Đề thi khảo sát chất lượng đầu năm môn Toán lớp 12 năm học 2012-2013 – Trường Đại học Vinh
lượt xem 2
download
"Đề thi khảo sát chất lượng đầu năm môn Toán lớp 12 năm học 2012-2013 – Trường Đại học Vinh" được biên soạn bao gồm 5 câu hỏi, phục vụ cho các em học sinh ôn luyện kiến thức đã học, làm tiền đề cho kiến thức tiếp theo và vượt qua bài thi khảo sát đầu năm gặt hái nhiều thành công.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi khảo sát chất lượng đầu năm môn Toán lớp 12 năm học 2012-2013 – Trường Đại học Vinh
- TR¦êNG §¹I HäC VINH §Ò THI KHẢO SÁT CHẤT LƯỢNG ĐẦU N¡M TR¦êNG THPT CHUY£N năm học: 2012 - 2013 M«n: To¸n - Líp 12; Thêi gian lµm bµi: 120 phót 2x − 3 Câu 1. (3 điểm) Cho hàm số y = có đồ thị (C ) . 2− x a, Tìm điểm M thuộc (C ) biết hoành độ của nó thoả mãn phương trình y ' ' (x ) = 2 . b, Viết phương trình tiếp tuyến với đồ thị (C ) tại điểm M tìm được ở câu a. Câu 2. (2 điểm) 1 a, (1 điểm) Cho hàm số y = x3 + (3m − 2)x 2 + (1 − 2m )x + 3 , m là tham số. Tìm 3 m để hàm số đạt cực tiểu tại điểm x = 1 . b, (1 điểm) Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x + 2) 4 − x 2 . Câu 3. (1 điểm) Giải hệ phương trình ⎧⎪− y 3 + 12 x 2 + 3xy 2 = 7 x 3 + 3 x 2 y + 7 x + y − 2 ⎨ 2 . ⎪⎩2 x − xy + 3 x − 5 = 0 Câu 4. (3 điểm) Cho hình chóp tứ giác đều S.ABCD có cạnh bên gấp 3 lần cạnh đáy. a, Cho AB = a 2 . Tính khoảng cách giữa hai đường thẳng AD và SC. b, Gọi M là trung điểm AB. Tính góc giữa hai đường thẳng SA và CM. Câu 5. (1 điểm) Cho hình lăng trụ tam giác ABC. A’B’C’ có đáy là tam giác đều, cạnh bên bằng a và tạo với đáy một góc 600 . Gọi D là trung điểm cạnh CC’. Biết rằng hình chiếu vuông góc của A’ lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Tính thể tích khối tứ diện ABCD. .…………Hết………….
- TR¦êNG §¹I HäC VINH ĐÁP ÁN §Ò THI KSCL ĐẦU N¡M TR¦êNG THPT CHUY£N Năm học: 2012 - 2013 M«n: To¸n - Líp 12; Thêi gian lµm bµi: 120 phót Câu 1. (3 điểm) TXĐ D = R \ {2}. 1 2 a, (1,5 điểm) y ' (x ) = , y' ' (x ) = (2 − x )2 (2 − x )3 2 = 2 ⇔ (2 − x ) = 1 ⇔ x = 1 . 3 Theo giả thiết ta có (2 − x )3 Suy ra điểm M cần tìm là: M (1;−1) . b, (1,5 điểm) Tại M (1;−1) , hệ số góc của phương trình tiếp tuyến là y ' (1) = 1 Phương trình tiếp tuyến cần tìm là: y = x − 2 . Câu 2. (2 điểm) a, (1 điểm) TXĐ R . Ta có: y ' (x ) = x 2 + 2(3m − 2)x + 1 − 2m , y ' ' (x ) = 2 x + 6m − 4 . Hàm số đạt cực tiểu tại điểm x = 1 khi: ⎧ y ' (1) = 0 ⎧4 m − 2 = 0 1 ⎨ ⇔⎨ ⇔m= . ⎩ y ' ' (1) > 0 ⎩6m − 2 > 0 2 b, (1 điểm) TXĐ D = [− 2;2] . 4 − 2x − 2x2 Ta có y ' (x ) = 4 − x2 4 − 2 x − 2 x2 y ' (x ) = 0 ⇔ = 0 ⇔ x =1 4 − x2 Vì y(− 2) = 0, y (2) = 0, y (1) = 3 3 . Suy ra: GTLN của hàm số là 3 3 , GTNN của hàm số là 0. Câu 3. (1 điểm) Ta có: − y 3 + 12 x 2 + 3 xy 2 = 7 x 3 + 3x 2 y + 7 x + y − 2 ⇔ ( x − y ) + ( x − y ) = (2 x − 1) + (2 x − 1) 3 3 Xét hàm số f (t ) = t 3 + t trên R , phương trình trên có dạng f (x − y ) = f (2 x − 1) Vì f ' (t ) = 3t 2 + 1 > 0, ∀t ∈ R nên hàm số f (t ) đồng biến trên R . Do đó f (x − y ) = f (2 x − 1) ⇔ x − y = 2 x − 1 ⇔ y = 1 − x . ⎡x = 1 Thế vào phương trình còn lại ta được: 3x + 2 x − 5 = 0 ⇔ ⎢ 2 . ⎢x = − 5 ⎣ 3 Hệ đã cho có hai nghiệm (x, y ) là (1,0) và ⎛⎜ − , ⎞⎟ . 5 8 ⎝ 3 3⎠
- Câu 4. (3 điểm) S a, (1,5 điểm) AC = 2a, SA = a 6 , SO = a 5 . Đặt h = d (O; ( SBC ) ) Suy ra 1 1 1 1 11 a 55 2 = 2 + 2 + 2 = 2 ⇒h= . h OS OB OC 5a 11 D N C Ta có 2a 55 d ( AD; SC ) = d ( A; ( SBC ) ) = 2d (O; ( SBC ) ) = 2h = . 11 O b, (1,5 điểm) Đặt AB = 2 ⇒ SA = 2 3 A Gọi N là trung điểm của CD M B ⇒ AN = 5, SN = 11 2 2 12 + 5 − 11 15 Ta có cos(SA, CM ) = cos(SA, AN ) = cos ∠SAN = = . 2.2 3. 5 10 ⎛ 15 ⎞ Suy ra (SA,CM ) = arccos⎜⎜ ⎟. ⎟ ⎝ 10 ⎠ C' Câu 5. (1 điểm) Gọi H, K lần lượt là hình chiếu A’, D lên (ABC). A' 1 Suy ra H là trọng tâm ΔABC và DK = A' H . D B' 2 a 2 2 a 3 a a 3 3a 3 C A' H = , AH = ⇒ S ΔHAB = ⇒ S ΔABC = . 2 2 16 16 K 1 3a 3 Vậy VABCD = DK .SΔABC = . A H 3 64 B
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bộ đề thi khảo sát chất lượng đầu năm lớp 6 môn Tiếng Anh năm 2017
22 p | 751 | 63
-
Bộ đề thi khảo sát chất lượng đầu năm môn Ngữ Văn lớp 8 năm 2017
16 p | 1345 | 50
-
Đề thi khảo sát chất lượng đầu năm môn Toán lớp 9 - Trường THCS Kim Đồng năm 2011 - 2012
1 p | 677 | 37
-
Đề thi khảo sát chất lượng HSG Toán 7 đợt 1
1 p | 284 | 36
-
Đề thi khảo sát chất lượng HSG năm học 2014 - 2015 môn Toán 10
1 p | 188 | 29
-
Đề thi khảo sát chất lượng học sinh yếu lớp 1 môn tiếng Việt - Trường tiểu học Thọ Lộc năm 2010
2 p | 238 | 18
-
Đề thi khảo sát chất lượng đầu năm lớp 7 năm 2017-2018 môn Ngữ văn trường THCS Lê Hồng Phong
2 p | 873 | 13
-
Đề thi khảo sát chất lượng Vật lý lớp 12 dự thi Đại học 2014 - Trường THPT Chuyên KHTN
6 p | 175 | 10
-
Đề thi khảo sát chất lượng Hóa học lớp 12 dự thi Đại học 2014 - Trường THPT Chuyên KHTN
5 p | 166 | 9
-
Đề thi Khảo sát chất lượng lớp 12: Lần II năm 2011 môn Toán - THPT chuyên ĐH Vinh
0 p | 178 | 8
-
Đề thi Khảo sát chất lượng lớp 12: Lần III năm 2011 môn Hóa học (Đề số 478) - THPT chuyên ĐH Vinh
4 p | 134 | 8
-
Đề thi khảo sát chất lượng đầu năm lớp 7 năm 2017-2018 môn Ngữ Văn trường Tiểu học và Trung học cơ sở Sao Việt
4 p | 260 | 7
-
Đề thi khảo sát chất lượng đầu năm lớp 7 năm 2017-2018 môn Toán trường THCS Tiên Động
3 p | 320 | 7
-
Đề thi Khảo sát chất lượng lớp 12: Lần III năm 2011 môn Hóa học (Đề số 485) - THPT chuyên ĐH Vinh
5 p | 136 | 6
-
Đề thi Khảo sát chất lượng lớp 12: Lần III năm 2011 môn Hóa học (Đề số 209) - THPT chuyên ĐH Vinh
5 p | 162 | 6
-
Đề thi Khảo sát chất lượng lớp 12: Lần III năm 2011 môn Hóa học (Đề số 132) - THPT chuyên ĐH Vinh
5 p | 130 | 5
-
Đề thi Khảo sát chất lượng lớp 12: Lần III năm 2011 môn Hóa học (Đề số 357) - THPT chuyên ĐH Vinh
5 p | 137 | 5
-
Đề thi khảo sát chất lượng đầu năm lớp 12 năm học 2017-2018 môn Tiếng Anh trường THPT Nguyễn Viết Xuân
5 p | 132 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn