Đề thi học kì 2 môn Toán lớp 9 năm 2022-2023 có đáp án - Trường THCS TT Cát Thành
lượt xem 2
download
Cùng tham khảo “Đề thi học kì 2 môn Toán lớp 9 năm 2022-2023 có đáp án - Trường THCS TT Cát Thành” giúp các em ôn tập lại các kiến thức đã học, đánh giá năng lực làm bài của mình và chuẩn bị cho kì thi được tốt hơn với số điểm cao như mong muốn. Chúc các em thi tốt!
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi học kì 2 môn Toán lớp 9 năm 2022-2023 có đáp án - Trường THCS TT Cát Thành
- PHÒNG GD&ĐT TRỰC NINH TRƯỜNG THCS TT CÁT THÀNH ĐỀ THI HỌC KỲ II NĂM HỌC 2022-2023 Môn: TOÁN (Thời gian làm bài 120 phút) Đề thi gồm 01 trang. PHẦN I. TRẮC NGHIỆM (2,0 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước phương án đó vào bài làm. Câu 1. Điều kiện để biểu thức A = x + 2 + 2 x − 2015 có nghĩa là A. x −2 . B. x > −2 . C. x −2. . D. x < −2 Câu 2. Phương trình x − 3 x − 2014m = 0 có hai nghiệm trái dấu khi và chỉ khi 2 A. m 0 B. m < 0 . C.. m > 0. D. m 0. Câu 3. Gọi x1 , x 2 là nghiệm của phương trình x 2 − 2 x − 1 = 0 .Giá trị của x12 + x2 2 bằng A. −1 . B. 2 . C. 4 . D. 6 . Câu 4. Trong mặt phẳng Oxy, parabol : y = −2 x 2 có điểm chung với đường thẳng nào? A. y = 6 . B. x = 2 . C. y = 2 x + 3 . D. y = −2 x + 3 . Câu 5. Đường thẳng (d): y = 2 x − 6 cắt trục tung tại điểm A. M(0; -6). B.N(3; 0) C. P(0; 3). D. Q(-6;0) Câu 6: Cho đường tròn (O;R) nội tiếp hình vuông ABCD, khi đó diện tích hình vuông ABCD bằng A. 2R2. B. R2. C. 2 2 R2. D. 4R2. ᄉ Câu 7: Cho tam giác ABC vuông tại A, biết AC = 3, BC = 5, khi đó tan B có giá trị bằng 3 3 4 5 A. . B. . C. . D. . 4 5 3 3 Câu 8: Mặt cầu với bán kính 3cm có diện tích là A. 4π (cm2). B. 36π (cm2). C. 12π (cm2). D. 36π 2 (cm2). Phần II. Tự luận (8,0 điểm) 1 1 x2 + x + 1 x2 Câu 1. (1,5 điểm). Cho biểu thức A = + : + 2 với x > 0 , x 1 . x −1 x +1 x3 − 1 x −x 1) Rút gọn A. 2 2) Chứng minh với x = 3 − 2 2 thì A = . 2 Câu 2.(1,5 điểm) Cho phương trình: x 2 − 2mx + m 2 − 2m + 3 = 0 (1), với m là tham số. 1) Giải phương trình (1) với m = 3. 2) Tìm tất cả các giá trị của m để (1) có hai nghiệm x1 , x2 thỏa mãn 2( x1 + x2 ) = 5( x1 + x2 ) . 2 2 x −1 + 2 y = 5 Câu 3. (1,0 điểm) Giải hệ phương trình . 2 x − 1 − 3 y = −4 Câu 4. (3,0 điểm) Cho ba điểm A,B,C phân biệt thẳng hàng theo thứ tự đó. Vẽ đường tròn tâm O bất kỳ đi qua hai điểm B, C (O không thuộc BC). Gọi E, F là các tiếp điểm của các tiếp tuyến kẻ từ A tới đường tròn (O) . Gọi M là trung điểm BC. 1) Chứng minh các điểm A, E, O, M, F cùng nằm trên một đường tròn. 2) Gọi H là giao điểm của hai đường thẳng AO và EF. Chứng minh AH . AO = AB. AC . AK AK 3) Gọi K là giao điểm của FE và BC. Chứng minh + = 2. AB AC Câu 5. (1,0 điểm) Giải phương trình: 6 x2 + 1 = 2 x − 3 + x2 . ………………………HẾT………………………..
- PHÒNG GD&ĐT TRỰC NINH TRƯỜNG THCS TT CÁT THÀNH HƯỚNG DẪN CHẤM Hướng dẫn chấm gồm 03 trang. I. Hướng dẫn chung: phần tự luận 1) Nếu thí sinh giải theo cách khác mà đúng và đủ các bước thì vẫn cho điểm tối đa. Điểm toàn bài là tổng điểm của các ý, các câu, tính đến 0,25 điểm và không làm tròn. 2) Câu 1. + Ý 1) Nếu thí sinh biến đổi đồng thời 2 biểu thức thì chấm điểm theo từng biểu thức trong ngoặc. + Ý 2) Nếu thí sinh khai căn đúng mà không viết dấu giá trị tuyệt đối vẫn cho điểm tối đa. 3) Câu 2. Ý 2) Nếu thí sinh không tìm điều kiện để phương trình có hai nghiệm phân biệt hoặc tìm sai điều kiện mà áp dụng hệ thức Vi – et và biến đổi đúng thì trừ 50% số điểm làm được. 4) Câu 4. Nếu thí sinh vẽ hình chưa chính xác hoặc quên vẽ hình nhưng vẫn chứng minh đúng theo yêu cầu đề bài thì trừ 50% số điểm làm được. II. Đáp án và thang điểm: Phần I – Trắc nghiệm (2,0 điểm) Mỗi câu đúng cho 0,25 điểm. Câu 1 2 3 4 5 6 7 8 Đáp án C C D B A D A B Phần II – Tự luận( 8,0 điểm) Câu Ý Nội dung trình bày Điểm 1 1 x −1 + x + 1 2 x + Với x > 0 , x 1 . ta có + = = 0,25 x +1 x −1 ( x + 1)( x − 1) x − 1 1) (1,0 đ) + Bến đổi x2 + x + 1 x2 x2 + x + 1 x2 0,25 + 2 = + x3 − 1 x − x ( x − 1)( x 2 + x + 1) x( x − 1) 1 x x +1 = + = x −1 x −1 x −1 0,25 2 x x +1 2 x +Khi đó A = : = . 0,25 x −1 x −1 x +1 + Ta thấy x = 3 − 2 2 thỏa mãn điều kiện x > 0 , x 1 . Thay x = 3 − 2 2 vào biểu 1. 2) (1,5đ) (0,5 đ) 2 x 2 x 2 3 − 2 2 2 ( 2 − 1) 2 . 0,25 thức ta được A = = = x +1 x +1 4−2 2 4−2 2 2 2 −1 2( 2 − 1) 2 (đpcm). = = = 0,25 2 2( 2 − 1) 2 2( 2 − 1) 2 Với m = 3 phương trình (1) trở thành: x 2 − 6 x + 6 = 0 (*) 0,25 1) ∆ ' = (−3) 2 − 6 = 3 . 2. (0,5 đ) (1,5đ) Phương trình (*) có các nghiệm x1 = 3 + 3; x2 = 3 − 3. Kết luận: Khi m = 3 thì (1) có hai nghiệm x1 = 3 + 3; x2 = 3 − 3. 0,25 Ta có ∆ ' = m − (m − 2m + 3) = m − m + 2m − 3 = 2m − 3 . 2 2 2 2 3 0,25 Phương trình (1) có hai nghiệm x1 , x2 ∆ − ۳ 0 ' 2m 3 0 m . 2
- Ta có 2( x1 + x2 ) = 5( x1 + x2 ) 2 2 2( x1 + x2 ) 2 − 4 x1 x2 − 5( x1 + x2 ) = 0. 0,25 Theo hệ thức Vi – et ta có x1 + x2 = 2m; x1 x2 = m − 2m + 3. 2 0,25 2) Do đó 2( x1 + x2 ) − 4 x1 x2 − 5( x1 + x2 ) = 0 2 (1,0 đ) 2.(2m) 2 − 4(m 2 − 2m + 3) − 5.(2m) = 0 0,25 m=2 2m − m − 6 = 0 2 −3 m= 2 3 Kết hợp với điều kiện m , ta được m = 2 là giá trị cần tìm. 2 ĐKXĐ: x 1; y 0. 0,25 u = x −1 u + 2v = 5 0,25 Đặt ĐK: u 0; v 0 . Hệ PT trở thành . v= y 2u − 3v = −4 3. 0,25 u =1 x −1 = 1 (1,0 đ) Giải hệ phương trình ta được v=2 y =2 x=2 . 0,25 y=4 Kết hợp với ĐKXĐ, hệ phương trình có nghiệm là ( x; y ) = (2; 4) . Hình vẽ F M C B K A O H 4. (3,0đ) E + Ta có OE AE (tính chất tiếp tuyến) góc OEA = 900 E thuộc đường tròn 1) đường kính AO (1) 0,25 (1,25) + Ta có OF AE (tính chất tiếp tuyến) góc OFA = 900 F thuộc đường tròn đường kính AO (2) 0,25 + Ta có M là trung điểm của dây cung BC không đi qua tâm đường tròn (O) OM BC (quan hệ vuông góc giữa đường kính và dây) góc OMA =900 M thuộc đường tròn đường kính AO (3) 0,25 Từ (1), (2), (3) các điểm A, E, O, M, F cùng nằm trên một đường tròn đường 0,50 kính AO Ta có OE = OF (đều là bán kính của (O)) nên O thuộc trung trực của EF.
