Đề thi thử đại học môn toán năm 2012_Đề số 57
lượt xem 25
download
Tham khảo tài liệu 'đề thi thử đại học môn toán năm 2012_đề số 57', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử đại học môn toán năm 2012_Đề số 57
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN (ĐỀ 57) A. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH: ( 8 điểm) Câu 1: ( 2điểm) Cho hàm số y = 4x3 + mx2 – 3x 1. Khảo sát và vẽ đồ thị (C) hàm số khi m = 0. 2. Tìm m để hàm số có hai cực trị tại x1 và x2 thỏa x1 = - 4x2 Câu 2: (2điểm) x 2 y xy 0 1. Giải hệ phương trình: x 1 4 y 1 2 2. Giải phương trình: cosx = 8sin3 x 6 Câu 3: (2điểm) 1. Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), tam giác ABC vuông tại C ; M,N là hình chiếu của A trên SB, SC. Biết MN cắt BC tại T. Chứng minh rằng tam giác AMN vuông và AT tiếp xúc với mặt cầu đường kính AB. e2 dx 2. Tính tích phân A = x ln x.ln ex e Câu 4: (2 điểm) 1. Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(4;5;6); B(0;0;1); C(0;2;0); D(3;0;0). Chứng minh các đường thẳng AB và CD chéo nhau. Viết phương trình đường thẳng (D) vuông góc với mặt phẳngOxy và cắt được các đường thẳngAB; CD. a3 b3 c3 1 2. Cho ba số thực dương a, b, c thỏa: 2 a ab b 2 b 2 bc c 2 c 2 ca a 2 Tìm giá trị lớn nhất của biểu thức S = a + b + c B. PHẦN TỰ CHỌN: Thí sinh chỉ chọn câu 5a hoặc 5b Câu 5a: Theo chương trình chuẩn: ( 2 điểm) 1. Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(4;5;6). Viết phương trình mặt phẳng (P) qua A; cắt các trục tọa độ lần lượt tại I; J; K mà A là trực tâm của tam giác IJK. 2. Biết (D) và (D’) là hai đường thẳng song song. Lấy trên (D) 5 điểm và trên (D’) n điểm và nối các điểm ta được các tam giác. T ìm n để số tam giác lập được bằng 45. Câu 5b: Theo chương trình nâng cao: ( 2 điểm) 1. Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng (D): x – 3y – 4 = 0 và đường tròn (C): x2 + y2 – 4y = 0. Tìm M thuộc (D) và N thuộc (C) sao cho chúng đối xứng qua A(3;1). 2. Tìm m để bất phương trình: 52x – 5x+1 – 2m5x + m2 + 5m > 0 thỏa với mọi số thực x. -------- Hết -------
- BÀI GIẢI TÓM TẮT(ĐỀ 57) A.PHẦN CHUNG: Câu 1: 2. TXĐ: D = R - y’ = 12x2 + 2mx – 3 Ta có: ’ = m2 + 36 > 0 với mọi m, vậy luôn có cực trị x1 4 x2 m 9 m Ta có: x1 x2 2 6 1 x1 x2 4 Câu 2: x 1 x 2 y xy 0 (1) Điều kiện: 1. 1 y 4 x 1 4 y 1 2 (2) x x Từ (1) 2 0 x = 4y y y 1 Nghiệm của hệ (2; ) 2 3 2. cosx = 8sin3 x cosx = 3 s inx+cosx 6 3 3 sin 3 x 9 sin 2 xcosx +3 3 s inxcos 2 x cos 3 x cosx = 0 (3) Ta thấy cosx = 0 không là nghiêm (3) 3 3 tan 3 x 8 t an 2 x + 3 3 t anx = 0 t anx = 0 x = k Câu 3: 1.Theo định lý ba đường vuông góc BC (SAC) AN BC và AN SC AN (SBC) AN MN Ta có: SA2 = SM.SB = SN.SC Vây MSN CSB TM là đường cao của tam giác STB BN là đường cao của tam giác STB Theo định lý ba đường vuông góc, ta có AB ST AB (SAT) hay AB AT (đpcm) e2 e2 e2 dx d (ln x) 1 1 2. A ln x 1 ln x d (ln x) = x ln x (1 ln x ) e ln x (1 ln x ) e e 2 2 e e = ln(ln x) = 2ln2 – ln3 ln(1 ln x) e e Câu 4: 1. +) BA (4;5;5) , CD (3; 2; 0) , CA (4;3; 6) BA, CD (10;15; 23) BA, CD .CA 0 đpcm + Gọi (P) là mặt phẳng qua AB và (P) (Oxy) có VTPT n1 BA, k = (5;- 4; 0)
- (P): 5x – 4y = 0 có VTPT n1 CD, k = (-2;- 3; 0) + (Q) là mặt phẳng qua CD và (Q) (Oxy) (Q): 2x + 3y – 6 = 0 Ta có (D) = (P)(Q) Phương trình của (D) a3 2a b 2. Ta có: (1) 2 2 a ab b 3 3a3 ≥ (2a – b)(a2 + ab + b2) a3 + b3 – a2b – ab2 ≥ 0 (a + b)(a – b)2 0. (h/n) b3 c3 2b c 2c a Tương tự: 2 (2) , 2 (3) 2 2 b bc c c ac a 3 3 Cộng vế theo vế của ba bđt (1), (2) và (3) ta được: a3 b3 c3 abc 2 2 2 2 2 2 a ab b b bc c c ca a 3 Vậy: S ≤ 3 maxS = 3 khi a = b = c = 1 B. PHẦN TỰ CHỌN: Câu 5a: Theo chương trình chuẩn xyz 1. Ta có I(a;0;0), J(0;b;0), K(0;0;c) ( P ) : 1 abc IA (4 a;5;6), JA (4;5 b;6) Ta có JK (0; b; c ), IK ( a; 0; c) 77 4 5 6 a 1 4 a b c 77 Ta có: 5b 6c 0 b ptmp(P) 5 4a 6c 0 77 c 6 2.Ta có: n C5 5Cn = 45 n2 + 3n – 18 = 0 n = 3 2 2 Câu 5b: 1.M (D) M(3b+4;b) N(2 – 3b;2 – b) N (C) (2 – 3b)2 + (2 – b)2 – 4(2 – b) = 0 b = 0;b = 6/5 Vậy có hai cặp điểm: M(4;0) và N(2;2) , M’(38/5;6/5) và N’(-8/5; 4/5) 2. Đặt X = 5x X > 0 Bất phương trình đã cho trở thành: X2 + (5 + 2m)X + m2 + 5m > 0 (*) Bpt đã cho có nghiệm với mọi x khi và chỉ khi (*) có nghiệm với mọi X > 0 < 0 hoặc (*) có hai nghiệm X1 ≤ X2 ≤ 0 Từ đó suy ra m
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học môn Sinh lần 1 năm 2011 khối B
7 p | 731 | 334
-
.....đề thi thử đại học môn Văn dành cho các bạn luyện thi khối C & Dđề thi thử đại học môn Văn dành cho các bạn luyện thi khối C & D
5 p | 907 | 329
-
Đề thi thử Đại học môn Sinh lần 2
4 p | 539 | 231
-
Đề thi thử Đại học môn Sinh năm 2010 khối B - Trường THPT Anh Sơn 2 (Mã đề 153)
5 p | 456 | 213
-
Đề thi thử Đại học môn Văn khối D năm 2011
4 p | 885 | 212
-
Đề thi thử Đại học môn Toán 2014 số 1
7 p | 278 | 103
-
Đề thi thử Đại học môn tiếng Anh - Đề số 10
6 p | 384 | 91
-
Đề thi thử Đại học môn Toán khối A, A1 năm 2014 - Thầy Đặng Việt Hùng (Lần 1-4)
4 p | 223 | 35
-
Đề thi thử Đại học môn Anh khối A1 & D năm 2014 lần 2
7 p | 229 | 25
-
Đề thi thử Đại học môn Toán khối A, A1 năm 2014 - Thầy Đặng Việt Hùng (Lần 5-8)
4 p | 138 | 17
-
Đề thi thử Đại học môn Anh khối A1 & D năm 2014 lần 1
11 p | 143 | 15
-
Đề thi thử Đại học môn Lý năm 2013 - Trường THPT chuyên Lương Văn Chánh (Mã đề 132)
7 p | 177 | 12
-
Đề thi thử Đại học môn Lý năm 2011 - Trường THPT Nông Cống I
20 p | 114 | 9
-
Đề thi thử đại học môn Lý khối A - Mã đề 132
6 p | 54 | 9
-
Đề thi thử Đại học môn Toán năm 2011 - Trường THPT Tây Thụy Anh
8 p | 79 | 8
-
Đề thi thử Đại học môn Toán khối A năm 2010-2011
6 p | 105 | 7
-
Đề thi thử Đại học môn Toán năm 2011 khối A
6 p | 104 | 7
-
Đề thi thử Đại học môn Toán khối A năm 2010-2011 có kèm đáp án
7 p | 102 | 5
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn