
Đề thi khảo sát chất lượng môn Toán lớp 9 (có đáp án) năm 2023-2024 - Phòng Giáo dục và Đào tạo thị xã Kinh Môn
lượt xem 1
download

Nhằm giúp các bạn có thêm tài liệu ôn tập, củng cố lại kiến thức đã học và rèn luyện kỹ năng làm bài tập, mời các bạn cùng tham khảo "Đề thi khảo sát chất lượng môn Toán lớp 9 (có đáp án) năm 2023-2024 - Phòng Giáo dục và Đào tạo thị xã Kinh Môn" dưới đây. Hy vọng sẽ giúp các bạn tự tin hơn trong kỳ thi sắp tới.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi khảo sát chất lượng môn Toán lớp 9 (có đáp án) năm 2023-2024 - Phòng Giáo dục và Đào tạo thị xã Kinh Môn
- UBND THỊ XÃ KINH MÔN ĐỀ KHẢO SÁT CHẤT LƯỢNG LỚP 9 LẦN 05 PHÒNG GIÁO DỤC VÀ ĐÀO TẠO NĂM HỌC 2023 - 2024 MÔN: TOÁN Thời gian làm bài 120 phút, không kể giao đề (Đề gồm 05 câu, 01 trang) Câu 1. ( 2.0 điểm) 1) Giải phương trình: x 4 + 3x 2 − 4 =0 x + y + 3 2(x − y) = 2) Giải hệ phương trình: x − 1 y + 3 2 = 3 Câu 2. ( 2.0 điểm) 3 1 x x +1 1) Rút gọn biểu thức sau: A = + + : với x ≥ 0 ; x ≠ 9 2 x −6 x +3 9− x 2 x +6 2) Trong mặt phẳng tọa độ Oxy, cho các đường thẳng ( d1 ) := 2x + 1 y ( d 2 ) : y= x + 2 và ( d3 ) : y = + 1 . Lập phương −2x trình đường thẳng song song với ( d3 ) đồng thời đi qua giao điểm của ( d1 ) và ( d 2 ) Câu 3. (2.0 điểm) 1) Một đội xe vận tải dự định điều một số xe cùng loại đi vận chuyển 30 tấn hàng. Lúc sắp khởi hành, đội xe đó được giao thêm 15 tấn hàng nữa. Do đó, đội xe được điều thêm 4 xe cùng loại trên nên mỗi xe chở ít hơn 1 tấn so với dự định. Hỏi lúc đầu đội xe có bao nhiêu chiếc? Biết rằng các xe chở như nhau. 2) Cho phương trình: x 2 + 2 ( m + 1) x + 2m 2 + 9m + 7 =( với m là tham số) 0 Tìm m để phương trình có 2 nghiệm x1 và x2 sao cho biểu thức A = 7( x1 + x2 ) − 2 x1 x2 có giá trị lớn nhất. Câu 4. ( 3.0 điểm) 1. Người ta xây dựng cây cầu Dinh qua sông Kinh Thầy nối thị xã Kinh Môn (Hải Dương) với huyện Thủy Nguyên (Hải Phòng), cầu được trang trí khung thép trên thành cầu như hình vẽ. Nếu biết độ dài BC = 80m, , . Tính chiều cao từ điểm A xuống mặt của cầu (làm tròn đến chữ số thập phân thứ nhất) A B C 2. Cho điểm M nằm ngoài đường tròn (O ; R). Từ điểm M ở ngoài đường tròn kẻ hai tiếp tuyến MA, MB với đường tròn đó (A, B là các tiếp điểm). Qua điểm A kẻ đường thẳng song song với MB cắt đường tròn (O ; R) tại C. Nối MC cắt đường tròn (O; R) tại D. Tia AD cắt MB tại E. a) Chứng minh MAOB là tứ giác nội tiếp. b) Chứng minh EM = EB và tìm vị trí của điểm M để BD ⊥ MA. Câu 5. (1.0 điểm) Cho các số thực dương a, b, c thỏa mãn a 2 + b 2 + c 2 = 1. ab + 2c 2 bc + 2a 2 ca + 2b 2 Chứng minh: + + ≥ 2 + ab + bc + ca 1 + ab − c 2 1 + bc − a 2 1 + ca − b 2 –––––––– Hết ––––––––
