Đề thi thử Đại học, Cao đẳng Toán 2012 đề 75 (Kèm hướng dẫn giải)
lượt xem 2
download
Với nội dung viết phương trình tham số, tính diện tích hình phẳng,...trong đề thi thử Đại học, Cao đẳng Toán 2012 đề 75 có kèm theo đáp án giúp bạn nâng cao kỹ năng giải các bài tập. Đồng thời đề thi này cũng giúp cho các thầy cô có thêm tài liệu để tham khảo chuẩn bị ra đề hoặc giúp đỡ học sinh ôn tập hiệu quả hơn.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử Đại học, Cao đẳng Toán 2012 đề 75 (Kèm hướng dẫn giải)
- WWW.VNMATH.COM ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN (ĐỀ 75) I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) 1. Giải phương trình: 3 (2cos2x + cosx – 2) + (3 – 2cosx)sinx = 0 2. Giải phương trình: log 2 (x 2) log 4(x 5) 2 log 18 0 2 Câu II. (2,0 điểm) Cho hàm số y = x3 3x2 + mx + 4, trong đó m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho, với m = 0. 2. Tìm tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trên khoảng (0 ; + ). Câu III. (1,0 điểm) Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = e x 1 , trục hoành và hai đường thẳng x = ln3, x = ln8. Câu VI. (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = SB = a, mặt phẳng (SAB) vuông góc với mặt phẳng (ABCD). Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD. Câu V. (1,0 điểm) Xét các số thực dương x, y, z thỏa mãn điều kiện x + y + z = 1. x 2 (y z) y2 (z x) z 2 (x y) Tìm giá trị nhỏ nhất của biểu thức: P yz zx xz II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn làm một trong hai phần (phần 1 hoặc phần 2) 1. Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) có phương trình: x 2 + y2 – 6x + 5 = 0. Tìm điểm M thuộc trục tung sao cho qua M kẻ được hai tiếp tuyến với (C) mà góc giữa hai tiếp tuyến đó bằng 600. 2. Trong không gian với hệ tọa độ Oxyz, cho điểm M(2 ; 1 ; 0) và đường thẳng d có phương trình: x 1 2t y 1 t z t Viết phương trình tham số của đường thẳng đi qua điểm M, cắt và vuông góc với đường thẳng d. Câu VIIa. (1,0 điểm) Tìm hệ số của x2 trong khai triển thành đa thức của biểu thức P = (x2 + x – 1) 6 2. Theo chương trình Nâng cao Câu VIb. (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) có phương trình: x 2 + y2 – 6x + 5 = 0. Tìm điểm M thuộc trục tung sao cho qua M kẻ được hai tiếp tuyến với (C) mà góc giữa hai tiếp tuyến đó bằng 600. 2. Trong không gian với hệ tọa độ Oxyz, cho điểm M(2 ; 1 ; 0) và đường thẳng d có phương trình: x 1 y 1 z . 2 1 1 Viết phương trình chính tắc của đường thẳng đi qua điểm M, cắt và vuông góc với đường thẳng d. Câu VIIb. (1,0 điểm) 1
- WWW.VNMATH.COM Tìm hệ số của x3 trong khai triển thành đa thức của biểu thức P = (x2 + x – 1)5 ……………………Hết…………………… 2
- WWW.VNMATH.COM ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN ( ĐỀ 75 ) Câu Đáp án Điểm I 1. (1,0 điểm) (2,0 điểm) Phương trình đã cho tương đương với phương trình : 3 sin x 2sin x 3 3 sin x cos x 0 2 0,50 3 sin x cos x 0 n x (1) 3 n, n 0,50 x k , k 6 Đáp án Điểm 2. (1,0 điểm) Điều kiện: x > – 2 và x 5 (*) Với điều kiện đó, ta có phương trình đã cho tương đương với phương trình: 0,50 log 2 (x 2) x 5 log 2 8 (x 2) x 5 8 (x 3x 18)(x 3x 2) 0 2 2 x 2 3x 18 0 3 17 2 x 3; x 6; x x 3x 2 0 2 Đối chiếu với điều kiện (*), ta được tất cả các nghiệm của phương trình đã cho là: 0,50 3 17 x 6 và x 2 II 1. (1,25 điểm) (2,0 Với m = 0, ta có hàm số y = – x3 – 3x2 + 4 điểm) Tập xác định: D = Sự biến thiên: x 2 Chiều biến thiên: y’ = – 3x2 – 6x, y’ = 0 x 0 0,50 x 2 y’ < 0 x 0 y’ > 0 – 2 < x < 0 Do đó: + Hàm số nghịch biến trên mỗi khoảng ( ; 2) và (0 ; + ) + Hàm số đồng biến trên khoảng ( 2 ; 0) Cực trị: + Hàm số y đạt cực tiểu tại x = – 2 và yCT = y(–2) = 0; + Hàm số y đạt cực đại tại x = 0 và yCĐ = y(0) = 4. 0,25 Giới hạn: lim , lim x x Bảng biến thiên: x 2 0 y' 0 0 0,25 4 y 0 3
- WWW.VNMATH.COM Đồ thị: y Đổ thị cắt trục tung tại điểm (0 ; 4), 4 cắt trục hoành tại điểm (1 ; 0) và tiếp xúc với trục hoành tại điểm ( 2 ; 0) 0,25 3 2 O 1 x 2. (0,75 điểm) Hàm số đã cho nghịch biến trên khoảng (0 ; + ) y’ = – 3x2 – 6x + m 0, x > 0 0,25 3x2 + 6x m, x > 0 (*) Ta có bảng biến thiên của hàm số y = 3x + 6x trên (0 ; + ) 2 x 0 y 0,50 Từ đó ta được : (*) m 0. 0 3. 4. III Kí hiệu S là diện tích cần tính. (1,0 ln 8 0,25 e 1 0 x [ln 3 ; ln8] nên S e x 1dx x điểm) Vì ln 3 2tdt Đặt e x 1 = t, ta có dx t2 1 0,25 Khi x = ln3 thì t = 2, và khi x = ln8 thì t = 3 3 2t 2 dt 3 3 dt 3 dt 3 dt 3 Vì vậy: S 2 dt 2 2 3 3 2 ln t 1 2 ln t 1 2 2 ln 0,50 2 t 1 2 2 2 t 1 2 t 1 2 t 1 2 IV Do SA = SB = AB (= a) nên SAB là tam giác đều. (1,0 Gọi G và I tương ứng là tâm của tam giác đều SAB và tâm của hình vuông ABCD. 0,50 điểm) Gọi O là tâm mặt cầu ngoại tiếp hình chóp S.ABD. Ta có OG (SAB) và OI (ABCD). a S Suy ra: + OG = IH = , trong đó H là trung điểm của AB. 2 0,25 + Tam giác OGA vuông tại G. Kí hiệu R là bán kính mặt cầu ngoại tiếp hình chóp S.ABD, G O ta có: A D 0,25 a 2 3a 2 a 21 H R OA OG 2 GA 2 I 4 9 6 B C 2 2 2 2 2 2 V x x y y z z Ta có : P (*) (1,0 y z z x x y 0,50 Nhận thấy : x + y – xy xy x, y 2 2 4
- WWW.VNMATH.COM điểm) x 2 y2 Do đó : x3 + y3 xy(x + y) x, y > 0 hay x y x, y > 0 y x y2 z2 Tương tự, ta có : y z y, z > 0 z y z2 x 2 z x x, z > 0 x z 0,50 Cộng từng vế ba bất đẳng thức vừa nhận được ở trên, kết hợp với (*), ta được: P 2(x + y + z) = 2 x, y, z > 0 và x + y + z = 1 1 Hơn nữa, ta lại có P = 2 khi x = y = z = . Vì vậy, minP = 2. 3 VI.a 1. (1,0 điểm) (2,0 Viết lại phương trình của (C) dưới dạng: (x – 3)2 + y2 = 4. 0,25 điểm) Từ đó, (C) có tâm I(3 ; 0) và bán kính R = 2 Suy ra trục tung không có điểm chung với đường tròn (C). Vì vậy, qua một điểm bất kì trên tục tung 0,25 luôn kẻ được hai tiếp tuyến của (C). Câu Đáp án Điểm Xét điểm M(0 ; m) tùy ý thuộc trục tung. Qua M, kẻ các tiếp tuyến MA và MB của (C) (A, B là các tiếp điểm). Ta có: AMB 600 (1) 0,25 Góc giữa 2 đường thẳng MA và MB bằng 60 0 AMB 1200 (2) Vì MI là phân giác của AMB nên : IA (1) AMI 300 MI 0 MI 2R m2 9 4 m 7 sin 30 IA 2R 3 4 3 0,25 (2) AMI 600 MI 0 MI m2 9 (*) sin 60 3 3 Dễ thấy, không có m thỏa mãn (*) Vậy có tất cả hai điểm cần tìm là: (0 ; 7 ) và (0 ; 7) 2. (1,0 điểm) Gọi H là hình chiếu vuông góc của M trên d, ta có MH là đường thẳng đi qua M, cắt và vuông góc 0,25 với d. Vì H d nên tọa độ của H có dạng : (1 + 2t ; 1 + t ; t). Suy ra : MH = (2t 1 ; 2 + t ; t) Vì MH d và d có một vectơ chỉ phương là u = (2 ; 1 ; 1), nên : 0,50 2 1 4 2 2.(2t – 1) + 1.( 2 + t) + ( 1).(t) = 0 t = . Vì thế, MH = ; ; . 3 3 3 3 x 2 t Suy ra, phương trình tham số của đường thẳng MH là: y 1 4t 0,25 z 2t VII.a Theo công thức nhị thức Niu-tơn, ta có: (1,0 0,25 P = C0 (x 1)6 C1 x 2 (x 1)5 6 6 C6 x 2k (x 1)6k k C5 x10 (x 1) C6 x12 6 6 điểm) Suy ra, khi khai triển P thành đa thức, x2 chỉ xuất hiện khi khai triển C0 (x 1)6 và C1 x 2 (x 1)5 . 6 6 0,25 Hệ số của x2 trong khai triển C0 (x 1)6 là : 6 C0 .C6 6 2 0,25 Hệ số của x2 trong khai triển C1 x 2 (x 1)5 là : C1 .C5 6 6 0 5
- WWW.VNMATH.COM Vì vậy, hệ số của x2 trong khai triển P thành đa thức là : C0 .C6 C1 .C5 = 9. 6 2 6 0 0,25 VI.b 1. (1,0 điểm) Xem phần 1 Câu VI.a. (2,0 2. (1,0 điểm) điểm) Gọi H là hình chiếu vuông góc của M trên d, ta có MH là đường thẳng đi qua M, cắt và vuông góc 0,25 với d. x 1 2t d có phương trình tham số là: y 1 t z t Vì H d nên tọa độ của H có dạng : (1 + 2t ; 1 + t ; t). 0,50 Suy ra : MH = (2t 1 ; 2 + t ; t) Vì MH d và d có một vectơ chỉ phương là u = (2 ; 1 ; 1), nên : 2 1 4 2 2.(2t – 1) + 1.( 2 + t) + ( 1).(t) = 0 t = . Vì thế, MH = ; ; . 3 3 3 3 Suy ra, phương trình chính tắc của đường thẳng MH là: x 2 y 1 z 0,25 1 4 2 Câu Đáp án Điểm VII.b Theo công thức nhị thức Niu-tơn, ta có: (1,0 P = C5 (x 1)5 C1 x 2 (x 1)4 C5 x 2k (x 1)5k 0 k C5 x8 (x 1) C5 x10 0,25 4 5 5 điểm) Suy ra, khi khai triển P thành đa thức, x3 chỉ xuất hiện khi khai triển C5 (x 1)5 và C1 x 2 (x 1)4 . 0 5 0,25 Hệ số của x3 trong khai triển C5 (x 1)5 là : 0 C5 .C3 0 5 0,25 Hệ số của x3 trong khai triển C1 x 2 (x 1)4 là : C1 .C1 5 5 4 Vì vậy, hệ số của x3 trong khai triển P thành đa thức là : C5 .C3 C1 .C1 = 10. 0 5 5 4 0,25 . 6
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học-Cao đẳng môn Hoá học - THPT Tĩnh Gia
4 p | 1797 | 454
-
ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC KHỐI D - ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi: TOÁN, khối A, B - TRƯỜNG THPT CHUYÊN LÊ QUÝ ĐÔN Lần II
6 p | 593 | 157
-
Đề thi thử đại học, cao đẳng năm 2010 môn sinh học lần 1
7 p | 258 | 99
-
ĐÁP ÁN + ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010- LB1 Môn thi : TOÁN
4 p | 195 | 60
-
Đề thi thử Đại học, Cao đẳng môn Tiếng Anh khối D 2014 - Đề số 2
13 p | 310 | 54
-
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010
9 p | 193 | 32
-
ĐỀ THI THỬ ĐẠI HỌC CAO ĐẲNG MÔN: ANH VĂN - Trường THPT Trần Cao Vân
5 p | 83 | 15
-
ĐỀ THI THỬ ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010-2011 MÔN TIẾNG ANH
7 p | 92 | 11
-
Đề thi thử Đại học, Cao đẳng môn Hóa 2014 đề 31
6 p | 79 | 11
-
Đề thi thử đại học cao đẳng lần V môn Toán - Trường THPT chuyên Quang Trung năm 2011
1 p | 111 | 8
-
Đề thi thử đại học cao đẳng lần IV môn Toán - Trường THPT chuyên Quang Trung năm 2011
1 p | 107 | 7
-
Đề thi thử Đại học Cao đẳng môn Hóa học số 1 năm 2013 (Khối A - B): Mã đề 121
7 p | 74 | 5
-
ĐỀ THI THỬ ĐẠI HỌC - CAO ĐẲNG NĂM HỌC 2011 Lần thứ nhất MÔN: VẬT LÝ
5 p | 44 | 5
-
Đề thi thử đại học cao đẳng lần III môn Toán - Trường THPT chuyên Quang Trung năm 2011
1 p | 110 | 4
-
Đề thi thử Đại học, Cao đẳng môn Hóa 2014 đề 17
5 p | 89 | 3
-
Đề thi thử Đại học, Cao đẳng Toán 2012 đề 38 (Kèm đáp án)
6 p | 67 | 3
-
ĐỀ THI THỬ ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG - Mã đề thi 915
7 p | 39 | 3
-
Đề thi thử Đại học Cao đẳng lần 1 năm 2013 môn Hóa học - Trường THPT Quỳnh Lưu 1
18 p | 80 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn