intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi chọn học sinh giỏi lớp 12 THPT năm học 2014-2015 môn Toán - Sở Giáo dục và Đào tạo Vĩnh Phúc

Chia sẻ: Cau Le | Ngày: | Loại File: PDF | Số trang:1

127
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Mời các bạn và quý thầy cô cùng tham khảo "Đề thi chọn học sinh giỏi lớp 12 THPT năm học 2014-2015 môn Toán - Sở Giáo dục và Đào tạo Vĩnh Phúc" sau đây nhằm giúp các em củng cố kiến thức của mình và thầy cô có thêm kinh nghiệm trong việc ra đề thi. Chúc các em thành công và đạt điểm cao trong kỳ thi sắp tới.

Chủ đề:
Lưu

Nội dung Text: Đề thi chọn học sinh giỏi lớp 12 THPT năm học 2014-2015 môn Toán - Sở Giáo dục và Đào tạo Vĩnh Phúc

  1. SỞ GD&ĐT VĨNH PHÚC KÌ THI CHỌN HSG LỚP 12 THPT NĂM HỌC 2014-2015 ĐỀ THI MÔN: TOÁN - THPT ĐỀ CHÍNH THỨC Thời gian: 180 phút, không kể thời gian giao đề Câu 1 (2,5 điểm). a) Tìm tham số m để hàm số y  x3  3mx 2  3  m  1 x  2 nghịch biến trên một đoạn có độ dài lớn hơn 4 . b) Chứng minh rằng với mọi a , đường thẳng d : y  x  a luôn cắt đồ thị hàm số x 1 y  H  tại hai điểm phân pbiệt A, B . Gọi k1 , k2 lần lượt là hệ số góc của các tiếp tuyến 2x 1 với  H  tại A và B . Tìm a để tổng k1  k2 đạt giá trị lớn nhất. Câu 2 (2,0 điểm).  a) Giải phương trình: 2 cos 2 x  2 3 sin x cos x  1  3 sin x  3 cos x .  b) Có bao nhiêu số tự nhiên có ba chữ số abc thỏa mãn điều kiện a  b  c . Câu 3 (1,5 điểm).  x3  y 3  3x 2  6 y 2  6 x  15 y  10 Giải hệ phương trình:  2  x, y    y x  3   y  6  x  10  y  4 x Câu 4 (1,5 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC có trung điểm của cạnh BC là điểm M  3; 1 , đường thẳng chứa đường cao kẻ từ đỉnh B đi qua điểm E  1; 3 và đường thẳng chứa cạnh AC đi qua điểm F 1;3 . Tìm tọa độ các đỉnh của tam giác ABC , biết rằng điểm đối xứng của đỉnh A qua tâm đường tròn ngoại tiếp tam giác ABC là điểm D  4; 2  . Câu 5 (1,5 điểm). Cho hình chóp S . ABCD thỏa mãn SA  5, SB  SC  SD  AB  BC  CD  DA  3 . Gọi M là trung điểm của cạnh BC . Tính thể tích khối chóp S .MCD và khoảng cách giữa hai đường thẳng SM , CD . Câu 6 (1,0 điểm). Cho các số thực a, b, c  1 thỏa mãn a  b  c  6 . Chứng minh rằng: a 2  2  b 2  2  c 2  2   216 .
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2