Đề thi chọn học sinh giỏi giải toán trên máy tính casino- Đề số 5
lượt xem 7
download
Đề bồi dưỡng học sinh giỏi toán trên máy tính casino được biên soạn với mục đích giúp học sinh cũng cố, hệ thống kiến thức. Chúc các bạn thi tốt.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi chọn học sinh giỏi giải toán trên máy tính casino- Đề số 5
- www.vnmath.com ĐỀ THI CHỌN HỌC SINH GIỎI GIẢI TOÁN TRÊN MÁY TÍNH CASIO ĐỀ SỐ 5 Qui định: Học sinh trình bày vắn tắt cách giải, công thức áp dụng, kết quả tính toán vào ô trống liền kề bài toán. Các kết quả tính gần đúng, nếu không có chỉ định cụ thể, được ngầm định chính xác tới 4 chữ số phần thập phân sau dấu phẩy 3 x +3 x Bài 1. ( 10 điểm) Cho hàm số : f ( x) = . Tính tổng: log3 x + 12 2 S = f(cot21) + f(cot22) + f(cot23) + … + f(cot220) Bài 2. (10điểm) Tính gần đúng nghiệm (theo đơn vị độ, phút, giây) của phương trình: sinx.sin2x + sin3x = 6cos3x Bài 3. (10 điểm) Tính gần đúng giá trị lớn nhất và nhỏ nhất của hàm số: 2cos2 x + ( x2 + 1).sinx + 3 f(x) = trên [0;1] x2 − x + 1 Bài 4. (20 điểm) a) Tìm x biết : A13 + C23 − Px+1 − x x− 2 − (2x + 3)6 = 33772562 với Pn là số hoán vị của n x x phần tử, Ank là số chỉnh hợp chập k của n phần tử, Cnk là số tổ hợp chập k của n phần tử. 1 b) Tìm hệ số của các số hạng chứa x8 và x19 trong khai triển nhị thức Niutơn của ( 3 + x5 )n , biết x n+1 rằng: C16 − C15 = 7(n + 3) n ( n: nguyên dương, x > 0) Bài 5. ( 30điểm) Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA vuông góc với đáy và AB = 3,54 cm; AD = 4,35 cm; SA = 5,22 cm. Lấy các điểm B’, D’ theo thứ tự thuộc SB, SD sao cho AB’ vuông góc với SB, AD’ vuông góc với SD. Mặt phẳng (AB’D’) cắt SC tại C’. Tính thể tích khối chóp S.AB’C’D’ Bài 6. ( 10điểm) Tính giá trị của biểu thức: N= 20 + 12 20122001 + 20 + 12 20122002 + ... + 20 + 12 20122008 + 20 + 12 20122009 π Bài 7.( 10điểm) Tính gần đúng đạo hàm cấp 30 của hàm số: f(x) = sin2x tại x = 201209 5 ---Hết---
- www.vnmath.com ĐÁP ÁN (Dành cho máy FX- 570ES) www.vnmath.com Bài 1. ( Chế độ: Rad) 2 � 1 � 1 2 � � X) � tan( � 3 ( ) +3 tan( X) Cách 1: X = X + 1: A = A + 2 � � 1 �� � 2 � � 3� log � �+ � 12 � � tan( X) �� � ��� � � � CALC 0→ X, 0 → A = = …cho đến khi X nhận giá trị 20 thì dừng, đọc kết quả ở biến B Kết quả: S ≈ 160,0595 � � 1 � 2 � � 1 � � � X =20 � 3 ( )2 + 3 � X ) � � tan( Cách 2: Khai báo : � tan( X) 2 � X =1 �� � 1 �� 2 � � � �log3 � � � +12 � � �� �tan( X) � � � � �� � � �� � � � Bài 2. Biến đổi phương trình: sinx.sin2x + sin3x = 6cos3x thành: t anx −1,732050808 x −600 + k.1800 4tan3x- 2tan2x – 3tanx + 6 = 0 + anx 2 t x 63026'6'' k.1800 t anx 1,732050808 x 600 + k.1800 Bài 3. ( RAD, TABLE) 2cos2 X + ( X2 + 1).sinX + 3 Nhập hàm: f ( X) = = X2 − X + 1 Start? 0 = End? 1 = Step? 0,04 = Suy ra min f ( x) = f (0) = 5 [0;1] AC Start? 0,44 = End? 0,56 = Step? 0,005 = AC Start? 0,48 = End? 0,5 = Step? 0,001 = Suy ra max f ( x) = 6,7389 [0;1] Bài 4. a) Điều kiện: n nguyên dương, n 13. X− 2 Khai báo : X = X + 1: A13 + C2 X+ 1 − PX+ 1 − X − (2X + 3) − 33772562 X X 6 CALC 0→ A = = … cho đến khi biểu thức bằng 0, ứng với X = 11
- www.vnmath.com b) Điều kiện: n nguyên dương, n 15. * Khai báo: Y = Y + 1 : C16+ 1 − C15 − 7(Y + 3) Y Y CALC 0→ Y = = … cho đến khi biểu thức bằng 0, ứng với Y =12 = n 12 5 12 11k 1 − 36+ * ( 3 + x ) = �C12 ( x ) ( x 2 ) = �C12 .x 5 12 k − 3 12− k k k 2 x k= 0 k= 0 11k 44.2 •-36+ =8� k = = 8 .Hệ số của x8 là: C12 = 495 8 2 11 11k 55.2 •-36+ = 19 � k = = 10 .Hệ số của x19 là: C12 = 66 10 2 11 Bài 5. +Chứng minh và tính toán: * Đặt: AB = a,AD = b, SA = c S * Dựng C’:Trong (ABCD), gọi: O = AC∩ BD Trong (SBD), gọi: I = SO∩ B’D’ C' B' Trong (SAC): AI ∩ SC = C’ D' I * BC ⊥AB, AB ⊥(ABCD) ⇒ SA ⊥ BC ⇒BC ⊥ (SAB) c ⇒BC⊥ AB’, mà: AB’⊥SB⇒ AB’ ⊥(SBC)⇒ AB’⊥SC (1) Tương tự AD’⊥ SC (2) a B A (1) & (2) ⇒SC (AB’C’D’) ⇒ SC⊥ AC’ b VS. AB' C ' S ' S ' VS. AC' D' S ' S ' B C C D * = . ; = . O VS. ABC S S B C VS. ACD S S C D D C 1 1 * VS.ABC= SA. SABC = abc=VS.ACD 3 6 S . AB A ac * ∆SAB vuông tại A có: SB = S 2 + AB2 = a2 + c2 và SA.AB=Ab’.SB � AB ' = A S B = a + c2 2 a2c2 c4 c2 ⇒ SB’ = S 2 − AB '2 = c2 − A = = a2 + c2 a2 + c2 a2 + c2 c2 c2 *Tương tự: SD’ = b2 + c2 ; SC’ = a2 + b2 + c2 Do đó: S ' S ' B C abc5 SC ' SD ' abc5 •VS.AB’C’ = VS.ABC. . = •VS.AC’D’ = VS.ACD. . = B C 6(a2 + c2 )(a2 + b2 + c2 ) S S SC SD 6(a2 + b2 + c2 )(b2 + c2 ) abc5 � 1 1 � abc5 (a2 + b2 + 2c2 ) Vậy: VS.AB’C’D’= VS.AB’C’ +VS.AC’D’ = + 2 2� = 6(a2 + b2 + c2 ) � 2 + c2 b + c � 6( a2 + b2 + c2 )( a2 + c2 )( b2 + c2 ) �a A.BC ( A + B + 2C ) 5 2 2 2 + Khai báo: 6( A + B2 + C2 )( A2 + C2 )( B2 + C2 ) 2 CALC 3,54 → A; 4,35 → B;5,22 → C +Kết quả: VS.AB’C’D’ ≈ 7,9297 (cm3) Bài 6. Khai báo: A = A – 1: B = 20 + 12 A + B CALC 20122010 → A, 0 → B = = … cho đến khi A = 20122001 thì dừng, đọc kết quả ở B Kết quả: 2088,5103
- www.vnmath.com π Bài 7. f’(x) = 2sinx.cosx = sin2x; f’’(x) = 2cos2x = 2sin(2x + ) 2 π π π f’’’(x) = 22.cos(2x + ) = 22.sin(2x + 2. ); …f(30) (x) = 229.sin(2x + 29. ) 2 2 2 π π π ⇒ f(30) (201209 ) = 229.sin(2.201209 + 29. ) ≈ 165902235,9 5 5 2
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi chọn Học sinh giỏi cấp Tỉnh năm 2013 - 2014 môn Toán lớp 11 - Sở Giáo dục Đào tạo Nghệ An
1 p | 599 | 46
-
Đề thi chọn Học sinh giỏi cấp Tỉnh THPT năm hoc 2011 - 2012 môn Toán lớp 10 - Sở GD - ĐT Hà Tĩnh
1 p | 268 | 23
-
Đề thi chọn học sinh giỏi cấp trường môn Sinh học khối 8 năm học 2013 - 2014
4 p | 241 | 23
-
Đề thi chọn học sinh giỏi cấp trường môn Sinh học khối 6 năm học 2013 - 2014
5 p | 426 | 21
-
Đề thi chọn học sinh giỏi cấp trường môn Hóa khối 9 năm học 2013 - 2014
5 p | 354 | 17
-
Đề thi chọn học sinh giỏi cấp trường môn Địa khối 6,7 năm học 2013 - 2014 (Chính)
4 p | 370 | 16
-
Đề thi chọn học sinh giỏi cấp trường môn Địa khối 8,9 năm học 2013 - 2014 (Chính)
4 p | 202 | 15
-
Đề thi chọn học sinh giỏi cấp trường môn Sinh học khối 7 năm học 2013 - 2014
4 p | 207 | 11
-
Đề thi chọn học sinh giỏi cấp trường môn Địa khối 8,9 năm học 2013 - 2014 (Phụ)
4 p | 165 | 9
-
Đề thi chọn học sinh giỏi cấp trường môn Địa khối 6,7 năm học 2013 - 2014 (Phụ)
4 p | 130 | 5
-
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm 2022-2023 - Sở GD&ĐT Vĩnh Long
2 p | 24 | 3
-
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm 2021-2022 có đáp án - Sở GD&ĐT Bắc Ninh
30 p | 22 | 3
-
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm 2021-2022 - Sở GD&ĐT Lạng Sơn
6 p | 31 | 3
-
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm 2022-2023 (Vòng 1) - Sở GD&ĐT Long An
2 p | 22 | 3
-
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm 2022-2023 - Sở Giáo dục, Khoa học và Công nghệ
2 p | 28 | 3
-
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm 2022-2023 - Sở GD&ĐT Thái Nguyên
1 p | 23 | 3
-
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán (Chuyên) lớp 12 năm 2021-2022 có đáp án - Sở GD&ĐT Lạng Sơn
6 p | 21 | 3
-
Đề thi chọn học sinh giỏi môn các môn tự nhiên lớp 12 năm học 2021-2022 - Sở GD&ĐT Hà Nội
9 p | 20 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn