Đề thi toán các khối A, B
lượt xem 4
download
Tham khảo tài liệu 'đề thi toán các khối a, b', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi toán các khối A, B
- http://ductam_tp.violet.vn/ KỲ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2011 Môn: Toán. Khối A, B. Thời gian làm bài: 180 phút (Không kể thời gian giao đề) 2 x −1 Câu I. (2 điểm). Cho hàm số y= (1). x +1 1) Khảo sát và vẽ đồ thị (C) của hàm số (1). 2) Tìm điểm M thuộc đồ thị (C) để tiếp tuyến của (C) tại M với đường thẳng đi qua M và giao điểm hai đường tiệm cận có tích hệ số góc bằng - 9. Câu II. (2 điểm) 1 1 + =2. 1) Giải phương trình sau: x 2 − x2 sin 4 2 x + cos 4 2 x = cos 4 4 x 2) Giải phương trình lượng giác: . π π − x).tan( + x) tan( 4 4 Câu III. (1 điểm) Tính giới hạn sau: 3 ln(2e − e.cos2 x) − 1 + x 2 L = lim x2 x →0 Câu IV. (2 điểm) Cho hình nón đỉnh S có độ dài đường sinh là l, bán kính đường tròn đáy là r. Gọi I là tâm mặt cầu nội tiếp hình nón (mặt cầu bên trong hình nón, tiếp xúc với tất cả các đường sinh và đường tròn đáy của nón gọi là mặt cầu nội tiếp hình nón). 1. Tính theo r, l diện tích mặt cầu tâm I; 2. Giả sử độ dài đường sinh của nón không đổi. Với điều kiện nào của bán kính đáy thì diện tích mặt cầu tâm I đạt giá trị lớn nhất? Câu V (1 điểm) Cho các số thực x, y, z thỏa mãn: x2 + y2 + z2 = 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: P = x3 + y3 + z3 – 3xyz. Câu VI. (1 điểm) Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có tâm 1 I ( ;0) 2 Đường thẳng AB có phương trình: x – 2y + 2 = 0, AB = 2AD và hoành độ điểm A âm. Tìm tọa độ các đỉnh của hình chữ nhật đó. Câu VII. (1 điểm) Giải hệ phương trình : 2 y 2 − x 2 = x + 2010 2009 y 2 + 2010 3log3 ( x + 2 y + 6) = 2 log 2 ( x + y + 2) +1 --------------- HẾT --------------- - Thí sinh không được sử dụng bất cứ tài liệu gì! Ghi chú: - Cán bộ coi thi không giải thích gì thêm! Họ và tên thí sinh: ……….…………………Số báo danh:
- HƯỚNG DẪN NỘI DUNG ĐIỂM CÂU 2 x −1 I.1 3 Hàm số: y = =2− x +1 x +1 lim y = 2; lim y = 2; lim y = −∞; lim y = +∞ +) Giới hạn, tiệm cận: x → ( −1)+ x → ( −1)− x →+∞ x →−∞ - TC đứng: x = -1; TCN: y = 2. 3 +) y ' = > 0, ∀x ∈ D ( x + 1) 2 +) BBT: -∞ +∞ x -1 y' + || + +∞ y 2 || −∞ 2 +) ĐT: 1 điểm 8 6 4 2 -10 -5 5 10 -2 -4 -6 y −y I.2 −3 3 +) Ta có I(- 1; 2). Gọi M ∈ (C ) ⇒ M ( x0 ; 2 − x + 1) ⇒ k IM = x − x = ( x + 1) 2 M I 0 M I 0 3 +) Hệ số góc của tiếp tuyến tại M: k M = y '( x0 ) = 1 điểm ( x0 + 1) 2 +) ycbt ⇔ kM .kIM = −9 +) Giải được x0 = 0; x0 = -2. Suy ra có 2 điểm M thỏa mãn: M(0; - 3), M(- 2; 5) II.1 +) ĐK: x ∈ (− 2; 2) \ {0} x + y = 2 xy +) Đặt y = 2 − x 2 , y > 0 Ta có hệ: 2 x + y = 2 2 −1 + 3 −1 − 3 x = x = 1 điểm 2 2 ; +) Giải hệ đx ta được x = y = 1 và y = −1 − 3 y = −1 + 3 2 2 −1 − 3 +) Kết hợp điều kiện ta được: x = 1 và x = 2 1 điểm π π II.2 +) ĐK: x ≠ + k ,k ∈Z 4 2 π π π π +) tan( − x ) tan( + x) = tan( − x) cot( − x) = 1 4 4 4 4 12 11 sin 4 2 x + cos 4 2 x = 1 − sin 4 x = + cos 2 4 x 2 22 pt ⇔ 2 cos 4 x − cos 4 x − 1 = 0 4 2
- π +) Giải pt được cos24x = 1 ⇔ cos8x = 1 ⇔ x = k và cos24x = -1/2 (VN) 4 π +) Kết hợp ĐK ta được nghiệm của phương trình là x = k ,k ∈ Z 2 III 3 3 ln(2e − e.cos2 x) − 1 + x 2 ln(1 +1 − cos2 x ) +1 − 1 + x 2 L = lim = lim x2 x2 x →0 x →0 3 ln(1 + 2sin 2 2 x) 1 − 1 + x 2 2 2 x) = lim ln(1 + 2sin −1 = lim 1 điểm + + x →0 x 2 x →0 x 2 3 (1 + x 2 ) 2 + 3 1 + x 2 +1 x2 2sin 2 x 2sin 2 x 2sin 2 x 2sin 2 x S 15 =2− = 33 IV.1 +) Gọi rC là bán kính mặt cầu nội tiếp nón, và cũng là l bán kính đường tròn nội tiếp tam giác SAB. 1 S SAB = prC = (l + r ).rC = I SM .AB 2 Ta có: 1 điểm l 2 − r 2 .2r l−r ⇒ rC = =r r A M B 2(l + r ) l+r l −r +) Scầu = 4π r C = 4π r 2 2 l+r +) Đặt : IV.2 lr 2 − r 3 y (r ) = ,0 < r < l l+r − 5 −1 r = l −2r ( r + rl − l ) 2 2 2 =0⇔ +) y '(r ) = (l + r ) 2 5 −1 r = l 2 +) BBT: r 5 −1 1 điểm 0 l 2 l y'(r) y(r) ymax 5 −1 +) Ta có max Scầu đạt ⇔ y(r) đạt max ⇔ r = l 2 1 điểm V +) Ta có P = ( x + y + z )( x 2 + y 2 + z 2 − xy − yz − zx ) x2 + y 2 + z 2 − ( x + y + z )2 P = (x + y + z) x2 + y 2 + z 2 + 2 2 − ( x + y + z) ( x + y + z)2 2 P = ( x + y + z ) 2 + = ( x + y + z ) 3 + 2 2 1 +) Đặt x +y + z = t, t ≤ 6 ( Bunhia cov xki) , ta được: P (t ) = 3t − t 3 2 +) P '(t ) = 0 ⇔ t = ± 2 , P( ± 6 ) = 0; P (− 2) = −2 2 ; P ( 2) = 2 2 +) KL: MaxP = 2 2; MinP = −2 2
- VI 5⇒ ⇒ AB = 2 ⇒ BD = 5. +) d ( I , AB) = AD = 5 5 2 +) PT đường tròn ĐK BD: (x - 1/2)2 + y2 = 25/4 x = 2 12 25 y = 2 ⇒ A(−2;0), B(2; 2) ( x − ) + y = 2 +) Tọa độ A, B là nghiệm của hệ: 2 4 ⇔ x = −2 x − 2 y + 2 = 0 y = 0 ⇒ C (3;0), D(−1; −2) VII x 2 + 2010 2 2 2009 y −x = (1) y 2 + 2010 3log3 ( x + 2 y + 6) = 2 log 2 ( x + y + 2) +1(2) +) ĐK: x + 2y = 6 > 0 và x + y + 2 > 0 +) Lấy loga cơ số 2009 và đưa về pt: x 2 + log 2009 ( x 2 + 2010) = y 2 + log 2009 ( y 2 + 2010) +) Xét và CM HS f (t ) = t + log 2009 (t + 2010), t ≥ 0 đồng biến, từ đó suy ra x2 = y2 ⇔ x= y, x = - y +) Với x = y thế vào (2) và đưa về pt: 3log3(x +2) = 2log2(x + 1) = 6t t t 1 8 Đưa pt về dạng ÷ + ÷ = 1 , cm pt này có nghiệm duy nhất t = 1 9 9 ⇒ x = y =7 +) Với x = - y thế vào (2) được pt: log3(y + 6) = 1 ⇒ y = - 3 ⇒ x = 3 Ghi chú: - Các cách giải khác với cách giải trong đáp án mà vẫn đúng, đủ thì cũng cho điểm tối đa. - Người chấm có thể chia nhỏ thang điểm theo gợi ý các bước giải.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
ĐỀ THI KHẢO SÁT CHẤT LƯỢNG ÔN THI ĐẠI HỌC KHỐI A - B – D. Năm 2010
5 p | 567 | 186
-
Đề thi thử ĐH môn Toán lần 1 (2013-2014) khối A,B,A1 - THPT Phan Đăng Lưu (Kèm đáp án)
7 p | 179 | 23
-
Đề thi thử ĐH môn Toán lần 1 (2013-2014) khối A,B,A1 - THPT Yên Phong Số 1 (Kèm đáp án)
6 p | 148 | 18
-
Một số đề thi thử Đại học lần 2 môn Toán 2014 khối A,A1,B,D - THPT: Lương Thế Vinh
12 p | 109 | 13
-
Đề thi thử Đại học lần thứ 1 Toán 2014 khối A,B - THPT Đặng Thúc Hứa (Kèm đáp án)
0 p | 172 | 12
-
Đề thi thử ĐH môn Toán lần 1 (2013-2014) khối A,B - THPT Thuận Thành Số 1 (Kèm đáp án)
5 p | 72 | 9
-
ĐỀ THI THỬ ĐẠI HỌC NĂM 2012 Môn TOÁN – Khối A,B,D - THPT Tuy Phong
6 p | 98 | 9
-
Đề thi Dự trữ khối A-năm 2007 Đề II
7 p | 347 | 8
-
Đề thi thử ĐH môn Toán - THPT chuyên Nguyễn Quang Diêu lần 2 năm 2013 (khối A, B)
7 p | 141 | 8
-
Đề thi thử Đại học Toán lần 1 (2013 - 2014) khối A,B,A1,V - THPT Nguyễn Đăng Đạo (Kèm đáp án)
8 p | 76 | 5
-
Đề thi khảo sát chất lượng lần 2 có đáp án môn: Toán 12, khối A, B - Trường THPT chuyên Vĩnh Phúc (Năm học 2014-2015)
5 p | 103 | 4
-
Đề khảo sát chất lượng học kỳ 1 năm học 2011-2012 môn Toán khối A, B - Trường THPT chuyên Hà Tĩnh
2 p | 68 | 3
-
Đề khảo sát chất lượng lần thứ 2 có đáp án môn: Toán 12, khối A, B - Trường THPT Chuyên Vĩnh Phúc (Năm học 2013-2014)
8 p | 127 | 3
-
Đề kiểm tra chất lượng khối 12 môn Toán (khối A, B) - Trường THPT chuyên Lam Sơn
5 p | 94 | 3
-
3 Đề thi thử ĐH môn Toán - Sở GD&ĐT Bắc Ninh năm 2014 khối A, B, D
17 p | 44 | 2
-
Đề thi thử đại học lần thứ 1 môn: Toán, khối A,B - Trường THPT DTNT Tân Kỳ (Năm học 2012-2013)
2 p | 68 | 1
-
Đề thi khảo sát chất lượng lần thứ nhất năm học 2013-2014 có đáp án môn: Toán 12, khối A, B, D - Trường THPT Tống Duy Tân
8 p | 75 | 0
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn