Đề thi thử đại học lần 1 có đáp án môn: Toán - Trường THPT Lương Văn Chánh (Năm học 2013-2014)
lượt xem 6
download
Đề thi thử đại học lần 1 có đáp án môn "Toán - Trường THPT Lương Văn Chánh" dưới đây gồm 9 câu hỏi bài tập có hướng dẫn lời giải. Mời các bạn cùng tham khảo để có thêm tài liệu phục vụ nhu cầu học tập và ôn thi đại học, cao đẳng.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử đại học lần 1 có đáp án môn: Toán - Trường THPT Lương Văn Chánh (Năm học 2013-2014)
- TRƯỜNG THPT CHUYÊN ĐỀ THI THỬ ĐẠI HỌC LẦN 1 LƯƠNG VĂN CHÁNH NĂM HỌC 2013 – 2014 ebooktoan.com MÔN: TOÁN (Thời gian làm bài 180 phút ) ----------------------------------------------------------------------------------------------------- I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I (2,0điểm). Cho hàm số y = x3 – 3x2 + (m – 2)x + 3m (Cm) (m là tham số). 1. Khảo sát và vẽ đồ thị hàm số ứng với m = 2. 2. Tìm m để tiếp tuyến có hệ số góc nhỏ nhất của đồ thị (Cm) của hàm số đã cho vuông góc với đường thẳng (d): x – y + 2 = 0 . Câu II (2,0 điểm) (1 cos 2 x ) 1. Giải phương trình: 2 cos( x ). (1 cot x ) 4 sin x x cos x 2. Tính: dx sin 2 x 2 2 2 xy x y 1 x y Câu III (1,0 điểm) Giải hệ phương trình: x y y x2 Câu IV (1,0 điểm) Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và cạnh bên bằng 6 a ; điểm M là trung điểm của cạnh SA. Tính thể tích tứ diện SMBD. 2 Câu V (1,0 điểm) Cho a, b, c là ba số thực dương thỏa mãn abc = 1. Chứng minh rằng: 1 1 1 3 3 3 3 1 1 a b 1 b c 1 c a3 3 II. PHẦN RIÊNG (3,0 điểm). Câu VIa(3,0 điểm). DÀNH CHO THÍ SINH THI KHỐI: A, A1, B 1.a) Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1: 2x + 2y – 1 = 0 ; d2: 4x – 2 y + 3 = 0. Gọi A là giao điểm của d1 và d2. Viết phương trình đường thẳng qua M (4;2) và lần lượt cắt d1, d2 tại B, C sao cho tam giác ABC cân tại A. 2.a) Một tổ học sinh có 4 em Nữ và 5 em Nam được xếp thành một hàng dọc. Tính xác suất để chỉ có hai em nữ A , B đứng cạnh nhau còn các em nữ còn lại không đứng cạnh nhau và cũng không đứng cạnh A, B . 3.a) Tìm m để bất phương trình sau có nghiệm thuộc đoạn 0 ; 1 3 m 1 x 2 2 x 2 x( 2 x ) 0 . Câu VIb(3điểm). DÀNH CHO THÍ SINH THI KHỐI: D, D1, M 1.b) Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + y2 – 4x – 2y – 4 = 0. Viết phương trình đường thẳng qua M(1;4) và tiếp xúc với đường tròn (C). 2 1 2.b) Tìm hệ số của x trong khai triển Niu tơn đa thức f ( x) x 2 x 1 ( x 2) 3n với n là số 10 4 3 n 2 tự nhiên thỏa mãn: An C n 14n . log 22 x 3.b) Xác định m để bất phương trình: m nghiệm đúng với mọi x thuộc tập xác định log 22 x 1 .
- ebooktoan.com ĐÁP ÁN Câu Nội dung Thang điểm I-PHẦN CHUNG Câu I(2đ) y = x3 – 3x2 + (m – 2)x + 3m 1(1đ) Khi m = 2, ta được hàm: y = x3 – 3x2 + 6 - TXĐ: D = R - y’= 3x2 – 6x x 0 y 6 0,25 y’= 0 x 2 y 2 - lim ; lim x x - BBT: x 0 2 0,25 y’ + 0 - 0 + y 6 2 0,25 y’’= 6x – 6 , điểm uốn I(1,4); CĐ(0;6), CT(2;2). Điểm đặc biệt (-1;2), (3;6). 10 8 6 f x = +6 x3-3x2 0,25 4 2 -5 5 2(1đ) Ta có: y’= 3x2 – 6x + m – 2 0,25 Tiếp tuyến Δ tại điểm M thuộc (Cm) có hệ số góc : k = 3x2 – 6x + m – 2 = 3(x – 1)2 + m – 5 m 5 0,25 dấu đẳng thức xảy ra khi x = 1 Suy ra : kmin m 5 tại điểm M (1 ; 4m – 4) 0,25 Tiếp tuyến d (m 5).1 1 m 4 0,25 Vậy m = 4. CâuII(2 đ) Điều kiện: sin x 0 x k 0,25 1(1đ)
- 2 cos 2 x cos x Pt (sin x cos x ) 1 sin x ebooktoan.com sin x 2 (sin x cos x ).2 cos x sin x cos x 0,25 (sin x cos x )(2 cos 2 x 1) 0 sin x cos x 0 (sin x cos x ) cos 2 x 0 cos 2 x 0 0,25 * sin x cos x 0 tan x 1 x k ( N ) 4 * cos 2 x 0 2 x k x k ( N ) 2 4 2 0,25 Vậy phương trình có nghiệm là: x = k 4 2 2(1đ) x cos x Ta có: I = 2 dx dx 0,25 sin x sin 2 x x I1 = dx sin 2 x u x du dx Đặt 1 dv sin 2 x dx v cot x cos x I 1 x cot x cot xdx x cot x dx sin x d (sin x) 0,25 x cot x x cot x ln sin x C1 sin x cos x I2 = dx sin 2 x Đặt t = sinx dt cos xdx dt 1 1 I2 = 2 C 2 C2 0,25 t t sin x 1 Vậy: I = ln sin x x cot x C sin x 0,25 CâuIII(1đ) 2 2 2 xy x y 1 x y (1) x y y x 2 (2) ĐK x + y > 0. Ta có: 0,25 2 x y 2 xy (1) x y 2 xy x y 2 x y ( x y ) 2 xy ( x y ) x y 2 xy 2 x y x y 1 2 xy ( x y 1) 0 0,25 x y 1 x y x y 1 2 xy 0 y 1 x 2 2 0,25 x y x y 0 (vô nghiêm) x 1 Với y = 1 – x thay vào (2) ta được x2 + x – 2 = 0 x 2 Vậy hệ phương trình có hai nghiệm (1;0) và (-2;3). 0,25 CâuIV(1đ) Ta có:
- 1 0,25 VS.ABD = V S 2 ebooktoan.com VS . MBC SM 1 1 1 M VS .MBC VS . ABD V 0,25 VS . ABD SA 2 2 4 A D Do S.ABCD là hình chóp tứ giác đều nên 3a 2 a 2 O 0,25 SO ( ABCD) SO SA AO a 2 2 C 2 2 B 1 1 V VS . ABCD SO.S ABCD a 3 3 3 0,25 1 3 Vậy: VSMBD = a 12 Câu V(1đ) Trước hết ta chứng minh : a 3 b 3 1 a 3 b 3 abc (1) a b a 2 ab b 2 abc a b ab abc ab(a b c) 0 0,25 1 1 c c Từ (1), ta có: 3 3 1 a b ab(a b c ) abc (a b c ) a b c 0,25 1 a 1 b Tương tự: 3 3 ; 3 3 1 b c a b c 1 c a abc 1 1 1 Suy ra: 1 0,25 1 a 3 b 3 1 b3 c3 1 c3 a 3 0,25 Dấu (=) xảy ra khi a = b = c = 1. II-PHẦN RIÊNG Câu VIa 1a(1đ) Phương trình đường phân giác của góc tạo bởi hai đường thẳng d1, d2 là: 4x 2 y 3 0,25 2x 2 y 1 2 2 3 2 2 x 2 3 2 y 9 0 ( 1 ) 0,25 14 x 2 3 2 y 3 0 ( 2 ) Để đường thẳng qua M 4;2 và cắt d1, d2 lần lượt tại B , C để tam giác ABC cân tại A khi và chỉ khi đường thẳng này phải vuông góc với 1 hoặc 2 . Đường thẳng qua M và vuông góc 1 có phương trình là: 14x + 2 3 2 y 44 4 2 0 7 x 3 2 y 22 2 2 0 0,25 Đường thẳng qua M và vuông góc 2 có phương trình là: 0,25 2x 2 3 2 y 20 4 2 0 x 3 2 y 10 2 2 0 . 2a(1đ) + Không gian mẫu: P9 = 9! cách xếp một hàng dọc 0,25 + Số cách xếp 5 bạn Nam là: P5 = 5! 0,25 + Số cách xếp 4 bạn Nữ trong đó bạn A và B đứng cạnh nhau (A và B hoán vị 6! nhau) là: 2 A63 2. (Chú ý giữa 5 em Nam có 6 vị trí để xếp Nữ vào) 0,25 3! 2.6!.5! 5 Vậy P = 0,25 3!.9! 63 3a(1đ) Đặt t = x 2 2 x 2 x ( 2 x) t 2 2
- x 1 t’ = t 0 x 1 0,25 2 x 2x 2 ebooktoan.com Bảng biến thiên suy ra: x 0;1 3 t 1;2 t2 2 Bpt trở thành mt 1) t 2 m 2 (1) 0,25 t 1 t2 2 t 2 2t 2 Xét f(t) = trên 1;2 , có f ' (t ) 0 t 1 (t 1) 2 BBT t 1 2 f’(t) + 0,25 2 3 f(t) 1 - 2 2 Bpt(1) có nghiệm t 1;2 m max f (t ) f (2) 0,25 1; 2 3 2 Vậy m . 3 Câu VIb 1.b)(1đ) (C ) có tâm I(2;1), bán kính R = 3 Đường thẳng qua M(1;4) cùng phương với Oy không thể tiếp xúc với (C) . Gọi k là hệ số góc của đường thẳng qua M(1;4) có phương trình: kx – y + 4 – k = 0 0,25 kx y 4 k tiếp xúc (C ) d ( I , ) R I 2I R k 1 0,25 k 0 2k 1 4 k 3 k 1 k 3 9(k 1) 8k 6k 0 2 2 2 2 k 3 0,25 4 Với k = 0, : y 4 0 3 Với k = , : 3 x 4 y 13 0 0,25 4 2.b)(1đ) Từ An C nn 2 14n 2n 2 5n 25 0 . Tìm được n = 5 3 0,25 1 4 3n 1 3n 4 1 19 Ta có f(x) = x 2 x 2 x 2 x 2 0,25 16 16 16 19 1 = C17k x k 219 k 16 k 0 0,25 1 Hệ số ứng với x10 là: a10 = .29 C1910 25 C1910 2956096 0,25 16 log 22 x 3b)(1đ) Bpt: m log 22 x 1 t Đặt t = log 22 x (t 0) , ta được: m t 1 0,25
- t Xét hàm f(t) = t 1 0,25 t 1 ebooktoan.com t2 f ' (t ) , dấu f’(t) phụ thuộc vào dấu của tử 2t 1 t 1 BBT: t 1 2 f’(t) - 0 + + + f(t) 0,25 2 Vậy: m 2 bpt nghiệm đúng với mọi x thuộc tập xác định. 0,25
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học lần 1 (2007-2008)
1 p | 869 | 155
-
Đề thi thử Đại học lần 3 môn Tiếng Anh (Mã đề thi 135) - Trường THPT chuyên Lê Quý Đôn
48 p | 241 | 12
-
Đề thi thử Đại học lần 1 môn Vật lý (Mã đề 069) - Trường THPT Ngô Quyền
6 p | 140 | 6
-
Đề thi thử Đại học lần 4 môn Toán
6 p | 105 | 5
-
Đề thi thử Đại học lần II môn Ngữ văn khối D
1 p | 86 | 3
-
Đề thi thử Đại học lần II năm học 2013-2014 môn Vật lý (Mã đề thi 722) - Trường THPT Lương Thế Vinh
7 p | 123 | 3
-
Đề thi thử Đại học lần IV năm học 2012 môn Vật lý (Mã đề 896) - Trường THPT chuyên Nguyễn Huệ
6 p | 92 | 3
-
Đề thi thử Đại học lần 2 năm 2013-2014 môn Sinh học - Trường THPT chuyên Lý Tự Trọng (Mã đề thi 231)
9 p | 120 | 3
-
Đề thi thử đại học lần III năm học 2011-2012 môn Hóa học (Mã đề 935)
5 p | 79 | 3
-
Đề thi thử Đại học lần 3 năm 2014 môn Toán (khối D) - Trường THPT Hồng Quang
8 p | 109 | 3
-
Đề thi thử Đại học, lần III năm 2014 môn Vật lý (Mã đề 134) - Trường THPT chuyên Hà Tĩnh
6 p | 107 | 2
-
Đề thi thử Đại học lần I năm 2014 môn Vật lý (Mã đề thi 249) - Trường THPT Quỳnh Lưu 3
15 p | 94 | 2
-
Đề thi thử Đại học lần 1 năm học 2013-2014 môn Hóa học (Mã đề thi 001) - Trường THCS, THPT Nguyễn Khuyến
6 p | 114 | 2
-
Đề thi thử Đại học lần 3 năm 2010 môn Sinh học – khối B (Mã đề 157)
4 p | 75 | 2
-
Đề thi thử Đại học lần 1 năm học 2010 - 2011 môn Sinh học - Trường THPT Lê Hồng Phong
8 p | 111 | 2
-
Đề thi thử Đại học lần II môn Ngữ văn khối D - Trường THPT chuyên Lê Quý Đôn
1 p | 97 | 2
-
Đề thi thử Đại học lần II năm học 2013-2014 môn Vật lý (Mã đề thi 132) - Trường THPT chuyên Lê Quý Đôn
7 p | 129 | 2
-
Đề thi thử Đại học lần 2 năm học 2012-2013 môn Hóa học (Mã đề thi 002) - Trường THCS, THPT Nguyễn Khuyến
6 p | 110 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn