- x x( x - 3) 2 a) £0 b) ³1 c) ³0 2x + 1 3x - 2 ( x - 5)(1 - x) 3 5 ( x + 2)(3 x 2 + 7 x + 4) 2 3 d) ³ e) £0 f) 2 ³ 1- x 2x +1 x(3 - 5 x) x - 3x + 2 x - 1 Bài 3. Giải các bất phương trình sau: x 2 - 3x + 2 a) (- x2 + 3x – 2)(x2 – 5x + 6) ³ 0 b) >0 x 2 - 4x + 3 x3 + 2 x2 - 3 - x3 + 2 x 2 + x - 2 c) £0 d*) ³0 x(2 - x) 4 x3 - 9 x Bài 4. Giải các bất phương trình sau: a) x 2 - 2 x - 8 < 2 x b) x2 + 2 x + 3 - 10 £ 0 c) x 2 - 3 + 2 x + 1 ³ 0 e) 10 x2 - 3 x - 2 £ 1 9 2 d) ³ x-2 f) x 2 - 5x + 4 > x - 4 x-5 -3 - x + 3x - 2 Bài 5. Giải các bất phương trình sau: a) 4 x - 1 + 2 - x > x - 2 b) x - 2 + 3x > 4 - x c) 2 x - 5 - x + 1 £ 0 d) 6 - x - 2 4 - x ³ x - 3 e) x - 5 - 5 - x ³ 2 - x f) x - 4 £ 3 - 2 x Bài 6. Giải các phương trình sau: 4- x 2x +1 a) = b) 10 - 6 x +1 = x 2 - 9x c) x 2 - 2x + 3 = 5 - x x -3 2- x x2 + x + 1 d) 3 - x - 1 + 2 - 3x = 7 - x e) x 2 - 5x + 4 = x - 4 f) = -3 2x -1 - x -1 Bài 7. Giải các phương trình sau: a) 16 x + 17 = 8 x - 23 b) x 2 - 3x + 2 = 2 x - 1 c) 2x - 3x +1 = 6 . Bài 8* Giải các phương trình sau: a) x 2 - 1 = x + 1 b) 3 12 - x + 3 14 + x = 2 c) x + 3 - 2 x - 1 = 3x - 2 d) (x+4)(x+1) - 3 x 2 + 5 x + 2 =6 e) x 2 + 5x + 7 = x 2 + 5x +13 f) ( x - 2) x 2 + 4 = x 2 - 4 1 Ñeà cöông oân taäp khoái 10 – hk2-2009-2010 – www.mathvn.com
  2. Toå Toaùn – Tröôøng THPT Nguyeãn Ñình Chieåu – Thöøa Thieân Hueá MathVn.Com Bài 9. Giải các bất phương trình sau: a) - x 2 + 6 x - 5 > 8 - 2 x b) ( x + 5)(3 x + 4) < 4( x - 1) - 3x 2 + x + 4 + 2 c*) 2x2 + x 2 - 5 x - 6 > 10 x + 15 d) 0; c) mx2 - (m + 1)x + 2 ³ 0; d) (m + 1)x2 - 2mx + 2m £ 0. 2 Bài 11. Cho phương trình (m - 2)x - 2(m + 1)x + 2m – 6 = 0. Tìm m để phương trình a) Có hai nghiệm phân biệt b) Có hai nghiệm trái dấu c) Có hai nghiệm âm phân biệt d) Có hai nghiệm dương phân biệt. Bài 12. Tìm m để phương trình có hai nghiệm x1, x2 thoả mãn điều kiện được chỉ ra: a) x2 + (2m + 3)x + m – 2 = 0 , x1 < 0 £ x2. 2 b) mx +2(m - 1)x +m – 5 = 0, x1 < x2 < 0 . c) (m + 3)x2 + 2(m - 3)x + m – 2 = 0, x1 ³ x2 > 0. 4 2 Bài 13* Cho phương trình x + 2(m + 2)x – (m + 2) = 0 (1) a) Giải phương trình (1) khi m = 1. b) Tìm m để phương trình (1) có 4 nghiệm phân biệt; c) Tìm m để phương trình (1) có 3 nghiệm phân biệt; d) Tìm m để phương trình (1) có 2 nghiệm phân biệt; e) Tìm m để phương trình (1) có 1 nghiệm duy nhất. Bài 14. Cho tam thức bậc hai f(x) = 3x2 – 6(2m +1)x + 12m + 5. a) Tìm m để f(x) > 0 với mọi x Î R. b*) Tìm m để f(x) có ít nhất một nghiệm lớn hơn -1. Bài 15. Để may đồng phục áo thể dục cho học sinh khối 10 trường A, người ta chọn 46 học sinh trong tổng số 550 học sinh khối 10 để đo chiều cao (đơn vị: cm) và thu được bảng sau: Lớp Tần số Cỡ a) Dấu hiệu và đơn vị điều tra ở đây là gì? áo b) Đây là điều tra mẫu hay điều tra toàn bộ? c) Tìm số trung bình. [160; 162] 5 S1 d) Tìm phương sai và độ lệch chuẩn. [163; 165] 11 S2 e) Vẽ biểu đồ tần số hình cột, tần suất hình quạt. [166; 168] 15 S3 g) Cả khối 10 cần may khoảng bao nhiêu áo mỗi cỡ? [169; 171] 9 S4 [172; 174] 6 S5 N = 46 Bài 16: Để khảo sát kết quả thi tốt nghiệp môn Toán của học sinh trường A, người ta lấy kết quả của 100 học sinh khối 12 và thu được bảng sau: Điểm 0 1 2 3 4 5 6 7 8 9 10 Tấn số 1 1 3 5 8 13 19 24 14 10 2 N=100 2 Ñeà cöông oân taäp khoái 10 – hk2-2009-2010 – www.mathvn.com
  3. Toå Toaùn – Tröôøng THPT Nguyeãn Ñình Chieåu – Thöøa Thieân Hueá MathVn.Com a) Tìm số trung bình. b) Tìm số trung vị và mốt. Nêu ý nghĩa của chúng. c) Tìm phương sai và độ lệch chuẩn. d) Tìm số học sinh đỗ tốt nghiệp môn Toán (ta coi một học sinh đạt từ 5 điểm trở lên là đỗ tốt nghiệp môn Toán). e) Vẽ biểu đồ tấn suất hình quạt thể hiện số học sinh đỗ, trượt tốt nghiệp môn Toán. Bài 17. Điều tra về số giờ tự học ở nhà (đơn vị: giờ) của 50 học sinh lớp 10, ta có bảng phân bố tần số ghép lớp sau: Lớp Tần số [0; 10) 5 [10; 20) 9 [20; 30) 15 [30; 40) 10 [40; 50) 9 [50; 60] 2 Cộng N = 50 a) Dấu hiệu, đơn vị điều tra ở đây là gì? Kích thước mẫu bằng bao nhiêu? b) Bổ sung cột tần suất để hình thành bảng phân bố tần số, tần suất ghép lớp. c)Vẽ biểu đồ hình cột tần số và đường gấp khúc tần suất. d) Tính số trung bình. Nêu ý nghĩa. e)Tính phương sai và độ lệch chuẩn. Nêu ý nghĩa. Bài 18. Chọn 23 học sinh và ghi cỡ giày của các em ta được mẫu số liệu sau: 39 41 40 43 41 40 44 42 41 43 38 39 41 42 39 40 42 43 41 41 42 39 41 a) Lập bảng phân bố tần số, tần suất. b) Tính số trung vị và số mốt. Nêu ý nghĩa của chúng. c) Tính số trung bình, phương sai và độ lệch chuẩn. Nêu ý nghĩa. Bài 19. Tính các giá trị lượng giác khác của góc a khi biết : 2 3p p a) cos a = , < a < 2p b) tan a = -2,
  4. Toå Toaùn – Tröôøng THPT Nguyeãn Ñình Chieåu – Thöøa Thieân Hueá MathVn.Com Bài 22. Chứng minh các biểu thức sau không phụ thuộc vào x: a) A = 3(sin4x + cos4x) - 2(sin6x + cos6x) ; b) B = 3(sin8x - cos8x) + 4(-2sin6x + cos6x) + 6 sin4x ; c) C = cos6x + 2sin4x cos2x + 3 sin2x cos4x + sin4x; d) D = sin3x sin3x + cos3x cos3x - cos32x . e) E = sin 6 x + cos6 x + 3sin 2 x cos 2 x 2p 2p f) F = cos 2 x + cos 2 ( + x ) + cos 2 ( - x ) 3 3 2p 4p g) G = sin 2 x + sin 2 ( x + 2 ) + sin ( x + ). 3 3 1 Bài 23. Cho sin a + cos a = . Tính giá trị các biểu thức: 2 a) A = sin a .cos a b) B = sin 4 a + cos 4 a c) C = | sin a - cos a | . Bài 24. 2 p a) Cho sin a = với 0 < a < . Tính các giá trị lượng giác còn lại của cung a. 3 2 3p b ) C ho cot a = -3 vô ùi a Î æ ; 2p ö . Tính g iaù trò P = 1 7 ç ÷ + - tan a ; è 2 ø cos a sin a 12 æ 3p ö p c ) Cho sin a = - ; ç < a < 2p ÷ . Tính cos( - a) . 13 è 2 ø 3 Bài 25. Tính giá trị các biểu thức: 1 3 1 a) A = 0 - 4cos200 b) B = - cos80 sin 20 cos200 0 c) C = sin100. sin300. sin500. sin700 d) D = sin 200 sin 400 sin 800 + cos 200 cos 400 cos 800 p 7p 13p 19p 25p 2p 4p 6p e) E = sin .sin .sin .sin .sin e) F = cos + cos + cos 30 30 30 30 30 7 7 7 Bài 26. a) Cho tan a = 2. Tính sin 2a, cos 2a, tan 2a, cot 2a. 4 p a b) Cho sin a = và < a < p . Tính các giá trị lượng giác của cung . 5 2 2 c) Cho cos2a = 1 và 0 < a < p . Tính sin 2a ; tan 2a ; sin a ; cos a . 8 2 Bài 27*. Chứng minh các đẳng thức: 3 1 p p 1 a) sin 4 a + cos 4 a = + cos 4 a ; c) cos x.cos( - x ).cos( + x ) = cos3 x ; 4 4 3 3 4 5 3 p p 1 b) sin 6 a + cos6 a = + cos 4 a ; d) sin x.sin( - x ).sin( + x ) = sin 3 x 8 8 3 3 4 4 Ñeà cöông oân taäp khoái 10 – hk2-2009-2010 – www.mathvn.com
  5. Toå Toaùn – Tröôøng THPT Nguyeãn Ñình Chieåu – Thöøa Thieân Hueá MathVn.Com tan x - sin x 1 1 e) = h) cos3 x.sinx - sin3x.cosx = sin4x 3 sin x cos x(1 + cos x) 4 sin 4a cos 2a 3 f) . = tan a i) sin3x.cos3x + cos3 x.sin3x = sin4x 1 + cos 4a 1 + cos 2a 4 tan 2 x 1 + cot 2 x 1 + tan 4 x sin( a - b ) sin( b - c ) sin(c - a) g) . = j) + + =0 1 + tan 2 x cot 2 x tan 2 x + cot 2 x cos a.cos b cos b.cos c cos c.cos a Bài 28. Rút gọn các biểu thức: p p p p a) A = [sinx.sin( - x).sin( + x)]2 + [cosx.cos( - x).cos( + x)]2 3 3 3 3 3p 9p b) B = sin( - x ) + cos(7p + x ) + 2sin( + x) 2 2 101p 2011p 1001p c) C = cos( + x) + sin(2009p + x) + cos( + x) - tan( - x) + cot(3p + x) . 2 2 2 p p 2p 2p d) D = tan x. tan( x + ) + tan( x + ). tan( x + ) + tan( x + ). tan x 3 3 3 3 2 2 tan 2 a - tan a e) E = 2 2 ; 1 - tan 2 a. tan a 1 1 1 1 f) F = (1 + )(1 + )(1 + )(1 + ). cos a cos 2 a cos 4 a cos8a 1 1 1 1 1 1 p g) G = + + + cos x (0 < x < ) 2 2 2 2 2 2 2 Bài 29*. Rút gọn các biểu thức: sinx + sin2x + sin3x + sin4x sin3x + 2sin4x + sin5x a) A = ; c) C = . cosx + cos2x + cos3x + cos4x sin2x + 2sin3x + sin4x cos 4a - cos 2a sin 4 x + sin 5 x + sin 6 x b) B = d) D = sin 4a + sin 2a cos4x + cos5x + cos6x 1 Bài 30*. Tìm giá trị lớn nhất của biểu thức A = . sin x + cos 6 x 6 B – HÌNH HỌC µ Bài 1. Cho D ABC có A = 600 , AC = 8 cm, AB =5 cm. a) Tính độ dài cạnh cạnh BC, diện tích, chiều cao AH của tam giác ABC. µ b) Chứng minh góc B nhọn. c) Tính bán kính đường tròn nội tiếp và ngoại tiếp tam giác ABC. Bài 2. Cho D ABC , a=13 cm b= 14 cm, c=15 cm. a) Tính diện tích D ABC, các góc, độ dài các trung tuyến, b) Tính bán kính đường tròn nội tiếp và ngoại tiếp tam giác ABC. 5 Ñeà cöông oân taäp khoái 10 – hk2-2009-2010 – www.mathvn.com
  6. Toå Toaùn – Tröôøng THPT Nguyeãn Ñình Chieåu – Thöøa Thieân Hueá MathVn.Com µ µ Bài 3. Cho D ABC có b=4,5 cm , góc A = 300 , C = 750 µ a) Tính độ dài các cạnh a, c và số đo góc B . b) Tính diện tích D ABC và chiều cao BH. Bài 4. Viết phương trình tham số, phương trình chính tắc, phương trình tổng quát của đường thẳng d trong các trường hợp sau: ur a) d đi qua A(2; -3) và có vectơ chỉ phương u = (2;-1) . u r b) d đi qua B(4; -2) và có vectơ pháp tuyến n = (-2; 5) . c) d qua hai điểm C(3; -2) và D(-1; 3). d) d qua E(2; -4) và vuông góc với đường thẳng d’: x – 2y – 1 = 0. e) d qua F(-1; 3) và song song với đường thẳng d’: x + 3y – 5 = 0. Bài 5. a) Viết phương trình đường thẳng qua A(1; 2) và song song với đường thẳng 4x – 3y + 5 = 0 . b) Viết phương trình đường thẳng qua giao điểm hai đường thẳng 4x + 7y – 2 = 0 và 8x + y – 13 = 0, đồng thời song song với đường thẳng x – 2y = 0. c) Viết phương trình đường thẳng qua A(-2; 3) và vuông góc với đường thẳng 3x – 4y = 0. Bài 6. Trong mặt phẳng toạ độ Oxy cho tam giác ABC có tọa độ các trung điểm của các cạnh là M(2;1) N(5;3) P(3;-4) a) Lập phương trình các cạnh của tam giác ABC b) Viết phương trình 3 đường trung trực của tam giác ABC c) Xác định tọa độ tâm đường tròn ngoại tiếp tam giác ABC d) Xác định tọa độ các đỉnh của tam giác ABC. Bài 7. Trong mặt phẳng toạ độ Oxy cho ∆ABC có đỉnh A(2; 2) và phương trình hai đường cao kẻ từ B, C lần lượt là: 9x – 3y - 4 = 0, x + y – 2 = 0. a) Viết phương trình các cạnh của ∆ ABC; b) Viết phương trình đường thẳng qua A và vuông góc với AC. Bài 8. Lập phương trình các cạnh của ∆ ABC , biết đỉnh B(2; 5) và hai đường cao có phương trình: 2x + 3y + 7 = 0, x – 11y + 3 = 0. Bài 9. Vie át ph ương trình ñöô øn g thaún g (D) b ie át: a) (D) q u a M(1;1) vaø taïo 1 g o ùc 45 0 vô ùi ñöô øn g thaún g (d): x – y – 2 = 0 b) (D) qu a M(5; 1) vaø taïo 1 go ùc 60 0 vô ùi ñöô øn g thaún g (d): 2x + y – 4 = 0. Bài 10. Trong mặt phẳng toạ độ Oxy, c ho P(2; 5), Q (5; 1). a) Vie át ph ương trình ñö ô øn g trung trö ïc c u ûa PQ . b) Vie át pt ñö ô øn g thaún g qu a P sao c ho kho aûn g c aùc h tö ø Q ñe án ñö ô øn g thaún g ño ù b aèn g 3. Bài 11. Trong mặt phẳng toạ độ Oxy cho đường thẳng (d) 2x+3y-1= 0 và M(2;1). a) Tìm M trên (d) sao cho OM=5. b) Xác định tọa độ H là hình chiếu M của trên(d). c) Xác định tọa độ điểm N đối xứng với M qua (d). 6 Ñeà cöông oân taäp khoái 10 – hk2-2009-2010 – www.mathvn.com
  7. Toå Toaùn – Tröôøng THPT Nguyeãn Ñình Chieåu – Thöøa Thieân Hueá MathVn.Com Bài 12. Trong mặt phẳng toạ độ Oxy, cho A(-1;-2) B(3;-1) C(0;3) a) Chứng minh 3 điểm A, B, C không thảng hang. b) Lập phương trình tổng quát và phương trình tham số của đường cao CH c) Lập phương trình tổng quát và phương trình tham số của đường trung tuyến AM d) Xác định tọa độ trọng tâm , trực tâm của tam giác ABC e) Viết phương trình đường tròn tâm C tiếp xúc với AB f) Viết phương trình đường tròn ngoại tiếp tam giác ABC g) Tính diện tích tam giác ABC Bài 13. Trong hệ toạ độ Oxy cho hai đường thẳng (d1), (d2) có phương trình: (d1): (m+1)x - 2y - m -1 = 0; (d2): x + (m-1)y – m + 2 = 0 a) Chứng minh rằng: (d1) đi qua một điểm cố định. b) Biện luận theo m vị trí tương đối của (d1) và (d2) c) Tìm m để giao điểm của (d1) và (d2) nằm trên trục Oy. Bài 14. Cho ∆ ABC biết A(2; -1) và pt hai đường phân giác trong của góc B và C lần lượt là: (dB): x - 2y + 1 = 0, (dC): x + y + 3 = 0. Tìm pt đường thẳng chứa cạnh BC. Bài 15. Viết phương trình của đường tròn (C) trong các trường hợp sau: a) (C) có tâm I(1 ; - 2) và tiếp xúc với đường thẳng 4x – 3y + 5 = 0 b) (C) đi qua 3 điểm A(1 ; 0), B(0 ; 2), C(2 ; 3) c) (C) đi qua A(2 ; 0), B(3 ; 1) và có bán kính R = 3. d) (C) đi qua 2 điểm A(2 ; 1),B(4 ; 3) và có tâm I nằm trên đường thẳng x – y + 5= 0 Bài 16. Trong mặt phẳng 0xy cho phương trình x 2 + y 2 - 4 x + 8 y - 5 = 0 (I). a) Chứng tỏ phương trình (I) là phương trình của đường tròn, xác định tâm và bán kính của đường tròn đó. b) Viết phương trình tiếp tuyến của đường tròn tại các điểm A(-1; 0), B(5; 0). c) Viết phương trình tiếp tuyến của đường tròn biết tiếp tuyến đi qua C(0;-1). d) Viết phương trình tiếp tuyến của đường tròn biết tiếp tuyến song song với đường thẳng d1 có phương trình x + y + 6 = 0. e) Viết phương trình tiếp tuyến của đường tròn biết tiếp tuyến song song với đường thẳng d2 có phương trình 3x + 2y + 1 = 0. 2 2 Bài 17. Trong mặt phẳng Oxy cho các điểm A(0; -1), B (0;1), C (1; ). 3 a) Chứng tỏ A, B, C không thẳng hàng. b) Viết phương trình đường tròn (S) đường kính AB. 1 3 c) Viết phương trình tiếp tuyến của đường tròn (S) biết tiếp tuyến đi qua M ( ; ). 2 2 d) Viết phương trình chính tắc của elíp nhận hai điểm A, B làm các đỉnh và đi qua C. a) A(1; 3), B(5; 6), C (7; 0); b) A(0; 1), B(1; -1), C (2; 0); c ) A(1; 4), B(-7; 4), C (2; -5). x2 y2 Bài 18. C ho (E): + = 1 . X aùc ñònh to ïa ño ä c aùc ñænh, tie âu ñie åm c u ûa e lip. Tính ño ä daøi tru ïc 25 9 lô ùn , truïc nho û, tie âu c ö ï c uûa e lip. Bài 19. Lập phương trình chính tắc của elip trong các trường hợp sau: 7 Ñeà cöông oân taäp khoái 10 – hk2-2009-2010 – www.mathvn.com
  8. Toå Toaùn – Tröôøng THPT Nguyeãn Ñình Chieåu – Thöøa Thieân Hueá MathVn.Com a) Có độ dài trục lớn bằng 14 và tâm sai bằng 12/13. b) A1(-2;0) là một đỉnh và F2(1; 0) là một tiêu điểm. c) Có một tiêu điểm là (-7; 0) và đi qua M(-2; 12). d) Tiêu cự banừg 6 và tâm sai bằng 2/3. e) Đi qua hai điểm P(4; 3 ) và Q( 8 ; -3). Bài 20. Cho elip (E): x2 + 9y2 = 9. Tìm trên (E) các điểm M thỏa mãn: a) MF1 = 2 MF2. b) M nhìn F1 ; F2 dưới một góc vuông. c) M nhìn F1 ; F2 dưới một góc 600. CHÚ Ý: Ngoài các bài tập bổ sung trên, học sinh cần làm đầy đủ các bài tập ở sách giáo khoa. ĐỀ THI THAM KHẢO – MÔN: TOÁN – KHỐI 10 Thời gian: 90 phút I. PHẦN CHUNG: (8,0 điểm) Câu 1. (2,5 điểm) Giải các bất phương trình sau : x 1 3 a) 2 x - 5 < 3 - b) (-3 x + 1)( x 2 - 3 x + 2) ³ 0 c) £ 4 x + 2 2 - 3x Câu 2. (1,0 điểm) Tìm các giá trị của m sao cho phương trình : x + (1 - 2m) x + m - 1 = 0 có hai 2 2 nghiệm dương phân biệt. Câu 3. (1,5 điểm) Số điểm kiểm tra Toán của 28 em học sinh lớp 10A được cho bởi bảng sau: 1 3 6 9 7 5 6 2 7 6 5 8 2 3 0 7 8 5 2 1 9 8 4 4 4 5 6 9 a) Lập bảng phân bố tần số và tần suất ghép lớp, với các lớp sau: [ 0; 2 ) ; [ 2; 4 ) ; [ 4;6 ) ; [ 6;8 ) ; [8;10 ) . b) Tính số trung bình cộng, phương sai và độ lệch chuẩn dựa trên bảng đã lập ở câu a. Câu 4. ( 2,0 điểm) Trong mặt phẳng Oxy cho DABC với A(2; 1), B(4; 3) và C(-2; 4) a) Viết phương trình tổng quát của đường thẳng BC. b) Tính diện tích tam giác ABC. c) Lập phương trình đường tròn ngoại tiếp tam giác ABC. 4 π Câu 5. (1,0 điểm) Cho cosα = - với < α < π . Tính các giá trị lượng giác còn lại của cung a . 5 2 II. PHẦN RIÊNG: (2,0 điểm) Dành cho học sinh học chương trình nâng cao: Câu 6A.(1,0 điểm) Giải phương trình: 5x 2 - 6x - 4 > 2 ( x - 1) . Câu 7A.(1,0 điểm) Viết phương trình chính tắc của Hypebol (H) biết (H) đi qua điểm 2; 3 và một ( ) 0 đường tiệm cận của (H) tạo với trục tung một góc 30 . Dành cho học sinh học chương trình chuẩn: Câu 6B.(1,0 điểm) Tìm các giá trị của m để hàm số y = x 2 + mx - m có tập xác định là ¡ . Câu 7B.(1,0 điểm) Trong mặt phẳng Oxy cho điểm A(- 2; 3) và đường thẳng (d) có phương trình 3x + y - 7 = 0. Tìm tọa độ hình chiếu của A trên (d). 8 Ñeà cöông oân taäp khoái 10 – hk2-2009-2010 – www.mathvn.com
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2