Đề thi thử đại học môn Toán khối B - THPT chuyên Nguyễn Huệ
lượt xem 90
download
Tham khảo tài liệu 'đề thi thử đại học môn toán khối b - thpt chuyên nguyễn huệ', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử đại học môn Toán khối B - THPT chuyên Nguyễn Huệ
- TRƯ NG THPT CHUYÊN KỲ THI TH Đ I H C L N TH 3 NGUY N HU NĂM H C 2008-2009 Đ THI MÔN : TOÁN KH I B Th i gian làm bài 180 phút không k th i gian giao đ I. PH N CHUNG CHO T T C CÁC THÍ SINH (7,0 đi m) Câu I: (2đi m) :Cho hàm s : y=x4-2x2+1 1.Kh o sát và v đ th (C) c a hàm s 4 2 2.Bi n lu n theo m s nghi m c a phương trình x − 2 x + 1 + log 2 m = 0 (m>0) Câu II:(2đi m) :1.Gi i b t phương trình: x 2 − 3x + 2 − 2 x 2 − 3x + 1 ≥ x − 1 2.Gi i phương trình : cos3 x cos3x + sin3 x sin3x = 2 4 π 2 7 sin x − 5 cos x Câu III: (1đi m): Tính tích phân :I= ∫ (sin x + cos x) 0 3 dx Câu IV: (1đi m): Cho hình chóp đ u S.ABCD có đ dài c nh đáy b ng a m t ph ng bên t o v i m t đáy góc 60o. M t ph ng (P) ch a AB và đi qua tr ng tâm tam giác SAC c t SC, SD l n lư t t i M,N Tính th tích hình chóp S.ABMN theo a. Câu V: (1 đi m) Cho 4 s th c a,b,c,d tho mãn: a2+b2=1;c-d=3 CMR: F = ac + bd − cd ≤ 9 + 6 2 4 II.PH N RIÊNG(3.0 đi m )Thí sinh ch đư c làm m t trong hai ph n (ph n 1 ho c ph n 2) a.Theo chương trình Chu n : Câu VI.a: (2 đi m) 1.Tìm phöông trình chính taéc cuûa elip (E). Bieát Tieâu cöï laø 8 vaø qua ñieåm M(– 15 ; 1). x = −1 − 2t x y z 2.Trong không gian v i h to đ Oxyz cho hai đư ng th ng d1 : = = vaø d 2 : y = t 1 1 2 z = 1+ t Xét v trí tương đ i c a d1 và d2. Vi t phương trình đư ng th ng qua O, c t d2 và vuông góc v i d1 Câu VII.a: (1 đi m) Moät hoäp ñöïng 5 vieân bi ñoû, 6 vieân bi traéng vaø 7 vieân bi vaøng. Nguôøi ta choïn ra 4 vieân bi töø hoäp ñoù. Hoûi coù bao nhieâu caùch choïn ñeå trong soá bi laáy ra khoâng coù ñuû caû ba maøu? b.Theo chương trình Nâng cao : Câu VI.b: (2 đi m) 1.Trong h tđ Oxy tìm phöông trình chính taéc cuûa elip bi t (E) Qua M(– 2 ; 2 ) vaø phöông trình hai ñöôøng chuaån laø: x ± 4 = 0 2.Trong không gian v i h to đ Oxyz cho hai ñieåm A(0; 0;-3), B(2; 0;-1) vaø maët phaúng (P) coù phöông trình laø 3 x − 8 y + 7 z + 1 = 0 . Vieát phöông trình chính t c ñöôøng thaúng d naèm treân maët phaúng (P) vaø d vuoâng goùc vôùi AB t i giao đi m c a đđư ng th ng AB v i (P). Câu VII.b: (1 đi m) n 2 2 1 + C 2 n + ... + C 2 n −1 = 2 23 3 2n Tìm h s x trong khai tri n x + bi t n tho mãn: C 2 n 3 x -----------------------------------------H t----------------------------------------
- TRƯ NG THPT CHUYÊN KỲ THI TH Đ I H C L N TH 3 NGUY N HU NĂM H C 2008-2009 ĐÁP ÁN MÔN : TOÁN KH I B Câu ý N i dung Đi m I 1 Tìm đúng TXĐ; (2đi m) (1đi m) lim y = +∞; lim y = +∞ Gi i h n : x →−∞ x →+∞ 0,25 x = 0 Tính đúng y'=4x3-4x ; y’=0 ⇔ x = ±1 B ng bi n thiên x -∞ -1 0 1 +∞ y' - 0 + 0 - 0 + +∞ 1 +∞ 0,5 y 0 0 Hàm s ngh ch bi n trên các kho ng: (-∞;-1);(0;1) Hàm s đ ng bi n trên các kho ng: (-1;0);(1;+∞) Hàm s đ t CĐ(0;1); Hàm s đ t CT(-1;0)v à (1;0) Đ th : Tìm giao c a đ th v i Oy : (0;1) , v i Ox : (-1;0)v à (1;0) Đ th nh n oy làm tr c đ i x ng V đúng đ th 0,25 +S nghi m PT là s giao đi m c a 2 đ th y=x4-2x2+1 v à y=- log 2 m 0,25 2 (1đi m) 0,75 +T đ th suy ra: 1 log 2 m
- 1 -1< log 2 m 0 ⇔ m > 1 : PT v ô nghi m II 1 0,25 (2đi m) (1đi m) Đk: x ∈ D=(-∞;1/2] ∪ {1} ∪ [2;+ ∞) 0,25 x=1 là nghi m x ≥ 2:Bpt đã cho tương đương: x − 2 ≥ x − 1 + 2 x − 1 vô nghi m 1 1 x≤ : Bpt đã cho tương đương: 2 − x + 1 − x ≥ 1 − 2 x c ó nghi m x ≤ 0,5 2 2 BPT c ó t p nghi m S=(-∞;1/2] ∪ {1} 2 (cos3x+3cosx)cos3x+(3sinx-sin3x)sin3x= 2 0,5 (1đi m) ⇔ cos6x+3cos2x= 2 1 0,5 ⇔4cos 2x= 3 2 ⇔cos 2x= 2 π PT có nghi m: x= ± + kπ (k ∈ Ζ) 8 III π π 2 2 (1,0đi sin xdx cos xdx 0,25 m) I1 = ∫ 3 ; I2 = ∫ 0 (sin x + cos x ) 0 (sin x + cos x )3 π đ t x= − t ch ng minh đư c I1=I2 2 π π 2 2 π dx dx 1 π 0,5 Tính I1+I2= ∫ (sin x + cos x) 2 =∫ 0 2 cos 2 ( x − π = tan(x − ) 2 = 1 2 4 0 ) 0 4 1 0,25 I1=I2= ⇒ I= 7I1 -5I2=1 2
- IV (1đi m) S 0,25 N A D I J B C D ng đúng hình 0,5 I, J l n lư t là trung đi m cúa AB v à CD; G là tr ng tâm ∆SAC Khai thác gi thi t có ∆SIJ đ u c nh a nên G cũng là tr ng tâm ∆SIJ IGc t SJ t K là trung đi m cúa SJ; M,N là trung đi m cúaSC,SD 3a 1 3 3a 2 IK = ;SABMN= ( AB + MN ) IK = 2 2 8 0,25 a SK┴(ABMN);SK= 2 1 3a 3 V= S ABMN .SK = (đvtt) 3 16 Ap d ng bđt Bunhiacopxki và gi thi t có 0,25 F ≤ (a 2 + b2 )(c 2 + d 2 ) − cd = 2d 2 + 6d + 9 − d 2 − 3d = f (d ) 3 9 3 9 1 − 2(d + ) 2 + 1 − 2(d + ) 2 + 0,5 Ta có f '( d ) = (2d + 3) 2 2 vì 2 2
- 3 9+6 2 f (d ) ≤ f (− ) = 2 4 1 1 0,25 D u b ng x y ra khi a= b= − c=3/2 d= -3/2 2 2 VI.a 1 x2 y2 0,5 (2đi m) (1đi m) +PTCT c a (E): 2 + 2 = 1(a > b > 0) a b 15 1 + =1 +Gt ⇒ a 2 b2 a 2 − b 2 = 16 x2 y 0,5 Gi i h ra đúng k t qu + =1 20 4 2 đư ng th ng chéo nhau 0,25 đư ng th ng ∆ c n tìm c t d2 t i A(-1-2t;t;1+t) ⇒ OA =(-1-2t;t;1+t) 0,25 2 0,5 (1đi m) ∆ ⊥ d 1 ⇔ OA.u1 = 0 ⇔ t = −1 ⇒ A(1;−1;0) x = t Ptts ∆ y = −t z = 0 4 S cách ch n 4 bi t s bi trong h p là: C18 0,25 S cách ch n 4 bi đ 3 màu t s bi trong h p là: VII.a C 52 C 6 C 7 + C 5 C 6 C 7 + C 5 C 6 C 7 1 1 1 2 1 1 1 2 0,5 S cách ch n tho mãn yêu c u là: 0.25 C18 − (C 52 C 6 C 7 + C 5 C 6 C 7 + C 5 C 6 C 7 ) = 1485 4 1 1 1 2 1 1 1 2 VI.b 1 x2 y2 0,5 (2đi m) (1đi m) +PTCT c a (E): 2 + 2 = 1(a > b > 0) a b 4 2 + 2 =1 a2 b +Gt ⇒ 2 a = 4 c x2 y2 x2 y2 0,5 Gi i h ra đúng k t qu có 2 (E) tho mãn + =1 ; + =1 8 4 12 3
- Gi i đúng giao đi m AB c t (P) t i C(2;0;-1) 2 0.5 (1đi m) x − 2 y z −1 Vi t đúng phương trình: = = 0.5 2 −1 − 2 Khai tri n: (1+x)2n thay x=1;x= -1 và k t h p gi thi t đư c n=12 0,5 12 2 2 12 Khai tri n: x + = ∑ C12 2 x k k 24 −3 k 7 7 VII h s x3: C12 2 =101376 0,5 x k =0 *Các cách làm khác đúng cho di m tương t
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học môn Sinh lần 1 năm 2011 khối B
7 p | 731 | 334
-
.....đề thi thử đại học môn Văn dành cho các bạn luyện thi khối C & Dđề thi thử đại học môn Văn dành cho các bạn luyện thi khối C & D
5 p | 907 | 329
-
Đề thi thử Đại học môn Sinh lần 2
4 p | 539 | 231
-
Đề thi thử Đại học môn Sinh năm 2010 khối B - Trường THPT Anh Sơn 2 (Mã đề 153)
5 p | 456 | 213
-
Đề thi thử Đại học môn Văn khối D năm 2011
4 p | 885 | 212
-
Đề thi thử Đại học môn Toán 2014 số 1
7 p | 278 | 103
-
Đề thi thử Đại học môn tiếng Anh - Đề số 10
6 p | 384 | 91
-
Đề thi thử Đại học môn Toán khối A, A1 năm 2014 - Thầy Đặng Việt Hùng (Lần 1-4)
4 p | 223 | 35
-
Đề thi thử Đại học môn Anh khối A1 & D năm 2014 lần 2
7 p | 229 | 25
-
Đề thi thử Đại học môn Toán khối A, A1 năm 2014 - Thầy Đặng Việt Hùng (Lần 5-8)
4 p | 138 | 17
-
Đề thi thử Đại học môn Anh khối A1 & D năm 2014 lần 1
11 p | 143 | 15
-
Đề thi thử Đại học môn Lý năm 2013 - Trường THPT chuyên Lương Văn Chánh (Mã đề 132)
7 p | 177 | 12
-
Đề thi thử Đại học môn Lý năm 2011 - Trường THPT Nông Cống I
20 p | 114 | 9
-
Đề thi thử đại học môn Lý khối A - Mã đề 132
6 p | 54 | 9
-
Đề thi thử Đại học môn Toán năm 2011 - Trường THPT Tây Thụy Anh
8 p | 79 | 8
-
Đề thi thử Đại học môn Toán khối A năm 2010-2011
6 p | 105 | 7
-
Đề thi thử Đại học môn Toán năm 2011 khối A
6 p | 104 | 7
-
Đề thi thử Đại học môn Toán khối A năm 2010-2011 có kèm đáp án
7 p | 102 | 5
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn