intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

ĐỀ THI THỬ LẦN 2 MÔN TOÁN - TRƯỜNG THPT THÚC THỪA

Chia sẻ: Vo Anh Hoang | Ngày: | Loại File: DOC | Số trang:5

155
lượt xem
30
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề thi thử lần 2 môn toán - trường thpt thúc thừa', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: ĐỀ THI THỬ LẦN 2 MÔN TOÁN - TRƯỜNG THPT THÚC THỪA

  1. KỲ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 ĐỀ THI THỬ LẦN 2 – MÔN TOÁN ------------------------------ PHẦN BẮT BUỘC. Câu I (2 điểm) . x +1 Cho hàm số y = . x −1 1. Khảo sát sự biến thiên và vẽ đồ thị ( C ) của hàm số. x +1 = m. 2. Biện luận theo m số nghiệm của phương trình x −1 Câu II. (2 điểm). 1. Giải phương trình : 2 sin 2 x − sin 2 x + sin x + cos x − 1 = 0 − x − 4 + y −1 = 4 2. Tìm điều kiện m để hệ phương trình − có nghiệm. + x + y = 3m Câu III. (1điểm) 2 4 − x2 Tính tích phân: I = ∫ dx . x2 1 Câu IV. (1 điểm). Cho tứ diện ABCD có ba cạnh AB, BC, CD đôi một vuông góc với nhau và AB = BC = CD = a . Gọi C’ và D’ lần lượt là hình chiếu của điểm B trên AC và AD. Tính thể tích tích tứ diện ABC’D’. Câu V. (1 điểm) Cho tam giác nhọn ABC, tìm giá trị bé nhất của biểu thức: S = cos 3 A + 2 cos A + cos 2 B + cos 2C . PHẦN TỰ CHỌN (thí sinh chỉ làm một trong hai phần : a hoặc b ) Phần A. Câu VIa. (2 điểm). 1. Trong mặt phẳng tọa độ Oxy cho tam giác ABC, với A(1;1) , B (−2; 5) , đỉnh C nằm trên đường thẳng x − 4 = 0 , và trọng tâm G của tam giác nằm trên đường thẳng 2 x − 3 y + 6 = 0 . Tính diện tích tam giác ABC. 2. Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng d và d’ lần lượt có phương trình : y−2 x−2 z+5 d: x= = z và d’ : = y −3= . −1 −1 2 Chứng minh rằng hai đường thẳng đó vuông góc với nhau. Viết phương trình mặt phẳng (α ) đi qua d và vuông góc với d’ Câu VIIa. (1 điểm) 20 C0 21 C1 22 C 2010 23 C3 2 22010 C2010 2010 Tính tổng : A = − + − + ... + 2010 2010 2010 1.2 2.3 3.4 4.5 2011.2012 Phần B. Câu VIb. (2 điểm) 1. Cho hai mặt phẳng (P): 2x – 6y + 3z – 4 = 0 và (Q): 2x – 6y + 3z – 4 = 0. Viết phương trình mặt x y+3 z (d ) : = = −1 1 2 đồng thời tiếp xúc với cả hai mặt phẳng (P) và cầu (S) có tâm nằm trên đường thẳng (Q). 2. Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có cạnh AB: x – 2y – 1 = 0, đường chéo BD: x – 7y + 14 = 0 và đường chéo AC qua điểm M(2 ; 1). Tìm tọa độ các đỉnh của hình chữ nhật. Câu Vb. (1 điểm) 1
  2. ( ). 3 +1+ i 1− 3 Tìm số phức z thỏa mãn đẳng thức: z 2 = 1+ i 2
  3. ĐÁP ÁN MÔN TOÁN. CÂU 1. 1. Tập xác định : x ≠ −1 . 2x − 1 3 3 , y' = y= = 2− , ( x + 1) 2 x +1 x +1 Bảng biến thiên: Tiệm cận đứng : x = −1 , tiệm cận ngang y = 2  3 3 3  ∈ (C ) thì tiếp tuyến tại M có phương trình y − 2 + = ( x − x0 ) hay 2. Nếu M  x0 ; 2 −   x0 + 1 ( x0 + 1) 2 x0 + 1   3( x − x0 ) − ( x0 + 1) 2 ( y − 2) − 3( x0 + 1) = 0 . Khoảng cách từ I (−1;2) tới tiếp tuyến là 3(−1 − x0 ) − 3( x0 + 1) 6 x0 + 1 6 d= = = 9 + ( x0 + 1) . Theo bất đẳng thức Côsi 9 9 + ( x0 + 1) 4 4 + ( x0 + 1) 2 ( x0 + 1) 2 9 + ( x0 + 1) 2 ≥ 2 9 = 6 , vây d ≤ 6 . Khoảng cách d lớn nhất bằng 6 khi ( x0 + 1) 2 9 = ( x0 + 1) 2 ⇔ ( x0 + 1) = 3 ⇔ x0 = −1 ± 3 . 2 ( x0 + 1) 2 Vậy có hai điểm M : M (−1 + 3 ;2 − 3 ) hoặc M (−1 − 3 ;2 + 3 ) CÂU 2. 1) 2 sin 2 x − sin 2 x + sin x + cos x − 1 = 0 ⇔ 2 sin 2 x − (2 cos x − 1) sin x + cos x − 1 = 0 . ∆ = (2 cos x − 1) 2 − 8(cos x − 1) = (2 cos x − 3) 2 . Vậy sin x = 0,5 hoặc sin x = cos x − 1 . 5π π Với sin x = 0,5 ta có hoặc + 2 kπ + 2kπ x= x= 6 6 π  π  2 Với sin x = cos x − 1 ta có sin x − cos x = −1 ⇔ sin  x −  = − = sin  −  , suy ra 4 2  4  3π hoặc + 2kπ x= x =2kπ 2 2) log 0,5 (m + 6 x) + log 2 (3 − 2 x − x ) = 0 ⇔ log 2 (m + 6 x) = log 2 (3 − 2 x − x 2 ) ⇔ 2 − 3 < x < 1 3 − 2 x − x 2 > 0  ⇔ ⇔ m = − x − 8 x + 3 m + 6 x = 3 − 2 x − x 2 2  Xét hàm số f ( x) = − x 2 − 8 x + 3 , − 3 < x < 1 ta có f ' ( x) = −2 x − 8 , f ' ( x) < 0 khi x > −4 , do đó f ( x) nghịch biến trong khoảng (−3; 1) , f (−3) = 18 , f (1) = −6 . Vậy hệ phương trình trên có nghiệm duy nhất khi − <
  4. a2 Vì tam giác ABC vuông cân nên AC ' = CC ' = BC ' = . 2 Ta có AD 2 = AB 2 + BD 2 = AB 2 + BC 2 + CD 2 = 3a 2 nên AD = a 3 . Vì BD’ là đường cao của tam giác a vuông ABD nên AD'.AD = AB 2 , Vậy AD' = . Ta có 3 a2 2 1 1 CD 1 a 2 a 3 1 1 a2 2 a 2 ˆ dt ( AC ' D' ) = AC '.AD' sin CAD = AC '.AD'. = ⋅ = . Vậy V = = . 2 2 AD 2 2 3 12 3 3 12 2 a3 36 CÂU 5. S = cos 3 A + 2 cos A + cos 2 B + cos 2C = cos 3 A + 2 cos A + 2 cos( B + C ) cos( B − C ) . = cos 3 A + 2 cos A[1 − cos( B − C )] . Vì cos A > 0 , 1 − cos( B − C ) ≥ 0 nên S ≥ cos 3 A , dấu bằng xẩy ra khi cos( B − C ) = 1 hay 1800 − A . Nhưng cos 3 A ≥ −1 , dấu bằng xẩy ra khi 3 A = 1800 hay A = 600 B=C = 2 Tóm lại : S có giá trị bé nhất bằng -1 khi ABC là tam giác đều. Phần A (tự chọn) CÂU 6A. 1− 2 + 4 1 + 5 + yC y Ta có C = (4; yC ) . Khi đó tọa độ G là xG = = 1, yG = = 2 + C . Điểm G nằm trên đường 3 3 3 thẳng 2 x − 3 y + 6 = 0 nên 2 − 6 − yC + 6 = 0 , vậy yC = 2 , tức là C = (4; 2) . Ta có AB = (−3; 4) , AC = (3;1) , vậy AB = 5 , AC = 10 , AB. AC = −5 . ( ) 1 1 2 15 Diện tích tam giác ABC là S = AB 2 . AC 2 − AB. AC = 25.10 − 25 = 2 2 2 2.Đường thẳng d đi qua điểm M (0;2;0) và có vectơ chỉ phương u (1;−1;1) Đường thẳng d’ đi qua điểm M ' (2;3;−5) và có vectơ chỉ phương u '(2;1;−1) [] [] Ta có MM = (2;1;−5) , u ; u ' = (0; 3; 3) , do đó u; u ' .MM ' = −12 ≠ 0 vậy d và d’ chéo nhau. Mặt phẳng (α ) đi qua điểm M (0;2;0) và có vectơ pháp tuyến là u '(2;1;−1) nên có phương trình: 2 x + ( y − 2) − z = 0 hay 2 x +y −z −2 =0 CÂU 7A. Ta có (1 + x) = Cn + Cn x + Cn x + ⋅ ⋅ ⋅ + Cn x , suy ra n 0 1 22 nn x(1 + x) n = Cn x + Cn x 2 + Cn x 3 + ⋅ ⋅ ⋅ + Cn x n +1 . 0 1 2 n Lấy đạo hàm cả hai vế ta có : (1 + x) n + nx(1 + x ) n −1 = Cn + 2Cn x + 3Cn x 2 + ⋅ ⋅ ⋅ + (n + 1)Cnn x n 0 1 2 Thay x = −1 vào đẳng thức trên ta được S. Phần B (tự chọn) CÂU 6B. Vì G nằm trên đường thẳng x + y − 2 = 0 nên G có tọa độ G = (t ; 2 − t ) . Khi đó AG = (t − 2;3 − t ) , ( ) [ ] 1 1 2 AB = (−1;−1) Vậy diện tích tam giác ABG là S = AG 2 . AB 2 − AG. AB = 2 (t − 2) 2 + (3 − t ) 2 − 1 = 2 2 2t − 3 2 4
  5. 2t − 3 Nếu diện tích tam giác ABC bằng 13,5 thì diện tích tam giác ABG bằng 13,5 : 3 = 4,5 . Vậy = 4,5 , suy 2 ra t = 6 hoặc t = −3 . Vậy có hai điểm G : G1 = (6;−4) , G 2 = (−3;−1) . Vì G là trọng tâm tam giác ABC nên xC = 3 xG − ( xa + xB ) và yC = 3 yG − ( ya + y B ) . Với G1 = (6;−4) ta có C =(15;− ) , với G 2 = (−3;−1) ta có C =(− ;18) 9 12 1 2 2.Đường thẳng d đi qua điểm M (0;2;0) và có vectơ chỉ phương u (1;−1;1) Đường thẳng d’ đi qua điểm M ' (2;3;−5) và có vectơ chỉ phương u '(2; 1;−1) . 1 Mp (α ) phải đi qua điểm M và có vectơ pháp tuyến n vuông góc với u và cos(n; u ' ) = cos 60 = . Bởi vậy 0 2 nếu đặt n = ( A; B; C ) thì ta phải có : A − B + C = 0 B = A + C B = A + C   ⇔ ⇔ 2  2A + B − C 1 = 2 A − AC − C = 0 2 2 3 A = 6 A + ( A + C ) + C 2 2 2   2  6 A + B +C 2 2 2 Ta có 2 A2 − AC − C 2 = 0 ⇔ ( A − C )(2 A + C ) = 0 . Vậy A = C hoặc 2 A = −C . Nếu A = C ,ta có thể chọn A=C=1, khi đó B = 2 , tức là n = (1;2;1) và mp(α ) có phương trình x + 2( y − 2) + z = 0 hay x +2 y +z −4 =0 Nếu 2 A = −C ta có thể chọn A = 1, C = −2 , khi đó B = −1 , tức là n = (1;−1;−2) và mp(α ) có phương trình x − ( y − 2) − 2 z = 0 hay x −y −2 z +2 =0 CÂU 7B. Ta có (1 + x) = Cn + Cn x + Cn x + ⋅ ⋅ ⋅ + Cn x , suy ra n 0 1 22 nn x(1 + x) n = Cn x + Cn x 2 + Cn x 3 + ⋅ ⋅ ⋅ + Cn x n +1 . 0 1 2 n Lấy đạo hàm cả hai vế ta có : (1 + x) n + nx(1 + x ) n −1 = Cn + 2Cn x + 3Cn x 2 + ⋅ ⋅ ⋅ + (n + 1)Cnn x n 0 1 2 Thay x = 1 vào đẳng thức trên ta được S. 5
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2