intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề tài: Nghiên cứu quy trình xử lý nước cấp từ nguồn nước mặt cho các hộ gia đình tại ấp An Thuận, xã Hòa Bình, Chợ Mới

Chia sẻ: Trần Nhật | Ngày: | Loại File: DOCX | Số trang:55

152
lượt xem
37
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đề tài "Nghiên cứu quy trình xử lý nước cấp từ nguồn nước mặt cho các hộ gia đình tại ấp An Thuận, xã Hòa Bình, Chợ Mới" được thực hiện nhằm hướng dẫn, phổ biến những kinh nghiệm, khai thác và xử lý nguồn nước sạch sinh hoạt dùng cho cộng đồng dân cư nhỏ tại ấp An Thuận, xã Hòa Bình, Chợ Mới.

Chủ đề:
Lưu

Nội dung Text: Đề tài: Nghiên cứu quy trình xử lý nước cấp từ nguồn nước mặt cho các hộ gia đình tại ấp An Thuận, xã Hòa Bình, Chợ Mới

  1. NGHIÊN CỨU QUY TRÌNH XỬ LÝ NƯỚC CẤP TỪ NGUỒN NƯỚC MẶT DÙNG CHO SINH HOẠT TẠI ẤP AN THUẬN, XÃ HÒA BÌNH, HUYỆN CHỢ MỚI, AN GIANG Chương 1: GIỚI THIỆU CHUNG Nước là nhu cầu thiết yếu cho mọi sinh vật, đóng vai trò đặc biệt trong việc điều hoà khí hậu và cho sự sống trên trái đất. Hàng ngày cơ thể con người cần 3 -10 lít nuớc cho các hoạt động sống, luợng nước này đi vào cơ thể qua con đường thức ăn, nước uống để thực hiện các quá trình trao đổi chất và trao đổi năng lượng, sau đó thải ra ngoài theo con đường bài tiết. Ngoài ra con người còn sử dụng nuớc cho các hoạt động khác như tắm, rửa, … Nước ta hiện nay nhu cầu sử dụng nước ngày càng tăng do sự phát triển dân số và mức sống ngày càng tăng. Tuỳ thuộc vào mức sống của người dân và tuỳ từng vùng mà nhu cầu sử dụng nước là khác nhau, định mức cấp nước cho dân đô thị là 150 L/người.ngày, cho khu vực nông thôn là 40 – 70 L/người.ngày.(Nguyễn Duy Thiện, 2000) Khoảng 80% dân số nước ta sống ở vùng nông thôn. Hiện nay, đảm bảo nước sinh hoạt cho nông thôn là một nhu cầu cấp bách, trong đó việc cung cấp nước có chất lượng tốt là một nhu cầu quan trọng. Nước vô trùng góp phần nâng cao sức khỏe giảm thiểu bệnh tật, tăng sức lao động và mang lại cho người dân một cuộc sống văn minh. Phan triển nguồn nước sinh hoạt ở nông thôn là góp phần vào phân bố lại dân cư và phân vùng quy hoạch một cách hợp lí. Cho đến nay nhiều vùng nông thôn vẫn còn sử dụng nước không hợp vệ sinh cho các nhu cầu sinh hoạt , dẫn đến hậu quả là tỷ lệ mắc các bệnh lây lan do nước như: đường ruột, mặt hột và bệnh ngoài da còn rất cao, gây ảnh hưởng đời sống và sức lao động chung. Hiện trạng cấp nước nông thôn ở tỉnh An Giang hiện nay vẫn chủ yếu là do dân tự lo nguồn nước sinh hoạt cho mình. Họ sử dụng đủ loại nguồn nước mà chủ yếu là nguồn nước mặt bao gồm: sông, suối, ao hồ, kênh rạch…với chất lượng nguồn nước bị ô nhiễm mức độ cao. Ấp An Thuận xã Hòa Bình, huyện Chợ Mới là nơi vẫn chưa có hệ thống cấp nước công cộng. Các hộ dân chủ yếu tự sử dụng nguồn nước từ kênh rạch gần nhà, có chất lượng không được đảm bảo và sử dụng dạng nguyên khai không được xử lý. Trước tình hình đó đề tài: “Nghiên cứu quy trình xử lý nước cấp từ nguồn nước mặt cho các hộ gia đình tại ấp An Thuận, xã Hòa Bình, Chợ Mới” được thực hiện nhằm hướng dẫn, phổ biến những kinh nghiệm, khai thác và xử lý nguồn nước sạch sinh hoạt dùng cho cộng đồng dân cư nhỏ tại đây. 1
  2. Chương 2: LƯỢC KHẢO TÀI LIỆU 2.1. Tổng quan về nước cấp và tầm quan trọng của nước cấp 2.1.1. Công nghệ xử lý nước cấp 2.1.1.1. Xử lý nước cấp Xử lý nước cấp là quá trình loại bỏ các chất bẩn, các chất hòa tan trong nước bằng dây chuyền công nghệ đảm bảo chất lượng nước sau xử lý đạt yêu cầu cấp nước cho sinh hoạt, công nghiệp theo tiêu chuẩn quy định. (Nguyễn Thị Thu Thủy, 2000) 2.1.1.2. Tầm quan trọng của nước cấp và xử lý nước cấp Nước là nhu cầu thiết yếu cho mọi sinh vật, đóng vai trò đặc biệt trong việc điều hoà khí hậu và cho sự sống trên trái đất. Hàng ngày cơ thể con người cần 3 -10 lít nuớc cho các hoạt động sống, luợng nước này đi vào cơ thể qua con đường thức ăn, nước uống để thực hiện các quá trình trao đổi chất và trao đổi năng lượng, sau đó thải ra ngoài theo con đường bài tiết. Ngoài ra con người còn sử dụng nước cho các hoạt động khác như tắm, rửa, … Nước ta hiện nay nhu cầu sử dụng nước ngày càng tăng do sự phát triển dân số và mức sống ngày càng tăng. Tuỳ thuộc vào mức sống của người dân và tuỳ từng vùng mà nhu cầu sử dụng nước là khác nhau, định mức cấp nước cho dân đô thị là 150 lít/người.ngày, cho khu vực nông thôn là 40 – 70 lít/người.ngày. Hiện nay, Tổ chức Liên Hợp Quốc đã thống kê có một phần ba các điểm dân cư trên thế giới thiếu nước sạch sinh hoạt. Do đó người dân phải dùng các nguồn nước không sạch. Điều này dẫn đến háng năm có tới 500 triệu người mắc bệnh và 10 triệu người bị chết, 80% các trường hợp mắc bệnh tại các nước đang phát triển có nguyên nhân từ việc dùng các nguồn nước bị ô nhiễm. Vấn đề xử lý nước và cung cấp nước sạch, chống ô nhiễm nguồn nước do tác động của nước thải sinh hoạt và sản xuất đang là vấn đề đáng quan tâm đặc biệt. Mỗi quốc gia đều có những tiêu chuẩn riêng về chất lượng nước cấp, trong đó các chỉ tiêu cao thấp khác nhau. Nhưng nhìn chung các chỉ tiêu này phải đảm bảo an toàn vệ sinh về số vi trùng có trong nước, không có chất độc hại làm ảnh hưởng đến sức khỏe con người. Các nguồn nước trong thiên nhiên ít khi đảm bảo các tiêu chuẩn đó. Do tính chất có sẵn của nguồn nước hay bị tác động ô nhiễm. Nên tùy thuộc vào chất lượng nguồn nước và yêu cầu về chất lượng nước cấp mà cần thiết phải có quá trình xử lý nước thích hợp đảm bảo cung cấp nước có chất lượng tốt và ổn định chất lượng nước cấp cho các nhu cầu. 2.1.2. Mục đích của các quá trình xử lý nước - Cung cấp số lượng nước đầy đủ và an toàn về mặt hoá học, vi trùng 2
  3. học để thỏa mãn các nhu cầu về ăn uống, sinh hoạt, dịch vụ, sản xuất công nghiệp và phục vụ sinh hoạt công cộng của các đối tượng dùng nước. - Cung cấp nước có chất lượng tốt, ngon, không chứa các chất gây vẩn đục, gây ra màu, mùi, vị của nước. - Cung cấp nước có đủ thành phần khoáng chất cần thiết cho việc bảo vệ sức khoẻ của người tiêu dùng. - Chất lượng nước sau xử lý đảm bảo tiêu chuẩn vệ sinh đối với chất lượng nước cấp cho ăn uống sinh hoạt.(Trịnh Xuân Lai, 2004) 2.1.3. Các biện pháp xử lý cơ bản Trong quá trình xử lý nước cấp cần phải áp dụng các biện pháp xử lý sau: + Biện pháp cơ học: Là biện pháp dùng các công trình và thiết bị để làm sạch nước như: Song chắn rác, lưới chắn rác, bể lắng, bể lọc. + Biện pháp hoá học: Là biện pháp dùng các hoá chất cho vào nước để xử lý nước như: Dùng phèn làm chất keo tụ, dùng vôi để kiềm hoá nước, cho clo vào nước để khử trùng. + Biện pháp lý học: Là biện pháp dùng các tia vật lý để khử trùng nước như: tia tử ngoại, sóng siêu âm, điện phân nước biển để khử muối, khử khí CO2 hoà tan trong nước...(Nguyễn Ngọc Dung,1999) 2.2. Các loại nguồn nước dùng cho cấp nước 2.2.1. Nguồn nước mặt Nước mặt là nguồn nước được hình thành trên bề mặt trái đất bao gồm: sông suối, ao hồ, kênh mương… Do có sự kết hợp của các dòng chảy từ nơi cao đến nơi thấp. Nước mặt có các đặc trưng: Chứa các khí hòa tan(O2,CO2…), có hàm lượng hữu cơ cao, có độ mặn, có sự xuất hiện của các loài thực vật thủy sinh(tảo, rong). 2.2.2. Nguồn nước ngầm Là nguồn nước được khai thác từ các tầng chứa nằm dưới mặt đất. Chất lượng nước ngầm phụ thuộc vào cấu trúc địa tầng mà nước thấm qua. Nước ngầm có các đặc trưng: Độ đục thấp, nhiệt độ và thành phần hóa học ổn định, nước thiếu khí O2 nhưng chứa nhiều khí H2S, CO2,… chứa nhiều chất khoáng hòa tan, đặc biệt là sắt, Mangan, Flouor. 2.2.3. Nguồn nước mưa Là nguồn nước được hình thành do quá trình tự nhiên như: bay hơi, gió bão, tạo thành mưa rơi xuống mặt đất ở một phạm vi nhất định. Đặc trưng của nguồn nước mưa: Có chất lượng tốt, bão hòa CO 2. Tuy nhiên nước mưa hòa tan các chất hữu cơ và vô cơ trong không khí và bề mặt trái đất, đồng thời lưu lượng không ổn định nên ít được sử dụng và chỉ sử dụng trong một số nơi có khó khăn về nước. (Trịnh Xuân Lai, 2004) 3
  4. 2.3. Các chỉ tiêu đánh giá chất lượng nước 2.3.1. Các chỉ tiêu lý học 2.3.1.1. Nhiệt độ Nhiệt độ ảnh hưởng đến độ pH, đến các quá trình hóa học và sinh hóa xảy ra trong nước. Nhiệt độ phụ thuộc rất nhiều vào môi trường xung quanh, vào thời gian trong ngày, vào mùa trong năm… Nước mặt có nhiệt độ thay đổi theo nhiệt độ môi trường. Ví dụ: ở Miền Bắc Việt Nam nhiệt độ nước thường dao động từ 13oC đến 34o C, trong khi đó nhiệt độ trong các nguồn nước mặt ở Miền Nam tương đối ổn định hơn (26 - 29oC). 2.3.1.2. Độ màu Độ màu thường do các chất bẩn trong nước tạo nên: Các hợp chất sắt, mangan không hòa tan làm nước có màu nâu đỏ, các chất mùn humic gây ra màu vàng, còn các loại thủy sinh tạo cho nước màu xanh lá cây. Nước bị nhiễm bẩn bởi nước thải sinh hoạt hay công nghiệp thường có màu xanh hoặc đen. Nước nguyên chất không có màu. Màu sắc mang tính chất cảm quan và gây nên ấn tượng tâm lý cho người sử dụng. Đơn vị đo độ màu thường dùng là độ theo thang màu platin – coban. Nước thiên nhiên thường có độ màu thấp hơn 200 độ (PtCo). Độ màu biểu kiến trong nước thường do các chất lơ lửng trong nước tạo ra và dễ dàng bị loại bỏ bằng phương pháp lọc. Trong khi đó, để loại bỏ màu thực của nước phải dùng các biện pháp hóa lý kết hợp. 2.3.1.3. Độ đục Nước là một môi trường truyền ánh sang tốt, khi trong nước có các vật lạ như các chất huyền phù, các hạt cặn đất, cát, các vi sinh vật…thì khả năng truyền ánh sáng bị giảm đi. Nước có độ đục lớn chứng tỏ chứa nhiều cặn bẩn. Đơn vị đo độ đục là NTU, JTU trong đó đơn vị NTU và FTU là tương đương nhau. Nước mặt thường có độ đục 20 - 100 NTU, mùa lũ có khi cao đến 500 - 600 NTU. Nước dùng để ăn uống thường có độ đục không vượt quá 5 NTU. Theo tiêu chuẩn Việt Nam (TCVN), độ đục được xác định bằng chiều sâu lớp nước thấy được (gọi là độ trong) mà ở độ sâu đó người ta vẫn đọc được hàng chữ tiêu chuẩn. Độ đục càng thấp chiều sâu của lớp nước còn thấy được càng lớn. Nước được gọi là trong khi mức độ nhìn sâu lớn hơn 1m (hay độ đục nhỏ hơn 10 NTU). 2.3.1.4. Mùi vị Mùi trong nước thường do các hợp chất hóa học, chủ yếu là các hợp chất hữu cơ hay các sản phẩm từ các quá trình phân hủy vật chất gây nên. Nước thiên nhiên có thể có mùi tanh hay hôi thối, mùi đất. Nước sau khi khử trùng với các hợp chất clo có thể bị nhiễm mùi clo hay clophenol. Tùy theo thành phần và hàm lượng các muối khoáng hòa tan nước có 4
  5. thể có các vị mặn, ngọt, chát, đắng… 2.3.1.5. Độ nhớt Độ nhớt là đại lượng biểu thị lực ma sát nội, sinh ra trong quá trình dịch chuyển giữa các lớp chất lỏng với nhau. Đây là yếu tố chính gây nên tổn thất áp lực và do vậy nó đóng vai trò quan trọng trong quá trình xử lý nước. Độ nhớt tăng khi hàm lượng các muối hòa tan trong nước tăng, và giảm khi nhiệt độ tăng. 2.3.1.6. Độ dẫn điện Nước có tính dẫn điện kém. Nước tinh khiết ở 20 oC có độ dẫn điện là 4,2µS/m. Độ dẫn điện của nước tăng theo hàm lượng các chất khoáng hòa tan trong nước, và dao động theo nhiệt độ. Thông số này thường được dùng để đánh giá tổng hàm lượng chất khoáng hòa tan trong nước. 2.3.1.7. Tính phóng xạ Tính phóng xạ của nước là do sự phân hủy các chất phóng xạ có trong nước tạo nên. Nước ngầm thường nhiễm các chất phóng xạ tự nhiên, các chất này có thời gian bán phân hủy rất ngắn nên nước thường vô hại. Tuy nhiên khi bị nhiễm bẩn phóng xạ từ nước thải và không khí thì tính phóng xạ của nước có thể vượt quá giới hạn cho phép. Hai thông số tổng hoạt độ phóng xạ α và β thường được dùng để xác định tính phóng xạ của nước. Trong đó các hạt α bao gồm 2 proton và 2 nơtron có năng lượng xuyên thấu nhỏ, nhưng có thể xuyên vào cơ thể sống qua đường hô hấp hoặc tiêu hóa, gây tác hại cho cơ thể do tính ion hóa mạnh. Các hạt β có khả năng xuyên thấm mạnh hơn, nhưng dễ bị ngăn lại bởi các lớp nước và cũng gây tác hại cho cơ thể. 2.3.2. Các chỉ tiêu hoá học 2.3.2.1. Độ cứng của nước Độ cứng của nước gây nên bởi các ion đa hóa trị có mặt trong nước. Chúng phản ứng với một số anion tạo thành kết tủa. Các ion hóa trị 1 không gây nên độ cứng của nước. Trên thực tế vì các ion Ca 2+ và Mg2+ chiếm hàm lượng chủ yếu trong các ion đa hóa trị nên độ cứng của nước xem như là tổng hàm lượng của các ion Ca2+ và Mg2+ . Người ta phân biệt các loại độ cứng khác nhau : + Độ cứng carbonat (thường được ký hiệu CH : Carbonate Hardness): là độ cứng gây ra bởi hàm lượng Ca 2+ và Mg2+ tồn tại dưới dạng HCO3-. Độ cứng carbonat còn được gọi là độ cứng tạm thời vì sẽ mất đi khi bị đun sôi. + Độ cứng phi carbonat (thường được ký hiệu là NCH : Non-Carbonate Hardness) là độ cứng gây ra bởi hàm lượng Ca2+ và Mg2+ liên kết với các anion khác HCO3- như SO42- , Cl-…Độ cứng phi carbonat còn được gọi là độ cứng thường trực hay độ cứng vĩnh cữu. 5
  6. 2.3.2.2. Độ pH của nước PH có định nghĩa về mặt toán học : pH = -log[H+]. pH là một chỉ tiêu cần được xác định để đánh giá chất lượng nguồn nước. Sự thay đổi pH dẫn tới sự thay đổi thành phần hóa học của nước (sự kết tủa, sự hòa tan, cân bằng carbonat…), các quá trình sinh học trong nước. Giá trị pH của nguồn nước góp phần quyết định phương pháp xử lý nước. pH được xác định bằng máy đo pH hoặc bằng phương pháp chuẩn độ. 2.3.2.3. Độ kiềm của nước Độ kiềm toàn phần là tổng hàm lượng các ion HCO 3-, CO32- , OH- có trong nước. Độ kiềm trong nước tự nhiên thường gây nên bởi các muối của acid yếu, đặc biệt là các muối carbonat và bicarbonat. Độ kiềm cũng có thể gây nên bởi sự hiện diện của các ion silicat, borat, phosphat… và một số acid hoặc bazơ hữu cơ trong nước, nhưng hàm lượng của những ion này thường rất ít so với các ion HCO 3-, CO32-, OH- nên thường được bỏ qua. Khái niệm về độ kiềm và độ acid là những chỉ tiêu quan trọng để đánh giá động thái hóa học của một nguồn nước vốn luôn luôn chứa carbon dioxid và các muối carbonat. Độ kiềm được định nghĩa là lượng acid mạnh cần để trung hòa để đưa tất cả các dạng carbonat trong mẫu nước về dạng H2CO3. Người ta còn phân biệt độ kiềm carbonat (còn gọi là độ kiềm m hay độ kiềm tổng cộng T vì phải dùng metyl cam làm chất chỉ thị chuẩn độ đến pH = 4,5 liên quan đến hàm lượng các ion OH -, HCO3- và CO32- ) với độ kiềm phi carbonat (còn gọi là độ kiềm p vì phải dùng phenolphtalein làm chất chỉ thị chuẩn độ đến pH = 8,3 liên quan đến ion OH -). Hiệu số giữa độ kiềm tổng m và độ kiềm p được gọi là độ kiềm bicarbonat. 2.3.2.4. Độ oxi hóa (mg/l O2 hay KMnO4) Là lượng oxi cần thiết để oxi hóa hết các hợp chất hữu cơ có trong nước. Chỉ tiêu oxi hóa là đại lượng để đánh giá sơ bộ mức độ nhiễm bẩn của nguồn nước. Độ oxi hóa của nguồn nước càng cao, chứng tỏ nước bị nhiễm bẩn và chứa nhiều vi trùng. 2.3.2.5. Hàm lượng sunfat và clorua (mg/lít) Ion SO42- có trong nước do khoáng chất hoặc có nguồn gốc hữu cơ. Với hàm lượng lớn hơn 250 mg/l gây tổn hại cho sức khỏa con người. Ở điều kiện yếm khí, SO42- phản ứng với chất hữu cơ tạo thành khí H 2S có độc tính cao. Clor tồn tại trong nước dưới dạng Cl -. Nói chung ở mức nồng độ cho phép thì các hợp chất clor không gây độc hại, nhưng với hàm lượng lớn hơn 250 mg/lít làm cho nước có vị mặn. Nước có nhiều Cl - có tính xâm thực xi măng. 2.3.2.6. Hàm lượng sắt Sắt chỉ tồn tại dạng hòa tan trong nước ngầm dưới dạng muối Fe 2+ của HCO3-, SO42-, Cl-…, còn trong nước bề mặt, Fe2+ nhanh chóng bị oxy hóa thành Fe3+ và bị kết tủa dưới dạng Fe(OH)3. 6
  7. 2Fe(HCO3)2 + 0,5 O2 + H2O = 2Fe(OH)3 + 4CO2 Nước thiên nhiên thường hcứa hàm lượng sắt lên đến 30 mg/lít. Với hàm lượng sắt lớn hơn 0,5 mg/lít nước có mùi tanh khó chịu, làm vàng quần áo khi giặt… Các cặn kết tủa của sắt có thể gây tắc nghẽn đường ống dẫn nước. Trong quá trình xử lý nước, sắt được loại bằng phương pháp thông khí và keo tụ. 2.3.2.7. Hàm lượng mangan (mg/lít) Mangan thường được gặp trong nước ngầm ở dạng Mangan(II), nhưng với hàm lượng nhỏ hơn sắt rất nhiều. Tuy vậy với hàm lượng mangan > 0,05 mg/l đã gây ra các tác hại cho việc sử dụng và vận chuyển nước như sắt. Công nghệ khử mangan thường được kết hợp với khử sắt trong nước. 2.3.2.8. Iốt và Fluo Thường gặp trong nước dưới dạng ion và chúng có ảnh hưởng trực tiếp đến sức khỏe của con người. Hàm lượng fluo có trong nước ăn uống nhỏ hơn 0,7 mg/l dễ gây bệnh đau răng, lớn hơn 1,5 mg/lít sinh hỏng men răng. Ở những vùng thiếu iốt thường xuất hiện bệnh bướu cổ, ngược lại nếu iốt quá nhiều cũng gây tác hại cho sức khỏe. 2.3.2.9. Các chất khí hòa tan (mg/lít) Các chất khí O2, CO2, H2S trong nước thiên nhiên dao động rất lớn. Khí CO2 hòa tan đóng vai trò quyết định trong sự ổn định của nước thiên nhiên. Trong kỉ thuật xử lý nước, sự ổn định của nước có vai trò rất quan trọng. Việc đánh giá độ ổn định trong sự ổn định nước được thực hiện bằng cách xác dịnh hàm lượng CO2 cân bằng và CO2 tự do. Lượng CO2 cân bằng là lượng CO2 đúng bằng lượng ion HCO3- cùng tồn tại trong nước.(Trịnh Xuân Lai, 2004) 2.3.3. Các chỉ tiêu vi sinh Trong nước thiên nhiên có nhiều loại vi trùng, siêu vi trùng, rong tảo và các loài thủy vi sinh khác. Tùy theo tính chất, các loại vi sinh trong nước có thể vô hại hoặc có hại. Nhóm có hại bao gồm các loại vi trùng gây bệnh, các loài rong rêu, tảo…Nhóm này cần phải loại bỏ khỏi nước trước khi sử dụng. Các vi trùng gây bệnh như lỵ, thương hàn, dịch tả…thường khó xác định chủng loại. Trong thực tế hóa nước thường xác định chỉ số vi trùng đặc trưng. Trong chất thải của người và động vật luôn có loại vi khuẩn E.Coli sinh sống và phát triển. Sự có mặt của E.Coli trong nước chứng tỏ chứng tỏ nguồn nước đã bị ô nhiễm bởi phân rác, chất thải của người và động vật và như vậy cũng có khả năng tồn tại các loại vi trùng gây bệnh khác. Số lượng E.Coli nhiều hay ít tùy thuộc mức độ nhiễm bẩn của nguồn nước. Đặc tính của khuẩn E.Coli là khả năng tồn tại cao hơn các loại vi khuẩn, vi trùng gây bệnh khác nên nếu sau khi xử lý nước, nếu trong nước không còn phát hiện thấy E.Coli thì điều đó chứng tỏ các loại vi trùng gây bệnh khác đã bị tiêu diệt hết. Mặt khác, việc xác định số lượng E.Coli thường đơn giản và 7
  8. nhanh chóng nên loại vi khuẩn này thường được chọn làm vi khuẩn đặc trưng trong việc xác định mức độ nhiễm bẩn do vi trùng gây bệnh trong nước. Người ta phân biệt trị số E.Coli và chỉ số E.Coli. Trị số E.Coli là đơn vị thể tích nước có chứa 1 vi khuẩn E.Coli. Chỉ số E.Coli là số lượng vi khuẩn E.Coli có trong 1 lít nước. Tiêu chuẩn nước cấp cho sinh hoạt ở các nước tiên tiến qui định trị số E.Coli không nhỏ hơn 100 ml, nghĩa là cho phép chỉ có 1 vi khuẩn E.Coli trong 100 ml nước (chỉ số E.Coli tương ứng là 10). TCVN qui định chỉ số E.Coli của nước sinh hoạt phải nhỏ hơn 20. 2.4. Tổng quan về công nghệ xử lý nước cấp trên thế giới và Việt Nam 2.4.1. Công nghệ xử lý nước cấp trên thế giới Theo lịch sử ghi nhận hệ thống cấp nước đô thị xuất hiện sớm nhất tại La Mã vào năm 800 TCN. Điển hình là công trình dẫn nước vào thành phố bằng kênh tự chảy, trong thành phố nước được đưa đến các bể tập trung, từ đó theo đường ống dẫn nước đến các nhà quyền quí và bể chứa công cộng cho người dân sử dụng. Khoảng 300 năm TCN đã biết khai thác nước ngầm bằng cách đào giếng. Người Babilon có phương pháp nâng nước lên độ cao khá lớn bằng ròng rọc, guồng nước. Thế kỷ thứ XIII, các thành phố ở châu Âu đã có hệ thống cấp nước. Thời đó chưa có các loại hóa chất phục vụ cho việc keo tụ xử lý nước mặt, người ta phải xây dựng các bể lắng có kích thước rất lớn (gần như lắng tĩnh) mới lắng được các hạt cặn bé. Do đó công trình xử lý rất cồng kềnh, chiếm diện tích và kinh phí xây dựng lớn. Năm 1600 việc dùng phèn nhôm để keo tụ nước được các nhà truyền giáo Tây Ban Nha phổ biến tại Trung Quốc. Năm 1800 các thành phố ở châu Âu, châu Mỹ đã có hệ thống cấp nước khá đầy đủ thành phần như công trình thu, trạm xử lý, mạng lưới … Năm 1810 hệ thống lọc nước cho thành phố được xây dựng tại Paisay- Scotlen.Năm 1908 việc khử trùng nước uống với qui mô lớn tại Niagara Falls, phía Tây Nam New york. Thế kỷ XX kỹ thuật cấp nước ngày càng đạt tới tình độ cao và còn tiếp tục phát triển, các loại thiết bị cấp nước ngày càng đa dạng phong phú và hoàn thiện. Thiết bị dùng nước trong nhà luôn được cải tiến để phù hợp và thuận tiện cho người sử dụng. Kỹ thuật điện tử và tự động hóa cũng được sử dụng rộng rãi trong cấp thoát nước. Có thể nói kỹ thuật cấp nước đã đạt đến trình độ rất cao về công nghệ xử lý, máy móc trang bị thiết bị và hệ thống cơ giới hóa, tự động hóa trong vận hành, quản lý. 2.4.2. Công nghệ xử lý nước cấp ở Việt Nam Ở Việt Nam, hệ thống cấp nước đô thị được bắt đầu bằng khoan giếng mạch nông tại Hà Nội, Thành phố Hồ Chí Minh (Sài Gòn) cũ vào năm 1894. Nhiều đô thị khác như Hải Phòng, Đà Nẵng… hệ thống cấp nước đã xuất hiện, khai thác cả nước ngầm và nước mặt. Hiện nay hầu hết các khu đô thị đã có hệ thống cấp nước.Nhiều trạm cấp nước đã áp dụng công nghệ tiên tiến của các nước phát triển như Pháp, Phần Lan, Australia…Những trạm cấp 8
  9. nước cho các thành phố lớn đã áp dụng công nghệ tiên tiến và tự động hóa. Hiện nay Đảng và nhà nước đang quan tâm đến vấn đề cấp nước cho nông thôn, đòi hỏi các chuyên gia trong lĩnh vực cấp nước cần phải đóng góp sức mình và sáng tạo nhiều hơn để đáp ứng yêu cầu thức tế. Công nghệ đang áp dụng - Hiện nay ở đô thị sử dụng nguồn nước mặt và nguồn nước ngầm. Ngoài ra, một số hộ vùng ven đô và nông thôn có sử dụng cả nước mưa. Trong toàn quốc, tỷ lệ sử dụng nguồn nước mặt khoảng 60%, nước ngầm khoảng 40%. Ở các thành phố lớn, các nhà máy nước (NMN) có công suất khoảng từ vài chục ngàn m3/ngày.đêm tới vài trăm ngàn m3/ngày.đêm. Tiêu biểu như: NMN Thủ Đức (TP HCM) có tổng công suất 1.200.000 3 m /ngày.đêm, các NMN xử lý nước ngầm ở Hà Nội có công suất từ 30.000 - 60.000 m3/ngày.đêm (thường chia thành đơn nguyên 30.000 m3/ngày.đêm, xây dựng thành từng đợt, NMN Sông Đà 600.000 m 3/ngày.đêm, giai đoạn 1 đã xây dựng 1 đơn nguyên 300.000 m3/ngày.đêm đã hoạt động). Tại các thành phố, thị xã trực thuộc tỉnh, các nhà máy nước có công suất phổ biến từ 10.000 m3/ngày.đêm tới 30.000 m3/ngày.đêm. Các trạm cấp nước của các thị trấn thường có công suất từ 1000 m3/ngày.đêm tới 5.000 m 3/ngày.đêm, phổ biến nhất xung quanh 2.000 m3/ngày.đêm. Công nghệ và công trình xử lý nước - Công nghệ xử lý nước mặt phổ biến là: Keo tụ + lắng + lọc nhanh trọng lực + khử trùng - Công nghệ xử lý nước ngầm chủ yếu là khử sắt ( hoặc khử mangan) bằng phương pháp: Làm thoáng + lắng tiếp xúc + lọc nhanh trọng lực + khử trùng Các công trình đơn vị trong trạm xử lý đa dạng - Các công trình keo tụ ( đa số dùng phèn nhôm, PAC) với bể trộn đứng, trộn cơ khí, bể tạo bông có vách ngăn ziczac, tạo bông có tầng cặn lơ lửng, tạo bông kiểu cơ khí. - Các công trình lắng: bể lắng đứng ( cho trạm công suất nhỏ) bể lắng ngang thu nước cuối bể, thu nước bề mặt được sử dụng khá rộng rãi ở các dự án thành phố, thị xã, bể lắng ngang lamen được sử dụng tại 6 tỉnh miền núi phía Bắc: Lào Cai, Yên Bái, Phú Thọ, Hoà Bình, Hưng Yên và sân bay Đà Nẵng. Loại bể đang được phổ biến ở một số địa phương khác như bể lắng Pulsator ( công nghệ Pháp) được dùng ở Nam Định, Cần Thơ và bể lắng ly tâm ( Thái Bình) là 2 loại bể lằng ít được sử dụng. - Các công trình lọc: Bể lọc nhanh trọng lực ( lọc hở với vật liệu lọc là cát) được dùng rộng rãi, được dùng khá nhiều ở các dự án cấp tỉnh, thành phố. 9
  10. - Khử trùng: phổ biến dùng clo lỏng, một số trạm nhỏ dùng nước giaven hoặc ôzôn. - Trạm bơm đợt 2: một số trạm dùng máy biến tần để điều khiển chế độ hoạt động của máy bơm, một vài nơi có dùng đài nước trong trường hợp địa hình thuận lợi, một số nơi tận dụng đài nước đã có trước. - Các công trình làm thoáng: Phổ biến dùng tháp làm thoáng tự nhiên ( Dàn mưa), một số ít dùng thùng quạt gió ( làm thoáng cưỡng bức), một số trạm khác dùng tháp làm thoáng tải trọng cao theo nguyên lý làm việc của Ejector. Chất lượng nước sau xử lý hầu hết đạt tiêu chuẩn quốc gia hoặc tiêu chuẩn cuả tổ chức y tế thế giới. Một số nhà máy còn một vài chỉ tiêu chưa đạt như mangan, amôni, arsenic. Cấp nước nông thôn - Các loại mô hình cấp nước sinh hoạt nông thôn - Người dân nông thôn Việt Nam tuỳ điều kiện của mình đã sử dụng cả 3 loại nguồn nước (nước mưa, nước ngầm và nước mặt) cho nhu cầu cấp nước phục vụ sinh hoạt. Từ những đặc điểm riêng biệt từng vùng ở nông thôn Việt Nam hiện đang tồn tại 2 loại hệ thống công trình cấp nước cơ bản: + Các công trình cấp nước phân tán: Các công trình cấp nước nhỏ lẻ truyền thống phục vụ cho từng hộ gia đình, những nhóm hộ dùng nước hay các cụm dân cư sống độc lập, riêng lẻ mật độ thấp… + Các công trình cấp nước theo kiểu công nghiệp tập trung: Hệ thống dẫn nước tự chảy và hệ thống bơm dẫn nước phục vụ cho các thị trấn, thị tứ, các cụm dân cư sống tập trung của xã... (Trần Hiếu Nhuệ, 2010) 2.4.2.1.Tiền xử lý Xử lí sơ bộ nước bề mặt rất quan trọng. Trước khi dẫn nước vào dây chuyền xử lí, người ta lưu nước một thời gian dài với mục đích: - Tạo qúa trình lắng tự do của các hạt bụi và các kim loại nặng có nồng độ cao trong nước thô không tách được bằng quá trình keo tụ như côban, niken, xyanua (CN-), chì,cađimi và các kim loại độc hại khác cũng lắng xuống đáy. - Xúc tiến làm sạch tự nhiên để tách được phần lớn các chất hữu cơ nhỏ và các tạp chất vô cơ. - Có thể dùng các biện pháp trao đổi khí nhân tạo để tăng hàm lượng oxy hòa tan trong nước. -Xử lý sơ bộ với dịch vôi để duy trì độ cứng của nước từ 8.5-9.00 D. Tóm lại, nhờ các quá trình hóa, lý, sinh học tự nhiên xảy ra trong hồ nên chất lượng nước trong hồ tốt hơn nguồn nước đã đưa vào hồ. Nhờ bổ sung 10
  11. quá trình nhân tạo nên nồng độ tảo thấp, độ cứng và nồng độ kim loại độc hại giảm đi, kết quả là giảm đi rất nhiều chi phí cho giai đoạn tiếp theo. 2.4.2.1.1. Khử vi khuẩn virut nhờ các quá trình tự nhiên trong hồ chứa nước Các quá trình tự nhiên xảy ra trong hồ chứa nước có thể giảm đáng kể lượng vi sinh vật gây bệnh có mặt trong nước , bởi vì: - Nồng độ chất dinh dưỡng cần thiết cho vi khuẩn trong nước rất thấp. - Nhiệt độ của nước nhỏ hơn 37 0C nên tốc độ sinh sản của vi khuẩn vi rút rất chậm. - Các động vật nguyên sinh, nấm trong nước thường là kẻ thù của vi khuẩn vi rút. - Các động vật nguyên sinh, nấm trong nước thường là kẻ thù của vi khuẩn, vi rút. - Tia cực tím của ánh sáng mặt trời tiêu diệt vi khuẩn ở lớp bề mặt. - Vi khuẩn, vi rut thường bị lắng cùng với các hạt cặn trong nước. - Cá chất vô cơ, các chất độc trong nước có thể hủy hoại vi khuẩn, độ pH không thích hợp cho vi khuẩn. 2.4.2.1.2 Ngăn ngừa sự phát triển của tảo Để ngăn ngừa sự phát triển của tảo trong cá nguồn nước có thể sử dụng các phương pháp sau đây: a. Sử dụng hóa chất để diệt tảo Người ta dùng các hóa chất như CuSO 4 nồng độ từ 0.1-10mg/l, những hợp chất của clo nông độ từ 0.3 đến 1.0 mg/l, natri sunfat, chất diệt cỏ 2.4 D...Tuy nhiên, đưa hóa chất đặc biệt là các hóa chất bảo vệ thực vật vào các hồ chứa không phải là biện pháp tối ưu. b. Giảm chất dinh dưỡng cho tảo trong nước Các chất dinh dưỡng như nitơ, photphat trong nước có thể được giảm bớt bằng cách ngăn ngừa việc thải nước thải sinh hoạt, chất thải của con người và động vật cũng như các chất thải có chứa NH 4+, NO3-, PO43- vào nguồn nước...Hoặc có thể áp dụng các phương pháp tách chất dinh dưỡng ra nguồn thải như sau: -Xử lý sinh hóa kết hợp với khử NO3- trong điều kiện yếm khí. Clo hóa nâng pH hoặc là làm thoáng khí - Tách photphat ra khỏi nước bằng cách kết tủa với Fe 3+, Al3+ hoặcCa(OH)2. c. Giảm cường độ ánh sáng tới hồ chứa Cường độ ánh sáng xuyên qua nưốc theo phương trình 11
  12. I = Io. E-zd Trong đó: I0-cường độ ánh sáng ở bề mặt nước; I- cường độ ánh sáng ở dộ sau d, z- hệ số hấp phụ ánh sáng của nước. Như vậy, muốn giảm được lượng ánh sáng hấp phụ vào nước cần tăng độ sau hoặc giảm hệ số hấp phụ của nước bằng cách giảm độ đục của nước. 2.4.2.2.Keo tụ- tạo bông Dung dịch keo là hệ bền (khó lắng) nhờ cấu trúc đặc biệt của các hạt keo. Trong nhóm này phải kể đến virus, các chất có phân tử lượng lớn có nguồn gốc tự nhiên như axit humic. Hạt keo có kích thước nhỏ (< 0,5 m) nên bằng mắt và hiển vi thông thường không thể nhìn thấy. Hạt keo kị nước có độ bền nhờ lớp điện kép tích điện cùng dấu. Hạt keo ưa nước có độ bền nhờ tương tác hạt-nước thông qua các chóm chức ưa nước trên các phân tử hạt keo. 2.4.2.2.1.Cấu tạo hạt keo và tính bền của hệ keo Theo Atkins hệ keo là tên gọi cổ điển của các hệ phân tán dị thể của các hạt có kích thước nhỏ hơn 500 nm trong môi trường khác về chất so với chất hạt (ở đây ta chỉ đề cập đến môi trường lỏng). Tuy nhiên kích thước không phải là yếu tố quyết định mà cấu tạo hạt keo mới là yếu tố quyết định đến tính bền của các hệ keo. Tuỳ vào cấu tạo hạt và nguyên nhân gây ra độ bền ta có hai loại hạt keo: loại ưa dung môi cụ thể là ưa nước (hydrophilic) và loại kị dung môi hay kị nước (hydrophobic). Loại ưa nước là các dung dịch cao phân tử với các phân tử chất hữu cơ hoà tan có kích thước lớn và chứa nhiều nhóm chức phân cực, có ái lực cao với các phân tử nước. Loại kị nước là các loại keo có gốc ôxit hoặc hyđroxit kim loại. Do kích thước hạt rất nhỏ hệ keo có bề mặt cực lớn, vì vậy về mặt nhiệt động chúng không bền và có xu thế co cụm để giảm năng lượng bề mặt. Mặt khác do hạt keo có cấu tạo đặc biệt của lớp điện kép tạo nên lực đẩy tĩnh điện hạt-hạt nên chúng khó tiếp cận gần nhau, hút nhau và co cụm thành hạt lớn hơn đủ nặng để có thể lắng được nên hệ này có tính bền. Cấu tạo đặc biệt của hạt keo có thể được làm rõ trên cơ sở ví dụ keo Fe(III): Khi hoà tan FeCl3 trong nước sẽ xảy ra phản ứng thủy phân: FeCl3 + 3H2O Fe(OH)3 + 3HCl (1) 12
  13. Kết tủa Fe(OH)3 co cụm dưới dạng tập hợp hạt [mFe(OH)3] rất nhỏ, được gọi là hạt nhân, nó có khả năng hấp phụ những ion giống các thành phần tạo ra nó, ví dụ hấp phụ các ion Fe 3+, tạo thành lớp ion Fe3+ trên bề mặt hạt được gọi là lớp hấp phụ hay là lớp ion quyết định dấu: [mFe(OH)3] + nFe3+ [mFe(OH)3]nFe3n+ (2) Như vậy, ta có một hạt mới mang điện tích 3n+, nó có xu thế hút 3n các ion trái dấu (Cl ) trong dung dịch để trung hoà điện tích 3n+. Trong thực tế không phải tất cả 3n hạt Cl bám chặt vào nhân mà chỉ có 3(n-x) hạt Cl bám vào, lớp ion Cl bám vào này được gọi là lớp điện tích trái dấu. Cùng với lớp n ion Fe3+ đã hấp phụ cố định ta có 3(n-x) ion Cl bám theo hạt [mFe(OH)3] tạo thành lớp điện kép gồm 3n điện tích dương và 3(n-x) điện tích âm, kết quả là hạt keo (phần giữa dấu {}) mang điện tích 3x+: [m Fe(OH)3]nFe3n+ + 3(n-x) Cl {[mFe(OH)3]nFe3n+3(n-x)Cl }3x+ (3) Phần còn lại 3x hạt Cl “trôi nổi” trong dung dịch ở khoảng không gian gần hạt, tạo nên lớp khuyết tán. Như vậy, nếu viết dưới dạng công thức hoá học hạt keo có cấu tạo tổng thể như sau: {[mFe(OH)3]nFe3n+3(n-x)Cl }3x+3xCl hạt nhân lớp hấp phụ (lớp ion quyết định dấu) lớp điện tích trái dấu lớp khuếch tán Hạt keo Trong không gian, hạt keo có dạng như một quả cầu tích điện (hình 4.1). Theo hình 4.1 hạt nhân là quả cầu gồm tập hợp các phân tử Fe(OH) 3(r) nằm ở tâm. Các ion quyết định dấu gắn chặt vào quả cầu. Các điện tích trái dấu ở lớp gần nhất tạo thành lớp ion nghịch và mặt biên A-A, các điện tích trái dấu – phần còn lại nằm ở lớp khuếch tán khá linh động, vây quanh hạt keo tích điện như đám mây quanh trái đất. 13
  14. A A A X Hình 4.1- Cấu tạo hạt keo và sự thay đổi thế theo khoảng cách từ bề mặt hạt keo Tóm lại, để hạt keo trung hoà về điện hạt keo phải có hai lớp điện tích trái dấu có cùng lượng điện tích: lớp hấp phụ (ví dụ, nFe 3+) nằm trên bề mặt hạt nhân tích điện dương hoặc âm (trong trường hợp nFe 3+ là dương), điện thế tương ứng của nó là thế nhiệt động hay là thế Nernst, o; tiếp theo là lớp ion trái dấu tích điện ngược lại (âm hoặc dương). Hai lớp điện tích này tạo nên một cấu trúc tương tự như hai bản cực song song của một tụ điện, trong đó một bản cực tích điện dương (hoặc âm) gắn chặt với hạt nhân là lớp ion quyết định dấu, còn bản cực kia tích điện trái dấu và tạo nên lớp điện kép. Đây là cấu tạo thông thường của tụ điện phẳng. Kĩ thuật xử lí nước cấp từ nước tự nhiên, và kể cả một số công đoạn trong dây chuyền xử lí nước thải thông thường là kĩ thuật lắng – lọc. Để hình dung tốc độ lắng của những hạt không tích điện dưới tác dụng của trọng trường và đánh giá khả năng sử dụng bể lắng để xử lí làm trong nước xem bảng 2.1. Ta thấy các kỹ thuật lắng - lọc thông thường trong ngành nước chỉ có hiệu quả nhất định đối với hạt có kích thước cỡ m, trong trường hợp lọc tốt nhất là lớn hơn 0,1 m. Đối với những hạt cỡ 0,1 m trở xuống rất khó lắng và không thể lọc được bằng lọc cát thông thường. Để có thể lọc chúng bằng lọc cát thông thường phải biến chúng thành những hạt lớn hơn. Phương pháp 14
  15. phổ biến để thực hiện việc này là phương pháp keo tụ nghĩa là xử lí nước bằng những chất keo tụ trước khi lắng - lọc. Bảng 4.1 - Kích thước hạt và thời gian lắng do trọng lực Đường kính, Diện tích bề mặt, Thời gian lắng 1 m Loại hạt mm m2/m3 nước Sỏi đệm 10 6.102 1s Cát lọc 1 6.103 10 s Cát đen 0,1 6.104 120 s Bùn 0,01 6.105 2h Vi khuẩn 0,001 6.106 8 ngày Hạt keo 0,0001 6.107 2 năm Hạt keo 0,00001 6.108 20 năm Hạt keo 0,000001 6.109 200 năm Ghi chú: Tính theo phương trình Stoke 2.4.2.2.2. Cơ chế keo tụ - tạo bông Đối với hệ phân tán có diện tích bề mặt riêng lớn (bụi trong không khí, bùn, phù sa trong nước...) các hạt luôn có xu hướng co cụm lại tạo hạt lớn hơn để giảm năng lượng bề mặt (tương tự hiện tượng giọt nước, giọt thủy ngân luôn tự vo tròn để giảm diện tích bề mặt). Hiện tượng các hạt keo cùng loại có thể hút nhau tạo thành những tập hợp hạt có kích thước và khối lượng đủ lớn để có thể lắng xuống do trọng lực trong thời gian đủ ngắn được gọi là hiện tượng keo tụ. Hiện tượng này xảy ra khi thế được triệt tiêu. Hiện tượng keo tụ có tính thuận nghịch nghĩa là hạt keo đã keo tụ lại có thể tích điện trở lại và trở nên bền (xem phần tiếp theo). Các hoá chất gây keo tụ thường là các loại muối vô cơ và được gọi là chất keo tụ. Một cách khác làm các hạt keo co cụm thành bông cặn lớn dễ lắng là dùng các tác nhân thích hợp “khâu” chúng lại thành các hạt lớn hơn đủ lớn, nặng để lắng. Hiện tượng này được gọi là hiện tượng tạo bông được thực hiện nhờ những phân tử các chất cao phân tử tan trong nước và có ái lực tốt với các hạt keo hoặc các hạt cặn nhỏ. Khác với keo tụ có tính thuận nghịch, các chất có khả năng tạo bông được gọi là các chất tạo bông hay trợ keo tụ, quá trình tạo bông là bất thuận nghịch. Như vậy, để kết tủa hệ keo có thể sử dụng các cách sau đây: 1. Phá tính bền của hệ keo (do lực đẩy tĩnh điện) bằng cách thu hẹp lớp điện kép tới mức thế = 0, khi đó lực đẩy tĩnh điện hạt – hạt bằng không, tạo điều kiện cho các hạt keo hút nhau bằng các lực bề mặt tạo hạt lớn hơn dễ kết tủa. Cách này có thể thực hiện khi cho hạt keo hấp phụ đủ điện tích trái dấu để trung hoà điện tích hạt keo. Điện tích trái dấu này thường là các ion kim loại đa hoá trị. 15
  16. 2. Tạo điều kiện cho các hạt keo va chạm với các bông kết tủa của chính chất keo tụ nhờ hiện tượng hấp phụ bám dính (hiệu ứng quét). 3. Dùng những chất cao phân tử – trợ keo tụ để hấp phụ “khâu” các hạt nhỏ lại với nhau tạo hạt kích thước lớn (gọi là bông hay bông cặn) dễ lắng. Việc xử lý nước bằng phèn nhôm, FeCl 3 và PAA nhằm thực hiện đồng thời một, hai hay cả ba giải pháp trên.   100 Al3+ Ca2+ Na+ 50 100 C12H25N+H3 50 100 Al3+ 50 100 Poplyacrylamit 50 0 10–8 10–6 10–4 10–2 100 Nång ®é keo tô – t¹ o b«ng (mol/L) 16
  17. Hình 4.2- Các đường keo tụ đối với bốn loại chất keo tụ Lôi kéo hạt keo bằng bông cặn Hình 4.3- Mô hình quá trình keo tụ tạo bông (a) Sự đẩy giữa các hạt keo cùng dấu; (b) Hiện tượng co lớp điện kép và sự hút nhau giữa các hạt keo bị trung hoà về điện; (c) Hiện tượng tạo bông nhờ PAA: các hạt keo âm bị phân tử PAA “khâu lại” thành bông lớn. 2.4.2.2.3.Chất keo tụ và các yếu tố ảnh hưởng a. Phèn nhôm Al2(SO4)3.nH2O (n = 14 18) Đây là chất keo tụ phổ biến nhất, đặc biệt là ở Việt Nam. Khi dùng phèn nhôm làm chất keo tụ sẽ xảy ra phản ứng thuỷ phân: Al2(SO4)3 + 6H2O 2Al(OH)3 + 6H+ + 3SO42 (5) 17
  18. Hình 4.4- ảnh hưởng của pH và liều lượng đến khả năng gây keo tụ của phèn nhôm Nếu trong nước thiếu độ kiềm (ĐK), pH sẽ giảm; nếu đủ ĐK sẽ có phản ứng: Al2(SO4)3 + 3Ca(HCO3)2 2Al(OH)3 + 3CaSO4 + 6CO2 (6) Theo phương trình (6) cứ 342 mg Al2(SO4)3 khan, hàm lượng 100% cần 6 mdl ĐK (HCO3–). Nếu ĐK trong nước không đủ thì cần bổ sung vôi hoặc sôđa để bù, nếu không pH sẽ hạ. Lượng kiềm cần (K) tính theo công thức: 6 K = F 324 – ĐK + 1 = 0,0175F – ĐK + 1 (7) Trong đó: K = lượng kiềm cần thêm, mđl/L ; F = lượng phèn, mg/L; ĐK = độ kiềm của nước, mđl/L. Để chuyển đổi ra đơn vị g/L, đối với vôi K sau khi tính theo pt. (7) cần nhân với 37; đối với sôđa nhân với 58. Khi sử dụng phèn nhôm hay bất kì chất keo tụ nào khác cần lưu ý nồng độ và vùng pH tối ưu (hình 4.4), pH hiệu quả tốt nhất với muối nhôm là khoảng 5,5 7,0. Có thể dùng phèn kép KAl(SO4)2.12H2O để thay phèn nhôm, mọi quy luật tương tự phèn nhôm song giá đắt hơn nhiều. Không dùng NH 4Al(SO4)2 trong xử lí nước cấp vì gây nhiễm amôni. 18
  19. ở các nước công nghiệp người ta có đòi hỏi rất cao về độ trong của nước lọc. Nếu đo bằng độ đục kế thì độ đục nước lọc phải nhỏ hơn hoặc bằng 0,1 đến 3 NTU (AWWA Task Group 225 M). Thậm chí khi nước có độ đục rất thấp 0,1 NTU vẫn có rất nhiều cặn không thể thấy bằng mắt thường. Nó có thể là những hạt cặn rất tinh chưa bị tác động của chất keo tụ hoặc bản thân những mảnh vỡ nhỏ của các bông kết tủa chất keo tụ không thể lắng – lọc được. Người ta đã xác định được ứng với SS = 0,1 mg/L có thể có tới 200 triệu hạt cỡ 0,1 m là các mảnh của bông cặn Al(OH)3 có = 1,01. Tuy nhiên đây là đại lượng không nguy hiểm vì chỉ ứng với hàm lượng Al3+ bằng 0,06 mg/L (theo QĐ BYT 1329/2002, hàm lượng Al 0,2 mg/L). Ở Việt Nam phèn nhôm được sản xuất ở các nhà máy hoá chất Việt Trì, Tân Bình ... và có hàm lượng nhôm quy về Al 2O3 là khoảng 14% (đối với hoá chất tinh khiết là 15,1%). Do độ ngậm nước rất thay đổi nên cần định lượng hàm lượng nhôm khi sử dụng. b. Muối sắt Fe2(SO4)3.H2O hoặc FeCl3.nH2O (n = 1 6) Muối sắt chưa phổ biến ở Việt Nam nhưng rất phổ biến ở các nước công nghiệp. Hoá học của muối sắt tương tự như muối nhôm nghĩa là khi thuỷ phân sẽ tạo axit, vì vậy cần đủ độ kiềm để giữ pH không đổi. Fe2(SO4)3 + 3Ca(HCO3)2 2Fe(OH)3 + 3CaSO4 + 6CO2 (8) So với phèn nhôm muối sắt có ưu thế là vùng pH tối ưu rộng hơn, từ 5 đến 9, bông cặn bền hơn và nặng hơn nên lắng tốt hơn, lượng sắt dư thấp hơn. c. Các polime nhôm, sắt Sự hình thành các hạt polyme nhôm trong dung dịch được làm rõ từ những năm 1980. Đây là cơ sở khoa học để sản xuất PAC cũng như ứng dụng PAC. Hoá học của quá trình keo tụ: Thông thường khi keo tụ chúng ta hay dùng muối clorua hoặc sulphát của Al(III) hoặc Fe(III). Khi đó, do phân li và thuỷ phân ta có các hạt trong nước: Al3+, Al(OH)2+, Al(OH)2+, Al(OH) phân tử và Al(OH) 4-, ba hạt polime: Al2(OH)24+, Al3(OH)45+ và Al13O4(OH)247+ và Al(OH)3 rắn. Trong đó Al13O4(OH)247+ gọi tắt là Al13 là tác nhân gây keo tụ chính và tốt nhất. Với Fe(III) ta có các hạt: Fe3+, Fe(OH)2+, Fe(OH)2+, Fe(OH) phân tử và Fe(OH)4-, polime: Fe2(OH)24+, Fe3(OH)45+ và Fe(OH)3 rắn. Các dạng polime Fex(OH)y(3x-y)+ hoặc FexOy(OH)x+r(2x-2y-r)+ Trong công nghệ xử lí nước thông thường, nhất là nước tự nhiên với pH xung quanh 7 quá trình thuỷ phân như đã nêu xảy ra rất nhanh, tính bằng micro giây, khi đó hạt Al 3+ nhanh chóng chuyển thành các hạt polime rồi hyđroxit nhôm trong thời gian nhỏ hơn giây mà không kịp thực hiện chức năng 19
  20. của chất keo tụ là trung hoà điện tích trái dấu của các hạt cặn lơ lửng cần xử lí để làm chúng keo tụ. Khi sử dụng PAC quá trình hoà tan sẽ tạo các hạt polime Al 13, với điện tích vượt trội (7+), các hạt polime này trung hoà điện tích hạt keo và gây keo tụ rất mạnh, ngoài ra tốc độ thuỷ phân của chúng cũng chậm hơn Al 3+ rất nhiều, điều này tăng thời gian tồn tại của chúng trong nước nghĩa là tăng khả năng tác dụng của chúng lên các hạt keo cần xử lí, giảm thiểu chi phí hoá chất. Ngoài ra, vùng pH hoạt động của PAC cũng lớn gấp hơn 2 lần so với phèn, điều này làm cho việc keo tụ bằng PAC dễ áp dụng hơn. Hơn nữa, do kích thước hạt polime lớn hơn nhiều so với Al 3+ (cỡ 2 nm so với nhỏ hơn 0,1 nm) nên bông cặn hình thành cũng to và chắc hơn, thuận lợi cho quá trình lắng tiếp theo. d. Chất trợ keo tụ - tạo bông Có bốn nhóm chất trợ keo tụ: các chất hiệu chỉnh pH, dung dịch axit silixic hoạt tính, bột đất sét và polime. Các chất hiệu chỉnh pH Như đã nêu quá trình keo tụ thường kèm theo sự tiêu thụ ĐK, nếu độ kiềm của nước nguồn thấp gây giảm pH. Chất hiệu chỉnh pH thường là vôi. Vôi sống là CaO, khi dùng phải tôi nghĩa là hoà vào nước để tạo Ca(OH) 2. Do độ tan của vôi thấp (trong khoảng 20 30 oC, độ tan của Ca(OH)2 bằng 1,65 1,53 g/L) vôi thường được sử dụng dưới dạng huyền phù Ca(OH)2. Sử dụng vôi ngoài khả năng ổn định pH tăng hiệu quả keo tụ bằng phèn còn tăng cường xử lí các axit humic, độ cứng. Axit silixic hoạt tính (AS) AS thường được điều chế tại chỗ bằng cách trung hoà thuỷ tinh lỏng Na2SiO3 bằng axit ở những điều kiện cụ thể. Axit silixic tạo thành thực chất là polime vô cơ, mang điện tích âm. Khi vào nước các phân tử AS âm điện nhanh chóng hút các hạt bông cặn nhỏ mang điện dương của kết tủa hyđroxit nhôm hoặc sắt tạo bông lớn. Bột đất sét Bột sét tác dụng tương tự AS do chúng mang điện tích âm, hơn nữa chúng còn có khả năng, tuy yếu, hấp phụ một phần các chất hữu cơ gây màu, bông cặn tạo thành cũng nặng hơn. Cũng như AS, bột sét ở liều lượng thích hợp dùng tốt khi phối hợp với phèn nhôm và muối sắt. Các chất tạo bông hữu cơ - cao phân tử Đây là nhóm chất có tác dụng tạo bông tốt nhất. Các polyme dùng làm chất tạo bông cho quá trình xử lý nước phải đáp ứng các yêu cầu sau: - Tan tốt trong nước; - Không độc; 20
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2