- UBND THỊ XÃ KINH MÔN HƯỚNG DẪN CHẤM PHÒNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ KHẢO SÁT CHẤT LƯỢNG LỚP 9 LẦN 05 NĂM HỌC 2023 - 2024 MÔN: TOÁN (Hướng dẫn chấm gồm 05 trang) ĐÁP ÁN VÀ BIỂU ĐIỂM Câu ý Nội dung Điểm (bài) (phần) Đặt x2 = t, t ≥ 0. 0,25 Khi đó phương trình đã cho có dạng: t2 + 3t – 4 = 0 (1) Phương trình (1) có tổng các hệ số a+b+c= 1+3+(-4)= 0 nên 0, 5 1) PT(1) có hai nghiệm t1 = 1; t2 = - 4 Do t ≥ 0 nên chỉ có t1 = 1 thỏa mãn. Với t1 = 1 => x2 = 1 x = ± 1. 0,25 Vậy phương trình có nghiệm là x1 = 1; x2 = -1 . x + y + 3 2(x − y) = − x + 3y = 3 − Câu 1 x −1 y + 3 ⇔ = 3x − 2y = 9 0,25 (2,0đ) 2 3 −3x+9y = −9 0,25 ⇔ 3x − 2y =9 2) 7y = 0 y = 0 0,25 ⇔ ⇔ 3x − 2y = 9 3x − 2.0 = 9 y = 0 ⇔ x = 3 Vậy hệ phương trình có nghiệm duy nhất ( x, y ) = ( 3;0 ) 0,25 3 1 x x +1 Rút gọn : A = + + : với x ≥ 0 ; x ≠ 9 2 x −6 x +3 9− x 2 x +6 3 1 x : x +1 = A + − 0,25 ( 2 x −3 ) x +3 ( x +3 )( ) ( x −3 2 x +3 ) 3. ( ) x + 3 + 2( x − 3) − 2 x 2 ( x + 3) Câu 2 A= . 0,25 (2,0đ) 1) 2 ( x +3 )( x −3 ) x +1 A= 3 x +9+2 x −6−2 x 2 x +3 . = ( ) 3 x +3 0,25 ( 2 x +3 x −3 )( x +1 ) ( x −3 )( ) x +1 3( x +1 ) 3 = = ( x −3 )( x +1 ) x −3 0,25 3 Vậy A = với x ≥ 0; x ≠ 9 x −3
- Gọi phương trình đường thẳng cần tìm có dạng tổng quát là (d): = ax + b y Tọa độ giao điểm của ( d1 ) và ( d 2 ) là nghiệm của hệ 0,25 = 2x + 1 y phương trình: y= x + 2 x =1 2) Giải hệ phương trình ta được y = 3 0,25 Do (d) song song với ( d 3 ) nên a = −2 và b ≠ 1 Do (d) đi qua giao điểm của ( d1 ) và ( d 2 ) có tọa độ (1;3) 0,25 nên ta có 3 = + b −2.1 ⇔ b =( thỏa mãn) 5 Vậy phương trình đường thẳng (d): y = + 5 −2x 0,25 Gọi số chiếc xe theo dự định của đoàn xe là x (chiếc). ĐK: x ∈ N* 0,25 Số chiếc xe thực tế chuyên chở là x + 4 (chiếc) 30 Theo dự định mỗi xe phải chở số tấn hàng là ( tấn) x 45 Thực tế mỗi xe phải chở số tấn hàng là ( tấn) x+4 Do thực tế mỗi xe chở hơn dự định là 1 tấn nên ta có 1) phương trình: 30 45 − =1 x x+4 0,25 2 2 ⇒ 30x + 120 − 45x = x + 4x ⇔ x + 19x − 120 = 0 0,25 Câu 3 x = 5 (TM) ⇔ (2,0đ) x = −24 (KTM) 0,25 Vậy lúc đầu đội có 5 xe. Phương trình có x 2 + 2 ( m + 1) x + 2m 2 + 9m + 7 =0 ∆ ' =( m + 1) − ( 2m 2 + 9m + 7 ) =− m 2 − 7 m − 6 =− ( m + 1)( m + 6 ) 2 Phương trình có hai nghiệm x1; x2 khi ∆ ' ≥ 0 ⇔ −6 ≤ m ≤ −1 0,25 x1 + x2 = ( m + 1) −2 Theo hệ thức Vi-et ta có 0,25 2) 2 x1 x2 = 2m + 9m + 7 Ta có A = x1 + x2 ) − 2 x1 x2 = 7.2 ( m + 1) − 2. ( 2m 2 + 9m + 7 ) 7( − = 4m 2 − 32m − 28 = m 2 + 8m + 7 = ( m + 1)( m + 7 ) − 4 4 0,25 Do −6 ≤ m ≤ −1 nên ( m + 1)( m + 7 ) ≤ 0
- ⇒ A =( m + 1)( m + 7 ) =( m + 4 ) − 9 =( m + 4 ) + 36 ≤ 36 2 2 −4 −4 −4 0,25 Giá trị lớn nhất của A là 36 khi và chỉ khi m = - 4 (thỏa mãn) Từ thực tế ta có hình vẽ sau, coi chiều cao từ A xuống mặt cầu là AH. A B C H Xét ∆ ABH vuông tại H ta có: AH 0,25 BH = tan 30 Xét ∆ ACH vuông tại H ta có: 0,25 AH 1 CH = tan 50 AH AH Mà BC = BH + CH = + tan 30 tan 50 1 1 AH 0 + 0 =80 tan 3 tan 5 0,25 80 ⇔ AH = ≈ 2,6m 1 1 + tan 30 tan 50 0,25 Vậy chiều cao từ điểm A xuống mặt cầu là 2,6 m Nếu không làm tròn trừ 0,25 điểm, không có hình minh họa trừ 0,25 điểm Vẽ hình phần 1 đúng cho 0,25 điểm Nếu vẽ sai hình thì không chấm điểm cả câu 4.2 Câu 4 A (3,0đ) 1 I 2 1 C D 2 0.25 1 M O 1 2 E 2 1 B Vì MA, MB là các tiếp tuyến của (O) nên: MAO MBO 900 = = 0,25 Tứ giác MAOB có: 2a) 1800 MAO + MBO = 0,5 ⇒ Tứ giác MAOB nội tiếp
- Ta có: EMD = C1 (so le trong, AC // MB) 1 = A1 C1 = sđ AD 2 A1 ⇒ EMD = 0,25 ∆ EMD và ∆ EAM có: E1 chung , EMD = A1 ⇒ ∆ EMD ∆ EAM (g.g) EM ED ⇒ = ⇒ EM 2 = EA.ED (1) EA EM ∆ EBD và ∆ EAB có: 1 B1 E 2 chung , = A 2 = sđ BD 2 ⇒ ∆ EBD ∆ EAB (g.g) EB ED ⇒ = ⇒ EB2 = EA.ED (2) 0,25 2b) EA EB Từ (1) và (2) ⇒ EM 2 = EB2 ⇒ EM = EB Gọi I là giao điểm của của BD và MA Ta có: C1 = B2 ( 2 góc nội tiếp cùng chắn cung AD) Mà C1 = EMD ( 2 góc so le trong) ⇒ B2 = EMD 0,25 Do đó để: BD ⊥ AM ⇔ AIB = 900 ⇔ MAB + B2 = 900 Mà MAB = MBA ( do tam giác MAB cân tại M) 900 ⇒ MBA + EMD =⇒ MC ⊥ AB - Chứng minh được MO ⊥ AB Nên M, O, C thẳng hàng => D là điểm chính giữa của cung AB 300 ⇒ ∆ MAB đều ⇒ AMO = 0,25 Mà tam giác AMO vuông tại A nên OM =2OA = 2R Vậy khi M cách O một khoảng bằng 2R thì BD ⊥ AM Cho các số thực dương a, b, c thỏa mãn a 2 + b 2 + c 2 = Chứng minh: 1. ab + 2c 2 bc + 2a 2 ca + 2b 2 + + ≥ 2 + ab + bc + ca 1 + ab − c 2 1 + bc − a 2 1 + ca − b 2 Câu 5 Do a + b + c = ta có1 nên 2 2 2 2 ab + 2c (1,0đ) = ab + 2c 2 ab + 2c 2 ab + 2c 2 = = 0,25 ( ab + 2c )( a + b 2 + ab ) 2 1 + ab − c a 2 + b 2 + c 2 + ab − c 2 a 2 + b 2 + ab 2 2 x+ y Áp dụng bất đẳng thức xy ≤ , ( x, y > 0 ) 0,25 2
- 2c 2 + a 2 + b 2 + 2ab 2 ( a + b + c ) 2 2 2 ⇒ ( ab + 2c )( a + b + ab ) ≤ 2 2 2 ≤ = a 2 + b2 + c2 2 2 ab + 2c 2 ab + 2c 2 ab + 2c 2 ⇒ = ≥ 2 =(1) ab + 2c 2 ( ab + 2c )( a + b + ab ) a + b + c 2 2 2 1 + ab − c 2 2 2 0,25 2 2 bc + 2a ca + 2b Tương tự 2 ≥ bc + 2a 2 ( 2 ) và 2 ≥ ca + 2b 2 ( 3) 1 + bc − a 1 + ca − b Cộng vế theo vế các bất đẳng thức (1), (2), (3) kết hợp a 2 + b 2 + c 2 = 1 ab + 2c 2 bc + 2a 2 ca + 2b 2 ta có + + ≥ 2 + ab + bc + ca . 1 + ab − c 2 1 + bc − a 2 1 + ca − b 2 0,25 1 Dấu “=’’ khi a= b= c= . 3 - Lưu ý: Học sinh làm theo cách khác nếu đúng vẫn cho điểm tối đa

CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bộ đề thi khảo sát chất lượng đầu năm môn Ngữ Văn lớp 8 năm 2017
16 p |
1371 |
50
-
Đề thi khảo sát chất lượng đầu năm môn Toán lớp 9 - Trường THCS Kim Đồng năm 2011 - 2012
1 p |
726 |
37
-
Đề thi khảo sát chất lượng HSG Toán 7 đợt 1
1 p |
306 |
36
-
Đề thi khảo sát chất lượng HSG năm học 2014 - 2015 môn Toán 10
1 p |
213 |
29
-
Đề thi khảo sát chất lượng lớp 12 năm học 2014-2015 môn Hóa: Mã đề 246 - SGD&ĐT Thanh Hóa
4 p |
173 |
19
-
Đề thi khảo sát chất lượng học sinh yếu lớp 1 môn tiếng Việt - Trường tiểu học Thọ Lộc năm 2010
2 p |
265 |
18
-
Đề thi khảo sát chất lượng đầu năm lớp 7 năm 2017-2018 môn Ngữ văn trường THCS Lê Hồng Phong
2 p |
901 |
13
-
Đề thi khảo sát chất lượng Vật lý lớp 12 dự thi Đại học 2014 - Trường THPT Chuyên KHTN
6 p |
199 |
10
-
Đề thi khảo sát chất lượng Hóa học lớp 12 dự thi Đại học 2014 - Trường THPT Chuyên KHTN
5 p |
192 |
9
-
Đề thi Khảo sát chất lượng lớp 12: Lần II năm 2011 môn Toán - THPT chuyên ĐH Vinh
0 p |
204 |
8
-
Đề thi Khảo sát chất lượng lớp 12: Lần III năm 2011 môn Hóa học (Đề số 478) - THPT chuyên ĐH Vinh
4 p |
162 |
8
-
Đề thi khảo sát chất lượng đầu năm lớp 7 năm 2017-2018 môn Toán trường THCS Tiên Động
3 p |
348 |
7
-
Đề thi khảo sát chất lượng đầu năm lớp 7 năm 2017-2018 môn Ngữ Văn trường Tiểu học và Trung học cơ sở Sao Việt
4 p |
286 |
7
-
Đề thi Khảo sát chất lượng lớp 12: Lần III năm 2011 môn Hóa học (Đề số 485) - THPT chuyên ĐH Vinh
5 p |
163 |
6
-
Đề thi Khảo sát chất lượng lớp 12: Lần III năm 2011 môn Hóa học (Đề số 209) - THPT chuyên ĐH Vinh
5 p |
186 |
6
-
Đề thi Khảo sát chất lượng lớp 12: Lần III năm 2011 môn Hóa học (Đề số 132) - THPT chuyên ĐH Vinh
5 p |
154 |
5
-
Đề thi Khảo sát chất lượng lớp 12: Lần III năm 2011 môn Hóa học (Đề số 357) - THPT chuyên ĐH Vinh
5 p |
163 |
5
-
Đề thi khảo sát chất lượng đầu năm lớp 12 năm học 2017-2018 môn Tiếng Anh trường THPT Nguyễn Viết Xuân
5 p |
157 |
4


Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
