intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề kiểm tra HK 1 môn Toán lớp 12 năm 2017 - Sở GD&ĐT Quảng Nam - Mã đề 019

Chia sẻ: Ngô Văn Trung | Ngày: | Loại File: DOC | Số trang:4

21
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Mời các bạn cùng tham khảo Đề kiểm tra HK 1 môn Toán lớp 12 năm 2017 - Sở GD&ĐT Quảng Nam - Mã đề 019 tư liệu này sẽ giúp các bạn ôn tập lại kiến thức đã học, có cơ hội đánh giá lại năng lực của mình trước kỳ thi sắp tới. Chúc các bạn thành công.

Chủ đề:
Lưu

Nội dung Text: Đề kiểm tra HK 1 môn Toán lớp 12 năm 2017 - Sở GD&ĐT Quảng Nam - Mã đề 019

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO KIỂM TRA HỌC KỲ I – NĂM HỌC 2016­2017 QUẢNG NAM Môn: TOÁN – Lớp 12 ĐỀ CHÍNH THỨC Thời gian: 90 phút, không kể thời gian phát đề Mã đề 019 (Đề có 04 trang) I. PHẦN TRẮC NGHIỆM KHÁCH QUAN: (8 điểm) Câu 1.  Cho  a > 0, a 1 . Tính   a log5 a 3 .  log5 3 1 log5 3 1 log5 3 A.  a log5 a 3 = 35 . B.  a a = 5 . C.  a a = 53. D.  a a = 5 . 3 3 Câu 2. Cho  a > 0, a 1, b > 0, c > 0 . Đẳng thức nào sau đây đúng? �b � log a b �b � A.  log a � �= .  B.  log a � �= log a b − log a c . �c � log a c �c �     C.  log a ( bc ) = log a b.log a c .  D.  log a ( bc ) = log a b − log a c . Câu 3. Tìm tập xác định D của hàm số  y = log5 3 − x . A.  D =  ᄀ . B. D =  ( 0 ; + ). C. D =  ( − ; 3] . D. D =  ( − ; 3) . 5 3 Câu 4. Cho biểu thức  a 2 . a4  (với  a > 0 ). Hãy rút gọn biểu thức  P  và đưa về dạng lũy thừa với  P= 2 a số mũ hữu tỉ. 35 11 5 21 A.  . B.  . C.  . D.  .  P =a6 P =a6 P = a4 P =a4 Câu 5. Tính đạo hàm  y  của hàm số  y = 3−2 x +1 . / −2 x +1 A.  y / = −2.3 . B.  y / = 3−2 x+1.ln 3 . C.  y / = −2.3−2 x +1.ln 3 . D.  y / = −2.3−2 x +1 . ln 3 Câu 6. Phương trình tiếp tuyến của đồ thị hàm số  y = ln(2 x)  tại điểm  A(3;ln 6)  là: 1 1 1 1 1 1 A.  y = x − − ln 6 . B.  y = x − + ln 6 . C.  y = x − 1 − ln 6 . D.  y = x − 1 + ln 6 . 6 2 6 2 3 3 Câu 7. Tìm tập nghiệm  S  của bất phương trình  3 log x < log 9 ( x + 4) + 1 . A.  S = (−3 ; 12) . B.  S = (−12 ; 3) . C.  S = (0 ; 3) . D.  S = (0 ; 12) . Câu 8. Giải bất phương trình   log 2 ( x − 1) 3 . A. 1 < x 9 . B.  x 9 . C. 1 < x 10 . D.  x 10 . Câu 9.  Tìm tất cả  các giá trị  của tham số  m   để  phương trình   4 − 2(m − 1)2 x + 2m + 1 = 0   có hai  x nghiệm phân biệt. −1 A.  m < 0  hoặc  m > 4 .  B. 1 < m < 4 .    C.  < m < 0 .    D.  m > 4 . 2 Câu 10. Một sinh viên muốn có đủ   12.000.000  đồng sau 12 tháng để  mua máy tính bằng cách mỗi   tháng  gởi   vào ngân  hàng  cùng  một  số   tiền  là   m   đồng.  Tìm   m , biết  rằng lãi   suất  ngân hàng  là  0,5%/tháng, tính theo thể  thức lãi kép và lãi suất không thay đổi trong thời gian sinh viên đó gởi tiền  (giá trị gần đúng của  m  làm tròn đến hàng nghìn). A.  m 978.000 . B.  m 973.000 . C.  m 968.000 .   D.  m 995.000 . x −1 1� Câu 11. Giải bất phương trình   �� � > 9. �3 � A.  x > −1 . B.  x > 3 . C.  x < −1 . D.  x < 3 . Câu 12. Tính   theo  , biết  93 x −a = 27 . x a Mã đề 019 Trang 1/4
  2. 2 + 3a 3 + 2a 1 + 2a 1+ a A.  x = .   B.  x = . C.   x = .  D.  x = .  9 6 6 3 Câu 13. Biết rằng phương trình  log3 ( x 2 − 2016 x) = 2017  có 2 nghiệm  x1, x2 . Tính tích  x1.x2 . A.   x1.x2 = 32017 . B.   x1.x2 = 20173 . C.   x1.x2 = −32017 . D.   x1.x2 = −20173 . log a ( ab ) Câu 14. Cho  log a b = 3 . Tính  . b log a ( ab ) = −2 log a ( ab ) = 2 1 1 A.  .  B.  .    C.  log a ( ab ) = 2 .  D.  log a ( ab ) = − 2 . b b b b Câu 15. Cho  log a π < 0  và  log a b > 0 . Khẳng định nào sau đây đúng? A.  a > 1 và b > 1. B.  a > 1 và 0 
  3. A.   m < −5  hoặc  m > −1 .  B.   −5 < m < −1 .   C.    m < 1   hoặc   m > 5 .   D.  1 < m < 5 . Câu 23. Cho hàm số  y = f ( x)  có  x lim f ( x) = −  và  lim f ( x) = 3 . Mệnh đề nào sau đây đúng? + x − A.  Đồ thị hàm số  y = f ( x)  không có tiệm cận ngang. B.  Đường thẳng  y = 3  không phải là tiệm cận của đồ thị hàm số  y = f ( x) . C.  Đường thẳng  y = 3  là tiệm cận đứng của đồ thị hàm số  y = f ( x) . D.  Đường thẳng  y = 3  là tiệm cận ngang của đồ thị hàm số  y = f ( x) . Câu 24. Tìm tất cả các giá trị của tham số   m  để hàm số   y = x3 − (m + 3) x 2 + m 2 x + 2  đạt cực đại tại  x =1. A.   m = −3  hoặc  m = 1 .  B.   m = −1  hoặc  m = 3 .   C.  m = −1 . D.  m = 3 .  x−2 Câu 25. Tìm tất cả các giá trị của tham số  m  để hàm số  y =  đồng biến trên khoảng  (1 ; + ) . x−m A.   m 1 . B.   m < 1 .  C.  m 2 . D.  m < 2 . x−2 Câu 26. Cho đồ thị  (C ) : y = 2 . Mệnh đề nào sau đây đúng? x −4 A. Đồ thị (C) không có tiệm cận đứng. B. Đồ thị (C) không có tiệm cận ngang. C. Đồ thị (C) có một tiệm cận đứng và một tiệm cận ngang. D. Đồ thị (C) có hai tiệm cận đứng. Câu 27.  Đồ  thị   ở  hình bên là đồ  thị  của hàm số   y = x3 − 3 x 2 . Tìm  y tất cả các giá trị của tham số  m  để phương trình  x3 − 3 x 2 = m  có 3  nghiệm phân biệt. O A.  m < −4  hoặc  m > 0 . 1 2 3 x B.  −4 < m < 0 . C.  m < 0 . D.  m > −4 . 4 Câu 28. Tính thể tích  V  của khối nón có bán kính đáy  r = 8  và chiều cao bằng  h = 6 . A.  V = 96π . B.  V = 128π . C.  V = 288π . D.  V = 384π . Câu 29. Cho hình nón có bán kính đáy  r , chiều cao  h  và độ  dài đường sinh bằng  l . Tính diện tích  xung quanh  S xq  của hình nón đó. A.  S xq = π .r.h . B.  S xq = 2π .r.h . C.  S xq = π .r.l . D.  S xq = 2π .r.l . Câu 30. Người ta bỏ vào một cái thùng hình trụ có bán kính đáy bằng  15 cm , chiều cao bằng  30 cm   một quả cầu sắt có bán kính  10 cm  rồi đổ nước đầy thùng. Tính thể tích  V  của nước trong thùng (giá  trị gần đúng của  V  làm tròn đến hàng đơn vị). A.  V 17017 cm3 . B.  V 8639 cm3 . C.  V 20159 cm3 .   D.  V 6021 cm3 . Câu 31. Cho tứ  diện đều  ABCD .  M , N , P  lần lượt là trung điểm các cạnh  AB, AC , AD . Hỏi mặt  phẳng nào sau đây không phải là mặt phẳng đối xứng của tứ diện  ABCD ? A. mặt phẳng  ( NBD) . B. mặt phẳng  ( MNP) . C. mặt phẳng  ( MCD) . D. mặt phẳng  ( PBC ) . Câu 32. Cho hình chop  ́ S . ABCD  co đay  ́ ́ ABCD  la hinh vuông canh  ̀ ̀ ̣ a , cạnh bên  SA  vuông góc với  mặt phẳng đáy và  SA = 6a . Tính thê tich  ̉ ́ V  của khôi chop  ́ ́ S . ABCD . 3 A.  V = 6a . 3 B.  V = 3a . C.  V = 2a3 . D.  V = a3 . Câu 33. Hình bát diện đều có bao nhiêu cạnh? A. 20. B. 16. C. 12. D. 8. Mã đề 019 Trang 3/4
  4. Câu 34. Cho hình lăng trụ  đứng  ABC. A/ B / C /  có  AA/ = a 2  và đáy là tam giác vuông cân  ABC  với  AB = AC = 2a . Tính thể tích  V  của khối lăng trụ  ABC. A/ B / C / . 3 3 A.  V = 4a 2 . B.  V = 2a 2 .   C.   V = 4a3 2 . D.  V = 2a3 2 . 3 3 Câu 35. Một hình trụ có bán kính đáy  r , chiều cao  h  và có diện tích toàn phần bằng hai lần diện tích   h xung quanh của nó. Tính tỉ số  . r h h h 1 h 1 A.  = 1 . B.  = 2 . C.  = . D.  = . r r r 2 r 3 Câu 36. Cho khối chóp bát giác đều có thể tích bằng  V , diện tích mỗi mặt bên bằng  S  và O là tâm  của đáy. Tính khoảng cách  d  từ O đến một mặt bên của khối chóp đã cho. 3V 3V V V A.  d = . B.  d = . C.  d = . D.  d = . S 8S 8S 24S Câu 37.  Cho hình lăng trụ   ABC. A/ B / C /  có đáy là tam giác đều cạnh  a , góc giữa cạnh bên và mặt  phẳng đáy bằng  600 . Hình chiếu vuông góc của  A/  trên mặt phẳng  ( ABC )  trùng với trọng tâm tam  giác  ABC . Tính thể tích  V  của khối lăng trụ  ABC. A/ B / C / . 3 3 3 3 A.  V = a 3 . B.  V = a 3 .  C.   V = a 3 . D.  V = a 3 . 12 6 4 2 Câu 38. Cho hình lập phương  ABCD. A/ B / C / D /  cạnh bằng  a . Gọi  G  là trọng tâm tam giác  B / CD .  ́ ứ diện  GAA/ D / . ̉ ́ V  của khôi t Tính thê tich  3 3 3 3 A.  V = a . B.  V = a . C.  V = a . D.  V = a . 9 6 18 12 Câu 39. Tính thể  tích  V  của một tam cấp  có 5 bậc, các kích thước mỗi bậc là  20 cm ,  30 cm ,  150 cm  (xem hình minh họa). A.  V = 450.000 cm3 . 30 cm B.  V = 1.890.000 cm3 . 20 cm C.  V = 1.800.000 cm3 . D.  V = 1.350.000 cm3 . 150 cm Câu 40. Trong tất cả các khối trụ có cùng diện tích toàn phần  Stp = 16π , hãy tìm bán kính đáy  r  của  khối trụ có thể tích lớn nhất. 4 3 2 6 2 2 6 A.  r = . B.  r = .   C.  r = .   D.  r = . 3 3 3 4 II. PHẦN TRẮC NGHIỆM TỰ LUẬN: (2 điểm) Câu 41. Tìm tọa độ các giao điểm của đồ thị  (C ) : y = x 4 + 2 x 2 − 3  và parabol  ( P) : y = x 2 + 9 . Câu 42. Cho hình chop  ́ S . ABC  co hai m ́ ặt  ABC  và  SAB  là hai tam giác đều cạnh  a  nằm trong hai  mặt phẳng vuông góc. Tính theo  a  thể  tích khối chóp  S . ABC  và diện tích mặt cầu ngoại tiếp hình   chóp  S . ABC . ­­­­­­­­­­­­­­­ Hết ­­­­­­­­­­­­­­­ Mã đề 019 Trang 4/4
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2