- Ta có AE = AF (tính chất tiếp tuyến) nên A thuộc trung trực của EF. 2) AO là trung trực của EF (1,25) AO ⊥ EF tại H. 0,25 Ta có ∆OEA vuông tại E, EH là đường cao AE 2 = AH . AO . (4) 0,25 + Xét ∆ABE và ∆AEC chỉ ra góc ACE = góc AEB, góc CAE chung. AB AE ∆ACE đồng dạng với ∆AEB (g.g) = AB. AC = AE 2 . (5) 0,50 AE AC + Từ (4) và (5) suy ra AH . AO = AB. AC (vì cùng bằng AE2). 0,25 3) AK AK AB + AC AB + AB + BC 2( AB + BM ) + Biến đổi + = AK = AK . = AK . (0,5 đ) AB AC AB. AC AB. AC AB. AC 2 AM 0,25 = AK . AB. AC AK AK + Chỉ ra AK.AM = AH. AO ; AB . AC = AH. AO và kết luận + = 2. AB AC 0,25 Giải phương trình: 6 x 2 + 1 = 2 x − 3 + x 2 . (1) 3 ĐKXĐ: x . 0,25 2 PT(1) ( 6 x 2 + 1 − 5) − ( 2 x − 3 − 1) − ( x 2 − 4) = 0 0,25 6 x 2 − 24 2x − 4 − − ( x − 2)( x + 2) = 0 6x2 + 1 + 5 2x − 3 +1 3 (Vì 6 x 2 + 1 + 5 0; 2 x − 3 + 1 0 ∀x ) 2 5. 0,25 6( x + 2) 2 (1,0 đ) ( x − 2) − − ( x + 2) = 0 6x2 + 1 + 5 2x − 3 +1 x=2 6( x + 2) 2 . − − ( x + 2) = 0 (2) 6x +1 + 5 2 2x − 3 +1 6 2 Phương trình (2) ( x + 2) −1 − =0. 6x +1 + 52 2x − 3 +1 3 6 Ta thấy x + 2 > 0, 6 x + 1 + 5 > 6 ∀x − 1 < 0. 2 2 6 x2 + 1 + 5 0,25 6 2 3 Vậy ( x + 2) −1 − < 0 ∀x . 6x +1 + 5 2 2x − 3 +1 2 Suy ra PT(2) vô nghiệm. KL: Phương trình đã cho có nghiệm duy nhất x = 2. …………………………HẾT………………………
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi học kì 2 môn Hóa lớp 8 năm 2017-2018 có đáp án - Trường THCS Vĩnh Thịnh
3 p | 393 | 34
-
Đề thi học kì 2 môn Lịch Sử lớp 6 năm 2017-2018 có đáp án - Trường THCS Vĩnh Thịnh
4 p | 451 | 21
-
Đề thi học kì 2 môn GDCD lớp 7 năm 2017-2018 có đáp án
2 p | 301 | 19
-
Đề thi học kì 2 môn GDCD lớp 6 năm 2017-2018 có đáp án - Trường THCS Khai Quang
2 p | 510 | 17
-
Đề thi học kì 2 môn Ngữ Văn lớp 8 năm 2018 có đáp án - Đề số 2
9 p | 965 | 12
-
Đề thi học kì 2 môn GDCD lớp 9 năm 2017-2018 có đáp án - Sở GD&ĐT Thanh Hóa
3 p | 410 | 10
-
Đề thi học kì 2 môn Lịch Sử lớp 8 năm 2017-2018 có đáp án - Trường THCS Khai Quang
3 p | 277 | 9
-
Đề thi học kì 2 môn GDCD lớp 8 năm 2017-2018 có đáp án - Trường THCS Bình An
2 p | 693 | 9
-
Đề thi học kì 2 môn Toán lớp 2 năm 2019-2020 có đáp án - Trường Tiểu học Phong Phú B
4 p | 68 | 3
-
Đề thi học kì 2 môn GDCD lớp 9 năm 2017-2018 có đáp án - Trường THCS Vĩnh Thịnh
4 p | 175 | 3
-
Đề thi học kì 2 môn Toán lớp 2 năm 2019-2020 có đáp án - Trường Tiểu học Sặp Vạt
5 p | 74 | 3
-
Đề thi học kì 2 môn Toán lớp 2 năm 2019-2020 có đáp án - Trường TH&THCS Tú Thịnh
6 p | 71 | 2
-
Đề thi học kì 2 môn Tiếng Việt lớp 2 năm 2019-2020 có đáp án - Trường Tiểu học Số 2 Hoài Tân
6 p | 65 | 2
-
Đề thi học kì 2 môn Toán lớp 2 năm 2019-2020 có đáp án - Trường Tiểu học Tân Hiệp
3 p | 92 | 2
-
Đề thi học kì 2 môn Toán lớp 2 năm 2019-2020 có đáp án - Trường Tiểu học Tam Hưng
4 p | 74 | 2
-
Đề thi học kì 2 môn Toán lớp 2 năm 2019-2020 có đáp án - Trường Tiểu học số 2 Hoài Tân
6 p | 89 | 2
-
Đề thi học kì 2 môn Công nghệ lớp 7 năm 2018 có đáp án - Trường THCS Vĩnh Thịnh
2 p | 133 | 1
-
Đề thi học kì 2 môn Địa lý lớp 9 năm 2017-2018 có đáp án - Trường THCS Khai Quang
4 p | 208 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn