intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 MÔN TOÁN KHỐI A - ĐỀ 11

Chia sẻ: Ba Xoáy | Ngày: | Loại File: PDF | Số trang:3

192
lượt xem
27
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

TÀI LIỆU THAM KHẢO - ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 MÔN TOÁN KHỐI A TRƯỜNG PHAN CHÂU TRINH - ĐÀ NẴNG.

Chủ đề:
Lưu

Nội dung Text: ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 MÔN TOÁN KHỐI A - ĐỀ 11

  1. Trường THPT Phan Châu Trinh ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 ĐÀ NẴNG Môn thi: TOÁN – Khối A Thời gian: 180 phút (không kể thời gian phát đề) Đề số 11 I. PHẦN CHUNG (7 điểm) 13 x - 2 x 2 + 3x. . Câu I (2 điểm): Cho hàm số y = 3 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến này đi qua gốc tọa độ O. Câu II (2 điểm): pö æ 2 sin ç 2 x + ÷ = 3sin x + cos x + 2 . 1) Giải phương trình: è 4ø ì2 y 2 - x 2 = 1 ï í3 2) Giải hệ phương trình: 3 ï2 x - y = 2 y - x î Câu III (1 điểm): Tìm các giá trị của tham số m để phương trình: m x 2 - 2 x + 2 = x + 2 có 2 nghiệm phân biệt. Câu IV (1 điểm): Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Tính theo a thể tích khối chóp S.ABCD và tính bán kính mặt cầu tiếp xúc với tất cả các mặt của hình chóp đó. ( ) Câu V (1 điểm): Với mọi số thực x, y thỏa điều kiện 2 x 2 + y 2 = xy + 1 . Tìm giá trị lớn nhất và giá trị nhỏ x4 + y4 P= nhất của biểu thức: . 2 xy + 1 II. PHẦN TỰ CHỌN (3 điểm) 1. Theo chương trình chuẩn Câu VI.a (2 điểm): 2.27 x + 18x = 4.12 x + 3.8 x . 1) Giải phương trình: tan x 2) Tìm nguyên hàm của hàm số f ( x ) = . 1 + cos 2 x ( ) Câu VII.a (1 điểm): Trong không gian với hệ tọa độ Oxyz, cho điểm I 1; -2;3 . Viết phương trình mặt cầu tâm I và tiếp xúc với trục Oy. 2. Theo chương trình nâng cao Câu VI.b (2 điểm): x 4 + log3 x > 243 . 1) Giải bất phương trình: mx 2 - 1 2) Tìm m để hàm số y = có 2 điểm cực trị A, B và đoạn AB ngắ n nhất. x Câu VII.b (1 điểm): Trong mặt phẳng tọa độ Oxy, cho đường tròn ( C ) : x 2 + y 2 + 2 x = 0 . Viết phương trình tiếp tuyến của ( C ) , biết góc giữa tiếp tuyến này và trục tung bằng 30o . ============================ Trần Sĩ Tùng
  2. Hướng dẫn: I. PHẦN CHUNG ( )( 1 ( ) ) 2 3 2 Câu I: 2) PTTT D của (C) tại điểm M0 x0 ; y0 là D : y = x 0 - 4 x0 + 3 x - x0 + x0 - 2 x0 + 3 x 0 3 D qua O Û x0 = 0, x0 = 3 Þ Các tiếp tuyến cầ n tìm: y = 3 x , y = 0 . Câu II: 1) PT Û ( sin x + cos x + 1) ( 2 cos x - 3) = 0 p é ê x = - 2 + k 2p . pö æ 1 Û sin x + cos x = -1 Û sin ç x + ÷ = - Û ê è 4ø 2 ë x = p + k 2p p KL: nghiệm PT là x = - + k 2p ; x = p + k 2p . 2 2) Ta có: 2 x3 - y 3 = ( 2 y 2 - x 2 ) ( 2 y - x ) Û x 3 + 2 x 2 y + 2 xy 2 - 5 y 3 = 0 Khi y = 0 thì hệ VN. 3 2 æxö æxö æxö 3 y ¹ 0 , chia 2 vế cho y ¹ 0 ta được: ç ÷ + 2 ç ÷ + 2 ç ÷ - 5 = 0 Khi è yø è yø è yø ïy = x ì x t = , ta có : t 3 + 2t 2 + 2t - 5 = 0 Û t = 1 Û í 2 Û x = y = 1, x = y = -1 Đặt ïy =1 y î x+2 Ta có: x 2 - 2 x + 2 ³ 1 nên PT Û m = Câu III: x2 - 2x + 2 x+2 4 - 3x f ( x) = Þ f '( x) = Xét ( ) x2 - 2 x + 2 x2 - 2 x + 2 x2 - 2 x + 2 4 æ4ö f ' ( x ) = 0 Û x = ; f ç ÷ = 10; lim f ( x) = -1; lim f ( x ) = 1 3 è3ø x ®-¥ x ®+¥ Kết luậ n: 1 < m < 10 2a 2 a 2 Câu IV: Gọi O là giao điểm AC và BD Þ SO ^ ( ABCD ) . Ta có: SO = SA2 - OA2 = a 2 - = 4 2 13 S ABCD = a 2 Þ VS . ABCD = a2 6 Gọi M, N là trung điểm AB và CD và I là tâm đường tròn nội tiếp tam giác SMN. Ta chứng minh I cách đều các mặt của hình chóp a 2 ( 3 - 1) 2a 2 2 S DSMN = pr Þ r = = 4(a + a 3) 4 (( x + y ) ) 1 2 Câu V: Đặt t = xy . Ta có: xy + 1 = 2 - 2 xy ³ -4 xy Þ xy ³ - 5 (( x - y ) ) 1 2 Và xy + 1 = 2 + 2 xy ³ 4 xy Þ xy £ . 3 2 ( x 2 + y2 ) - 2 x 2 y 2 -7t 2 + 2t + 1 1 1 Suy ra : P = . Điều kiện: - £ t £ . = 4 ( 2t + 1) 2 xy + 1 5 3 ( ) , P ' = 0 Û ét = 0 7 -t 2 - t (thoaû) Do đó: P ' = ê t = -1 (loaïi) 2 2 ( 2t + 1) ë 1 æ 1ö æ1ö 2 và P ( 0 ) = . Pç- ÷ = Pç ÷ = 4 è 5ø è 3 ø 15 Trần Sĩ Tùng
  3. 1 2 Kết luậ n: Max P = và Min P = 4 15 II. PHẦN TỰ CHỌN 1. Theo chương trình chuẩn 3x 2x x æ3ö æ 3ö æ 3ö Câu VI.a: 1) PT Û 2.3 3x x 2x 2x x 3x Û 2ç ÷ + ç ÷ - 4ç ÷ - 3 = 0 Û x = 1 + 2 .3 = 4.2 3 + 3.2 è2ø è 2ø è 2ø cos x sin x ò cos 2 x (1 + cos 2 x )dx . Đặt t = cos 2 2) Ta có: I = x Þ dt = -2cos x sin xdx 1 æ 1 + cos 2 x ö 1 t +1 1 æ 1 1ö 1 dt 2 ò t ( t + 1) 2 è t + 1 t ø = òç Suy ra : I = - - ÷ dt = ln + C = = ln ç ÷+C 2 è cos 2 x ø 2 t ( ) Câu VII.a: Gọi M là hình chiếu của I 1; -2;3 lên Oy, ta có: M ( 0; -2; 0 ) . uuu r IM = ( -1; 0; -3) Þ R = IM = 10 là bán kính mặt cầu cần tìm. Kết luậ n: PT mặt cầu cần tìm là ( x - 1) + ( y + 2 ) + ( z - 3) = 10 . 2 2 2 2. Theo chương trình nâng cao Câu VI.b: 1) Điều kiện : x > 0 . BPT Û ( 4 + log3 x ) log3 x > 5 1 Đặt t = log3 x . Ta có: t 2 + 4t - 5 > 0 Û t < -5 hoặc 1 < t Û 0 < x < hoặc x > 3 . 243 mx 2 + 1 2) Ta có: y ' = . Hàm số có 2 cực trị Û y ' = 0 có 2 nghiệm phân biệt, khác 0 Û m < 0 x2 æ öæ1 ö 1 4 + 16 ( - m ) ; -2 - m ÷ Þ AB 2 = Khi đó các điểm cực trị là: A ç - ; 2 -m ÷ , B ç ( -m ) -m ø è -m è ø 4 1 1 .16 ( - m ) = 16 . Dấu "=" xảy ra Û m = - . Kết luận: m = - . AB 2 ³ 2 ( -m ) 2 2 Câu VII.b: ( C ) : ( x + 1) + y 2 = 1 Þ I ( -1; 0 ) ; R = 1 . Hệ số góc của tiếp tuyến (D) cần tìm là ± 3 . 2 Þ PT (D) có dạng ( D1 ) : 3 x - y + b = 0 hoặc ( D 2 ) : 3 x + y + b = 0 b- 3 · ( D1 ) : 3 x - y + b = 0 tiếp xúc (C) Û d ( I , D1 ) = R Û = 1 Û b = ±2 + 3 . 2 Kết luậ n: ( D1 ) : 3x - y ± 2 + 3 = 0 b- 3 · ( D 2 ) : 3 x + y + b = 0 tiếp xúc (C) Û d ( I , D 2 ) = R Û = 1 Û b = ±2 + 3 . 2 Kết luậ n: ( D 2 ) : 3 x + y ± 2 + 3 = 0 . ===================== Trần Sĩ Tùng
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
3=>0