Đề thi thử Đại học và Cao đẳng lần 1 năm 2014 môn Toán (khối D) - Trường THPT chuyên NĐC
lượt xem 3
download
Đề thi thử Đại học và Cao đẳng lần 1 năm 2014 môn Toán (khối D) - Trường THPT chuyên NĐC gồm có hai phần thi là phần chung và phần riêng cùng với phần nâng cao với các câu hỏi tự luận có kèm đáp án và hướng dẫn giải chi tiết.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử Đại học và Cao đẳng lần 1 năm 2014 môn Toán (khối D) - Trường THPT chuyên NĐC
- TRƯỜNG THPT CHUYÊN NĐC ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2014 -------------------------------- Môn: TOÁN; khối D ĐỀ THI THỬ LẦN 1 Thời gian làm bài: 180 phút, không kể phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu 1: (2,0 điểm) Cho hàm số y = − x 3 + 3x + 1 (1) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1). 2) Định tham số m để phương trình 27 x − 3 x +1 + m = 0 có đúng hai nghiệm phân biệt. 1 Câu 2: (1,0 điểm) Giải phương trình: cos 2 2 x − sin(12π + 4 x) − cos(2013π − 2 x) = 0 . 2 x − y = 19 3 3 Câu 3: (1,0 điểm) Giải hệ phương trình: . ( x − y ).xy = 6 1 Câu 4: (1,0 điểm) Tìm nguyên hàm F (x) của hàm số f ( x) = x , biết F ( 2) = 2013 . 2 + 6. 2 − x − 5 ∧ Câu 5: (1,0 điểm) Trong mặt phẳng (P), cho hình thoi ABCD có độ dài các cạnh bằng a; góc ABC = 120 0 . Gọi G là trọng tâm tam giác ABD. Trên đường thẳng vuông góc với mặt phẳng (P) tại G lấy điểm S sao cho ∧ góc ASC = 90 0 . Tính thể tích khối chóp SABCD và khoảng cách từ điểm G đến mặt phẳng (SBD) theo a. Câu 6: (1,0 điểm) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f ( x) = 1 − 2 sin x + sin x + 1 . PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (Phần A hoặc B) A. Theo chương trình chuẩn Câu 7a: (1,0 điểm) Trong mặt phẳng Oxy, tìm các điểm M trên parabol (P): y = x 2 sao cho khoảng cách từ điểm M đến đường thẳng (d ) : 2 x − y − 6 = 0 là ngắn nhất. 2 Câu 8a: (1,0 điểm) Giải phương trình: 4.3 log(100 x ) + 9.4 log(10 x ) = 13.61+ log x . n 2 Câu 9a: (1,0 điểm) Tìm hệ số của số hạng chứa x 7 trong khai triển 3 x 2 − , biết hệ số của số hạng thứ x ba bằng 1080 . B. Theo chương trình nâng cao Câu 7b: (1,0 điểm) Trong mặt phẳng Oxy, lấy hai điểm A(−1; 1) và B (3; 9) nằm trên parabol ( P) : y = x 2 . Điểm M thuộc cung AB. Tìm toạ độ điểm M sao cho diện tích tam giác ABM đạt lớn nhất. log 2 ( x − 1) 2 − log 3 ( x − 1) 4 Câu 8b: (1,0 điểm) Giải bất phương trình: > 0. 2 x 2 + 3x − 2 Câu 9b: (1,0 điểm) Từ khai triển của biểu thức ( x − 1)100 = a 0 x 100 + a1 x 99 + ... + a 98 x 2 + a99 x + a100 . Tính tổng S = 100a 0 .2100 + 99a1 .2 99 + ... + 2a 98 .2 2 + 1a99 .21 + 1 . ----------------- Hết ----------------- Cảm ơn thầy Huỳnh Chí Hào chủ nhân http://www.boxmath.vn đã gửi tới www.laisac.page.tl
- ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC LẦN 1 KHỐI D NĂM HỌC 2013 – 2014 Câu Nội dung Điểm 1) Khảo sát y = − x + 3 x + 1 3 1,00 Câu 1 + TXĐ: D = R + Giới hạn: lim y = +∞ ; lim y = −∞ x → −∞ x → +∞ 0,25 x = −1 + Sự biến thiên: y ' = −3x + 3 ; y ' = 0 ⇔ −3 x + 3 = 0 ⇔ 2 2 x = 1 Hàm số nghịch biến trên khoảng (− ∞; − 1); (1; + ∞ ) Hàm số đồng biến trên khoảng (− 1; 1) 0,25 Hàm số đạt cực đại tại x = 1, yCĐ = 3; đạt cực tiểu tại x = − 1, yCT = − 1 + Bảng biến thiên x −∞ −1 1 +∞ y′ − 0 + 0 − 0,25 +∞ 3 y −1 −∞ + Đồ thị: đồ thị hàm số cắt trục tung tại điểm (0; 1). 8 6 4 2 0,25 15 10 5 5 10 15 2 4 6 8 2) Định m để pt 27 − 3 + m = 0 có đúng hai nghiệm phân biệt. x x +1 1,00 + Đặt: X = 3 x , điều kiện X > 0 0,25 + Ta có pt ⇒ − X 3 + 3 X + 1 = m + 1, ∀X > 0 0,25 + Số nghiệm của pt là số giao điểm của (C) và đường thẳng y = m+1 trên miền 0,25 X >0. + Dựa vào đồ thị ta có 1 < m + 1 < 3 ⇔ 0 < m < 2 . 0,25 1 Giải phương trình: cos 2 2 x − sin(12π + 4 x) − cos(2013π − 2 x) = 0 Câu 2 2 1,00 2 + pt tương đương cos 2 x − sin 2 x. cos 2 x + cos 2 x = 0 0,25 π ⇔ cos 2 x(cos 2 x − sin 2 x + 1) = 0 ⇔ cos 2 x.[ 2 cos(2 x + ) + 1] = 0 0,25 4 cos 2 x = 0 π x = + kπ π π ⇔ 4 ⇔ x= +k ∨ , k ∈Z 0,25 cos(2 x + π ) = − 1 4 2 π 4 2 x = − + kπ 2 π π π + KL: phương trình có hai họ nghiệm x = +k , x=− + kπ , k ∈ Z 0,25 4 2 2 x 3 − y 3 = 19 Câu 3 Giải hệ phương trình: 1,00 ( x − y ).xy = 6
- ( x − y )[( x − y ) 2 + 3 xy ] = 19 + Hpt tương đương với 0,25 ( x − y ).xy = 6 H ( H 2 + 3P) = 19 + Đặt H = x − y; P = xy ⇒ 0,25 H .P = 6 H = 1 ⇒ . 0,25 P = 6 + KL: hpt có 2 cặp nghiệm ( x = 3; y = 2) và ( x = −2; y = −3) 0,25 1 Tìm nguyên hàm F(x) của hàm số f ( x) = , biết F(2) = 2013. Câu 4 2 + 6. 2 − x − 5 x 1,00 x 2 ∫ f ( x)dx = ∫ 2 2x x − 5.2 + 6 dx , đặt t = 2 x → dt = ln 2.2 x dx 0,25 1 dt 1 1 1 = ∫ x = ∫ − ln 2 t − 5t + 6 ln 2 t − 3 t − 2 dt 1 2x − 3 2x − 3 = . ln x + C = log 2 x + C = F(x). 0,25 ln 2 2 −2 2 −2 1 + F (2) = log 2 ( ) + C = 2013 ⇒ C = 2014 . 0,25 2 2x − 3 + F ( x) = log 2 x + 2014 . 0,25 2 −2 ∧ Cho hình thoi ABCD có độ dài các cạnh bằng a, góc B = 120 0 . Gọi G là trọng Câu 5 tâm tam giác ABD. Trên đường thẳng vuông góc với mặt phẳng đáy tại G lấy ∧ 1,00 điểm S sao cho góc ASC = 90 0 . Tính thể tích khối chóp SABCD và khoảng cách từ điểm G đến mặt phẳng (SBD. S A D H G O B C ∧ ∧ a2 3 + B = 120 0 ⇒ A = 60 0 ⇒ ∆ABD đều cạnh a ⇒ S ABCD = 2 S ABD = . 2 .a 3 2 .a 3 + Gọi O giao điểm AC và BD ⇒ AO = ; AG = AO = ; AC = a 3 0,25 2 3 3 .a 6 ⇒ SG = GA.GC = ( ∆SAC vuông tại S, đường cao SG) 3 1 a3 2 + VSABCD = S ABCD .SG = . 0,25 3 6 + Kẻ GH ⊥ SO ⇒ GH ⊥ (SBD) vì BD ⊥ GH ⊂ (SAO) ⇒ d (G , ( SBD )) = GH 0,25 1 1 1 27 + ∆SGO vuông tại G, đường cao GH ⇒ 2 = 2 + 2 = 2 0,25 GH GS GO 2a
- a 6 ⇒ d (G, SBD )) = GH = . 9 Tìm GTLN và GTNN của hàm số f ( x) = 1 − 2 sin x + sin x + 1 . 1,00 Câu 6 1 + Đặt t = sin x ⇒ f (t ) = 1 − 2t + t + 1 , − 1 ≤ t ≤ 0,25 2 −2 1 1 + f ' (t ) = + , (t ≠ −1; ) 2 1 − 2t 2 t + 1 2 0,25 1 + f ' (t ) = 0 ⇔ 2 t + 1 = 1 − 2t ⇔ t = − . 2 1 3 2 1 6 0,25 + f (−1) = 3; f (− ) = ; f( )= . 2 2 2 2 3 2 1 6 1 0,25 + KL: max f = khi sin x = − và min f = khi sin x = . 2 2 2 2 Tìm M trên parabol (P): y = x 2 sao cho khoảng cách từ điểm M đến đường 1,00 Câu 7a thẳng (d): 2x – y – 6 = 0 ngắn nhất. + M ∈ ( P) ⇒ M (m; m 2 ) . 0,25 2m − m 2 − 6 (m − 1) 2 + 5 + d ( M ; (d )) = = ≥ 5 0,25 5 5 + Dấu “=” xảy ra khi m = 1. 0,25 + KL: M(1; 1) 0,25 2 Giải phương trình: 4.3 log(100 x ) + 9.4 log(10 x ) = 13.61+ log x . 1,00 Câu 8a log(10 x ) log(10 x ) 9 3 + Pt tương đương với 4. − 13 +9 = 0, x > 0 0,25 4 2 log(10 x ) 9 3 t= + Đặt t = , t > 0 ⇒ 4.t − 13t + 9 = 0 ⇒ 4 2 0,25 2 t = 1 x = 10 log(10 x ) = 2 ⇒ ⇒ . 0,25 log(10 x ) = 0 x = 1 10 1 + KL: pt có hai nghiệm x = 10; x = . 0,25 10 n 2 Câu 9a Tìm hệ số của số hạng chứa x 7 trong khai triển 3 x 2 − , biết hệ số của số 1,00 x hạng thứ ba bằng 1080 . + Số hạng tổng quát Tk +1 = C nk .3 n − k .(−2) k .x 2 n −3k 0,25 + Số hạng thứ ba: k = 2 ⇒ C n2 .3 n − 2.4 = 1080 ⇒ (n − 1)n.3 n = 4.5.35 ⇒ n = 5 . 0,25 + x 7 = x 10−3k ⇒ k = 1 0,25 + Hệ số C 51 .3 4.(−2) = −810 0,25 Câu 7b Hai điểm A(−1; 1) và B(3; 9) nằm trên parabol ( P) : y = x 2 . Điểm M thuộc cung AB. Tìm M sao cho diện tích tam giác ABM đạt lớn nhất. 1,00 + M ∈ ( P) ⇒ M (m; m ) , − 1 ≤ m ≤ 3 2 0,25 + S ∆ABM lớn nhất ⇔ d ( M , AB) lớn nhất 0,25 + AB: 2 x − y + 3 = 0 . 4 − (m − 1) 2 4 0,25 + d ( M , AB ) = ≤ . Dấu “=” xảy ra khi m = 1. 5 5
- + KL : M (1; 1) . 0,25 Câu 8b 2 log 2 ( x − 1) − log 3 ( x − 1)4 Giải bất phương trình: > 0. 1,00 2 x 2 + 3x − 2 2(1 − 2 log 3 2). log 2 x − 1 + Bpt tương đương với > 0, x ≠1 2 x 2 + 3x − 2 0,25 log 2 x − 1 ⇔ 2 < 0 , vì 1 − 2 log 3 2 < 0 2 x + 3x − 2 0 ≠ x − 1 < 1 log 2 x − 1 < 0 1 + TH1: 2 ⇔ 1 ⇔ < x < 1∨1 < x < 2 . 0,25 2 x + 3 x − 2 > 0 x < −2 ∨ < x 2 2 x −1 > 1 log 2 x − 1 > 0 + TH2: 2 ⇔ 1 ⇔ −2 < x < 0 . 0,25 2 x + 3 x − 2 < 0 − 2 < x < 2 1 + KL: Tập nghiệm S = (−2; 0) ∪ ( ; 1) ∪ (1; 2) . 0,25 2 Từ khai triển biểu thức ( x − 1)100 = a 0 x 100 + a1 x 99 + ... + a 98 x 2 + a99 x + a100 (1) Câu 9b Tính tổng S = 100a 0 .2100 + 99a1 .2 99 + ... + 2a 98 .2 2 + a99 .2 + 1 . 1,00 + Lấy đạo hàm hai vế của (1): 100( x − 1) 99 = 100a 0 x 99 + 99a1 x 98 + ... + 2a 98 x + a99 0,25 99 100 99 2 + Nhân hai vế cho x: 100 x( x − 1) = 100a 0 x + 99a1 x + ... + 2a 98 x + a99 x 0,25 + Cộng hai vế cho 1, thay x = 2: 0,25 200(2 − 1) 99 + 1 = 100a 0 2100 + 99a1 2 99 + ... + 2a 98 2 2 + a99 2 + 1 = S + KL: S = 201 . 0,25 Cảm ơn thầy Huỳnh Chí Hào chủ nhân http://www.boxmath.vn đã gửi tới www.laisac.page.tl
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học và đáp án môn Toán năm 2009 - Bám sát cấu trúc của Bộ Giáo Dục (ĐỀ 01)
6 p | 319 | 146
-
ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 MÔN TOÁN KHỐI A - ĐỀ 01 ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 MÔN TOÁN KHỐI B - ĐỀ 12
3 p | 290 | 68
-
Đề thi thử đại học và cao đẳng năm 2010 môn Toán khối A-B-D-V
4 p | 310 | 54
-
ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 MÔN TOÁN KHỐI A - ĐỀ 14
5 p | 220 | 38
-
ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 MÔN TOÁN KHỐI A - ĐỀ 11
3 p | 191 | 27
-
ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 MÔN TOÁN
3 p | 153 | 25
-
ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 MÔN TOÁN KHỐI A - ĐỀ 02
4 p | 123 | 24
-
Đề thi thử đại học và cao đẳng năm 2010 môn Toán trường Minh Khai
2 p | 169 | 24
-
ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 MÔN TOÁN KHỐI A - ĐỀ 04
3 p | 104 | 23
-
ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 MÔN TOÁN KHỐI A - ĐỀ 01
2 p | 144 | 23
-
ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 MÔN TOÁN - ĐỀ SỐ 19
4 p | 138 | 17
-
ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 MÔN TOÁN KHỐI A TRƯỜNG THPT MINH CHÂU HƯNG YÊN
5 p | 144 | 11
-
ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG 06-07 Môn thi : Hoá Học - THPT CHUYÊN HÀ TĨNH
5 p | 72 | 6
-
ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG 06-07 Môn thi : Hoá Học - Mã đề thi: 001 - THPT CHUYÊN HÀ TĨNH
5 p | 79 | 5
-
ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẰNG - THPT HƯƠNG HOA
7 p | 64 | 5
-
Đề thi thử Đại học và Cao đẳng năm 2014 môn Toán (khối A, A1, B) - Trường THPT chuyên NĐC
6 p | 56 | 3
-
Đề thi thử Đại học và Cao đẳng năm 2014 lần 2 môn Toán (khối D) - Trường THPT chuyên NĐC
5 p | 60 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn